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Abstract: Increasing the flight endurance of unmanned aerial vehicles (UAVs) has received attention
recently. To solve this problem, two research topics have generally appeared: Shortest-path planning
(SPP) and remaining-flying-range estimation. In this work, energy-efficient path planning by
considering the distance between waypoint nodes, the minimum and maximum speed of the UAV,
the weight of the UAV, and the angle between two intersecting edges is proposed. The performances
of energy-efficient path planning (EEPP) and generic shortest-path planning are compared using
extended-Kalman-filter-based state-of-charge and state-of-power estimation. Using this path-planning
tool and considering energy consumption during flight operation, two different path plans can be
obtained and compared in advance so that the operator can decide which path to choose by consulting
a comparison chart. According to the experimental results, the EEPP algorithm results in 0.96% of
improved SOC leftover and 11.03 (W) of lowered SOP compared to the SPP algorithm.
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1. Introduction

As unmanned aerial vehicle (UAV) technology matures, the longtime flight endurance capability
of UAVs is gaining attention [1,2]. Because the energy density (W/kg) of the battery pack (in particular,
Li-ion) is closely correlated with the overall flight time of the UAV, it is recommended to choose
cells possessing as high an energy density as possible [3,4]. However, in contrast to electric vehicles
(EVs), the operation times of electric aircraft, including the UAV, drastically decrease as the system
weights increase. Hence, technology development for increasing UAV flight time has been delayed for
a long time.

Lately, the EV industry has been growing quickly, and automotive industry researchers have
focused their attention on accurately predicting the energy leftover so that the driving range can be
extended. Accurate energy leftover monitoring (state of charge (SOC) estimation in the EV industry),
aims to extend the driving range, and it is related to shortest-path planning (SPP), which is essential to
saving energy. Both accurate SOC estimation and SPP should ultimately enhance the fuel economy of
EVs, and the same philosophy applies to UAVs.

There have been numerous studies regarding path planning. Chang et al. proposed a method to
achieve an effective delivery route for trucks carrying delivery drones with moving shift-weights-based
K-means clustering and traveling-salesman-problem modeling [5]. Rubio et al. presented adaptive
path planning for multiple UAVs using evolutionary computation combined with market-based
cooperation strategies [6].

Further, there has been research regarding the accurate estimation of the remaining driving or
flying range. Oliva et al. suggested a model-based approach by combining unscented filtering and
Markov chains to predict the remaining driving range (RDR) [7]. Ondruska et al. proposed the efficient
computation of RDR confidence level using a feature-based linear regression framework with a varying
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probabilistic attainability map in real-time [8]. Ferreira et al. presented an interaction method between
a driver and EV to estimate EV range using a regression-model-based data mining approach [9].

Unlike the previously listed works, this study contributes to the energy-efficient path planning
(EEPP) of the UAV to ultimately increase the flight endurance compared with the general SPP. To verify
the improved fuel efficiency, the concept of the extended Kalman filter (EKF)-based SOC estimation
method is adopted. To mimic cell behavior, a physics-based equivalent circuit model (ECM) is
used [10–13].

The overall mission hierarchy to achieve an energy-efficient path proposed in this paper is
as follows.

First, with the given satellite map, the EEPP algorithm generates the most energy-efficient path
with step-by-step processes; (1) obstacle detection, (2) extract obstacle, (3) obstacle separation, (4) add
buffer zone, (5) Voronoi, (6) filter out useless candidates, (7) 1D optimal control, and (8) SPP or EEPP
selection. Here, the format of the output path has both Euclidean and GPS coordinates. In contrast
to the SPP algorithm, which uses Dijkstra algorithm, the EEPP algorithm uses three step-by-step
processes; (1) find all trajectory candidates, (2) calculate total unit energy consumption (UEC) of all
trajectory candidates, and (3) find a trajectory having the minimum UEC.

Second, either flight simulation with equivalent circuit model (ECM) of the Li-Ion battery pack
or the flight experiment with a real Li-Ion battery pack is performed using the previously obtained
energy-efficient path and gives out the voltage and current profiles of each cell.

Third, a battery state estimator uses the voltage and current profiles of cells to calculate the SOC.
In particular, the battery state estimator uses the EKF to calculate the SOC.

The flow of this paper is as follows: In Section 2, the overall mission hierarchy, including four
subparts (path planning, flight simulation, flight experiment, and battery state estimation), is described.
In Section 3, the path planning, including the SPP and EEPP algorithms, is explained. Section 4 covers
the mathematical formulation of the UAV and battery pack. Section 5 presents the simulation and
experimental setups, while Section 6 shows the simulation and experiment results. Section 7 contains
the conclusion of this paper and describes future works.

2. Mission Hierarchy

Figure 1 depicts the overall mission hierarchy to achieve the most energy-efficient path and
corresponding estimated SOC value.Appl. Sci.  2019, 10, x FOR PEER REVIEW  3 of 20 
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First, using a Google Earth satellite photograph, and the takeoff and landing locations, the most
energy-efficient path is determined by the path-planning part. Here, the path is saved in both the
Cartesian system unit, Trajectoryxyz, and the geographic coordinate system unit, TrajectoryGPS.

Second, the achieved path is utilized for the indoor flight simulation and outdoor flight experiment
to calculate the cell open-circuit voltage (OCV), vocv, and load current, io, data.

Third, the achieved cell voltage and current data are utilized for the battery state estimation to
calculate the SOC. Both SOCSim and SOCExp are calculated to compare results.

With the achieved SOC value, one can finally determine whether the EEPP algorithm results in an
energy-efficient path.

3. Path Planning

Figure 2 displays a magnified version of the path-planning part of Figure 1. This part results in
either the shortest path or energy-efficient path. The detailed description of each subpart is given
elsewhere [14].
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3.1. SPP

The Dijkstra algorithm is used for the SPP algorithm, which utilizes the weights of each edge
between nodes to calculate the minimum sum of the total distance from the start node to the goal
node [15].

The overall flowchart of the SPP algorithm is shown in Figure 3.
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3.2. EEPP

In contrast to the general SPP algorithm, which only accounts for the distance between nodes,
the EEPP algorithm calculates the energy-efficient path by considering factors including the distance
between nodes, the minimum and maximum speed of the UAV, and the weight of the UAV as shown
in Figure 4.
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The overall amount of battery consumption of the UAV, Bo, would be

Bo = Bt + Bh + Ba + Bn + Bd + Bc + Bl, (1)

where Bt is the battery consumption during takeoff (W), Bh is the battery consumption during hovering
(W), Ba is the battery consumption during acceleration (W), Bn is the battery consumption during
normal flight (W), Bd is the battery consumption during deceleration (W), Bc is the battery consumption
during the circular flight (W), and Bl is the battery consumption during landing (W).

Because the takeoff and landing occur in a short period and the amount of battery consumption
is insignificant compared with the total consumption, Bt and Bl are assumed to be zero, and
Equation (1) becomes

Bo ≈ Bh + Ba + Bn + Bd + Bc. (2)

If there are ne number of edges in the given path,

Bo ≈

ne∑
i=1

(Bh + Ba + Bn + Bd + Bc). (3)

From the equation of a single rotor helicopter in hover [16,17], the required hovering power of the
UAV can be derived as

Bh = m
3
2

√
g3

2ρζnr
, (4)

where m is the mass of the UAV (kg), g is the gravitational acceleration (m/s2), ρ is the fluid density of
air (kg/m3), ζ is the total area of the spinning rotor disk (m2), and nr is the number of rotors (no unit).

The required power for the acceleration can be derived as

Ba =
1

2ta


ta∫

0

amaxdt


2

=
1
2

ma2
maxta, (5)

where amax is the maximum acceleration (m/s2), and ta is the time taken for the acceleration (s).
The required power for the deceleration can be derived as

Bd =
1

2td


td∫

0

amindt


2

, (6)

where amin is the minimum acceleration (m/s2), and td is the time taken for the deceleration (s). Here,
with assumptions that ta = td and amax = −amin, one can conclude Ba = Bd.

The required power for the normal (constant speed) flight can be derived as

Bn =
1

2tn
mv2

max. (7)

Here, vmax is the maximum velocity (m/s2), and tn is the time taken for the normal flight (s).
The required power for the circular flight can be derived as

Bc =
1

2tc
mv2

min (8)

where vmin is the minimum velocity (m/s2), and tc is the time taken for the circular flight (s).
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The unknown value, ta, in Equation (5) can be calculated as

ta = td =
vmax − vmin

amax
. (9)

The unknown value, tn, in Equation (7) can be calculated as

1
2

tc =
1

vmin

v2
min

amax
tan

(
π
2
−
α
2

), (10)

therefore,

tc = 2
vmin

amax
tan

(
π
2
−
α
2

)
, (11)

where α is the intersection angle of two edges, which satisfies 0 ≤ α ≤ π.
Because

b1 = tavmin + 1
2 ta(vmax − vmin),

b2 =
v2

min
amax

tan
(
π
2 −

α
2

)
,

(12)

the unknown value, tc, in Equation (8) can be calculated as

tn =
1

vmax

{
‖Wi−1, Wi‖ − 2(b1 + b2)

}
, (13)

where Wi is the waypoint (no unit), b1 is the distance in which the UAV accelerates or decelerates (m),
and b2 is the distance at which the UAV flies in a circular motion (m).Appl. Sci.  2019, 10, x FOR PEER REVIEW  6 of 20 

 

 
Figure 4. Analysis of flight path using the Dubins path method [18–20]. 

The overall flowchart of the EEPP algorithm is shown in Figure 5. 

 
Figure 5. Flowchart of the energy-efficient path planning (EEPP) algorithm. 

4. Mathematical Modeling of the UAV and Battery Pack 

4.1. UAV 

The configuration and governing control inputs of the quadrotor are described in Figure 6, 
where 𝑋 , 𝑌 , and 𝑍  represent earth coordinates, 𝑥 , 𝑦 , and 𝑧  represent quadrotor coordinates, 
and 𝐹  represents a thrust force generated by the i-th rotor in the indicated direction. 

Figure 4. Analysis of flight path using the Dubins path method [18–20].



Appl. Sci. 2019, 9, 3341 6 of 20

If Equations (4)–(13) are combined into Equation (3), then

B0 =

ne∑
i=1

m 3
2

√
g3

2ρζnr
+ mamax(vmax − vmin) +

mv3
max

2
{
‖Wi−1, Wi‖ − 2(b1 + b2)

} + mvminamax

4 tan
(
π
2 −

α
2

) . (14)

To calculate the total unit energy consumption (UEC) (Wh), Ub, Equation (14) is converted as

B0 =
tt

3600

ne∑
i=1

m 3
2

√
g3

2ρζnr
+ mamax(vmax − vmin) +

mv3
max

2
{
‖Wi−1, Wi‖ − 2(b1 + b2)

} + mvminamax

4 tan
(
π
2 −

α
2

)  (15)

where tt = ta + tn + td + tc.
The overall flowchart of the EEPP algorithm is shown in Figure 5.
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4. Mathematical Modeling of the UAV and Battery Pack

4.1. UAV

The configuration and governing control inputs of the quadrotor are described in Figure 6, where
XE, YE, and ZE represent earth coordinates, xq, yq, and zq represent quadrotor coordinates, and Fi
represents a thrust force generated by the i-th rotor in the indicated direction.Appl. Sci.  2019, 10, x FOR PEER REVIEW  7 of 20 
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where 𝑇 is the total upward thrust of the UAV (N), b is the thrust factor, and 𝑤  is the i-th rotor 
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To extract current and voltage profiles along the predetermined path obtained from the previous
section, an enhanced quadrotor dynamic model can be represented as

w2
1 = b

(
T + τx + τy + τz

)−1

w2
2 = lb(−τx + τz)

w2
3 = lb

(
−T + τy

)
w2

4 = d
(
−T + τx − τy + τz

) (16)
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where T is the total upward thrust of the UAV (N), b is the thrust factor, and wi is the i-th rotor speed
(rad/s), l is the lever length from the center of gravity (CG) to rotors (m), d is the drag factor, and τx,
τy, and τz are torques applied on the UAV’s body along x-, y-, and z-axes (N·m) [21,22].

Here, T, τx, τy, and τz can be calculated using proportional–integral–derivative (PID) controllers as

T = kpT (z
∗
− z) + kiT

t2∫
t1

(z∗ − z)dt + kdT

( .
z∗ −

.
z
)
+
√

W/4b,

τx = kpx(φ
∗
−φ) + kix

t2∫
t1

(φ∗ −φ)dt + kdx

( .
φ
∗

−

.
φ
)
,

τy = kpy(θ
∗
− θ) + kiy

t2∫
t1

(θ∗ − θ)dt + kdy

( .
θ
∗

−

.
θ
)
,

τz = kpz(ψ
∗
−ψ) + kiz

t2∫
t1

(ψ∗ −ψ)dt + kdz

( .
ψ
∗

−
.
ψ
)
,

(17)

where kp, ki, and kd are PID controller gains, φ, θ, and ψ are roll, pitch, and yaw angles (rad), uppercase
letter * represents reference data, and W is the UAV weight (kg).

The full quadrotor UAV dynamic model can be written as

..
x = (cosφ sinθ cosψ+ sinφ sinψ) 1

m b
(
w2

1 + w2
2 + w2

3 + w2
4

)
,

..
y = (cosφ sinθ sinψ− sinφ cosψ) 1

m b
(
w2

1 + w2
2 + w2

3 + w2
4

)
,

..
z = (cosφ cosθ) 1

m b
(
w2

1 + w2
2 + w2

3 + w2
4

)
− g,

..
φ =

.
θ

.
ψ
(

Iy−Iz
Ix

)
−

Jr
Ix

.
θ(w1 + w3 −w2 −w4) +

l
Ix

b
(
w2

4 −w2
2

)
,

..
θ =

.
φ

.
ψ
(

Iz−Ix
Iy

)
−

Jr
Iy

.
φ(w1 + w3 −w2 −w4) +

l
Iy

b
(
w2

3 −w2
1

)
,

..
ψ =

.
φ

.
θ
(

Ix−Iy
Iz

)
+ 1

Iz
d
(
w2

2 + w2
4 −w2

1 −w2
3

)
.

(18)

Here, Jr is the rotor inertia (kg·m2).
Using the fact that power can be calculated by multiplying the thrust and velocity, one can

calculate the required propulsive thrust power from the total upward thrust T in Equation (15) as

P = T · ‖v0‖. (19)

Then, the load current can be calculated using

P
vt

= i0 (20)

where vt is the terminal voltage (V), and i0 is the load current (A).
The above equations are used for the operation of flight simulation, as shown in Figure 7.
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4.2. Battery Pack

4.2.1. ECM

By using the two-ladder battery ECM and impedance voltage response, as shown in Figure 8,
the vt can be determined as

vt = vocv − i0R0 − vc1 − vc2

= vocv − i0R0 − i0R1
(
1− e−∆t/τ1

)
− i0R2

(
1− e−∆t/τ2

) (21)

where vocv is the OCV voltage (V), R0 is the resistor (Ω), vci is the voltage across the i-th RC-network
(V), τi is the time constant (s), which is calculated as τi = RiCi in which Ri is the resistor (Ω) and Ci is
the capacitor (F) of the i-th ladder, and t is the time (s).Appl. Sci.  2019, 10, x FOR PEER REVIEW  9 of 20 
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where 𝑧 is the SOC (%/100), ∆𝑡 is 0.1 s, and 𝑛  and 𝑛  are system and measurement noises (V), 
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The Kalman gain, 𝐾 , can be calculated as 
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With the updated Kalman gain, 𝐾 , and updated measurement, 𝑧 , the updated estimation 
vector, 𝑥 , can be calculated as 
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Figure 8. Battery modeling; (a) two-ladder battery equivalent circuit model (ECM); (b) impedance
voltage response.

4.2.2. TBLI Parameter Identification

The ECM parameters, including R0, R1, C1, R2, and C2, are extracted at SOC 10% intervals
using the high-performance pulse characterization current pattern, as shown in Appendix A [12].
Here, the table-based linear interpolation (TBLI) method is used to determine ECM parameters
corresponding to varying SOC values. Although R0, R1, C1, R2, and C2 are the functions of the SOC,
C-rate, and temperature, only the SOC variance effect is considered in this research.

4.2.3. SOC and SOP State Estimation

The SOC estimation is performed using the EKF for each cell. For the EKF algorithm application,
Equation (21) and SOC calculation based on current integration method are fused and converted into
the discrete-time state space model as

vc1

vc2

z


k+1

=


e−∆t/τ1 0 0

0 e−∆t/τ2 0
0 0 1




vc1

vc2

z


k

+


R1

(
1− e−∆t/τ1

)
R2

(
1− e−∆t/τ2

)
η∆t/(3600Qnorm)


k

i0,k +


nw1

nw2

nw3


k

,


vc1

vc2

z


k

=


1 0 0
0 1 0
0 0 1




vc1

vc2

z


k

+


0
0
0


k

i0,k +


nv1

nv2

nv3


k

,

(22)

where z is the SOC (%/100), ∆t is 0.1 s, and nwi and nvi are system and measurement noises (V),
respectively. Here, the term z can be calculated as z(t) = Qinit + ηi0(t)/Qnorm(t) where Qinit is the
initial battery capacity (Ah), η is the battery efficiency (assumed as 1), and Qnorm is the current battery
capacity (Ah).
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With an initial estimation vector, x̂0, and covariance vector, P0, the estimation vector and covariance
vector can be propagated using

x̂−k+1 = f (x̂k),
P−k+1 = Ak+1PkAT

k+1 + Qk.
(23)

The Kalman gain, Kk, can be calculated as

Kk+1 = P−k+1HT
k+1

(
Hk+1P−k+1HT

k+1 + Rk+1

)−1
. (24)

With the updated Kalman gain, Kk+1, and updated measurement, zk+1, the updated estimation
vector, x̂k+1, can be calculated as

x̂k+1 = x̂−k+1 + Kk+1

(
zk+1 − hk+1

(
x̂−k+1

))
, (25)

and the updated covariance vector, Pk+1, can be calculated as

Pk+1 = P−k+1 −Kk+1Hk+1P−k+1. (26)

The final SOC value of the battery pack is conservatively chosen as the minimum value of each
cell as

SOCpack,k = min
(
z1

k , . . . , zn
k

)
× 100, (27)

where SOCpack,k is the SOC (%) of a battery pack at the k-th time step.
Regarding the state of power (SOP) estimation, the maximum discharging current, idis

max, can be
calculated as

idis
max = CrateQnorm (28)

where Crate is the C-rate of the cell (no unit).
The maximum discharging current considering the SOC, idis,SOC(i)

max,k , can be calculated as

idis,SOC(i)
max,k =

{(
z(i)k − 3σ(i)z,k

)
− zmin

}
CrateQnorm (29)

where σ is the standard deviation of the cell SOCs (%/100), zmin is the minimum SOC (%/100), η is the
battery efficiency (assumed as one), and Tk − To is the time flown from the beginning (s). Here, 3σ was
used for the 99.7% confidence interval of the cell SOC estimation values.

The maximum discharging current considering the cell voltage, idis,volt(i)
max,k , can be calculated as

idis,volt(i)
max,k =

∣∣∣i0,k
∣∣∣{vocv

(
z(i)k

)
− v(i)min

}
1∣∣∣∣∣vocv

(
z(i)k − v(i)min

)∣∣∣∣∣ +
1

v(i)max −

{
vocv

(
z(i)k

)
− v(i)min

}
, (30)

where vocv is the open-circuit voltage (OCV) (V), and vmin is the minimum cell voltage (V). Here,
v(1)min = 3.679 V, v(2)min = 3.660 V, v(3)min = 3.663 V, v(4)min = 3.626 V, v(1)max = 4.171 V, v(2)max = 4.176 V,

v(3)max = 4.174 V, v(4)max = 4.174 V, zmin = 0, Crate = 18 C, Np = 1, Ns = 4, and Qnorm = 3.3 Ah.

With the previously found idis
max, idis,SOC(i)

max,k , and idis,volt(i)
max,k , one can calculate idis

max,k as

idis
max,k = min

(
idis
max, idis,SOC(i)

max,k , idis,volt(i)
max,k

)
(31)
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and can calculate Pdis(i)
max,k as

Pdis(i)
max,k = idis

max,k

vocv

(
z(i)k

)
− idis

max,k

∣∣∣∣∣∣∣∣∣∣
vocv

(
z(i)k

)
− vmin

i0,k

∣∣∣∣∣∣∣∣∣∣
. (32)

Then, the maximum power that each cell could perform, Pdis(i)
max , is calculated as

Pdis(i)
max = v(i)maxidis

max (33)

and compared with the maximum power that each cell performs during the discharging process,
Pdis(i)

max,k, as

Pdis(i)
max,k = Npmin

NsP
dis(i)
max ,

Ns∑
i=1

idis
max,k

(
vocv

(
z(i)k

)
− idis

max,kR(i)
dis

) (34)

where the total initial resistance of each cell, R(i)
dis, can be calculated as

R(i)
dis =

vocv

(
z(i)k

)
− vmin

i0,k
. (35)

Figure 9 presents the flowchart of the battery state estimation [23].Appl. Sci.  2019, 10, x FOR PEER REVIEW  11 of 20 
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5. Simulation and Experimental Setups

5.1. Simulation Setup

All simulations were performed with a quadrotor vehicle with initial system properties
Po = [0, 0, 0] m, θo = [0, 0, 0] rad, wo = [0, 0, 0] rad/s, vo = [0, 0, 0] m/s, ao = [0, 0, 0] m/s2,
‖vmin‖2 = 0 m/s, ‖vmax‖2 = 5 m/s, ‖amax‖2 = 0.5 m/s2, Altmin = 3 m, and Altn = 30 m, where Po, θo,
wo, vo, ao, Altmin, and Altn are initial position, attitude, angular velocity, velocity, acceleration, minimum
flight altitude, and normal flight altitude, respectively. Also, the time step used in MATLAB/Simulink is
0.01 s, installed in a desktop with the following system specifications; Intel Core i5-4590 CPU 3.40-GHz
processor, 64-bit operating system, and 4.00-GB RAM. Every simulation flight was performed with a
fully charged 4s 3300-mAh battery pack.

5.2. Experiment Setup

All experiments were performed with the parts shown in Figure 1—a PX4 Pro powered F450
quadrotor, shown in Figure 10a; Pixhawk 2.1 flight controller, as in Figure 10b; QGroundControl (QGC),
shown in Figure 10c; Pixhawk 2.1 Here + RTK, as in Figure 10d; eLogger V4 voltage and current data
logging system, as shown in Figure 10e; and a 4s 3300-mAh battery pack, shown in Figure 10f—for
the outdoor autopilot experiment with a previously achieved energy-efficient path. In particular,
the Pixhawk 2.1 Here + RTK is used for the centimeter-level autopilot path following accuracy.Appl. Sci.  2019, 10, x FOR PEER REVIEW  12 of 20 
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work [24]. 
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Figure 10. Flight experiment parts: (a) F450 quadrotor, (b) Pixhawk 2.1, (c) QGroundControl (QGC),
(d) Pixhawk 2.1 Here+ RTK, (e) eLogger V4, and (f) 4s 3300-mAh battery pack.

The overall experiment setup is presented in Figure 11. On the day of the experiment, the wind
speed was approximately 2 m/s.

For the experiment, the SPP and EEPP trajectories represented as the Cartesian system unit,
Trajectoryxyz, obtained from the path-planning algorithm shown in Figure 2 are converted into the
geographic coordinate system unit, TrajectoryGPS. The detailed description can be found in previous
work [24].

In particular, the waypoint list of TrajectoryGPS is saved as a text file following the Pixhawk
waypoint file format, as depicted in Table 1 [25]. For the waypoints lists of SPP and EEPP trajectories,
see Appendix B.
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Figure 11. Flight experiment setup.

Table 1. Waypoint file format.

QGC WPL < VERSION>

<INDEX> <CURRENT WP> <COORD FRAME> <COMMAND> <PARAM1> <PARAM2>

<PARAM3> <PARAM4>
<PARAM5/X/ < PARAM6/Y/ < PARAM5/Z/

<AUTOCONTINUE>LONGITUDE> LATITUDE > ALTITUDE >

6. Simulation and Experimental Results

6.1. Simulation Result

From the flight simulation, the obtained current and voltage profiles are shown in Figure 12. Here,
negative current represents discharging.
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Energy consumption comparison results of the SPP and EEPP algorithms are listed in Table 2 and
Figure 13.

Table 2. Comparison result (simulation).

SPP EEPP

Prediction Value Actual Value Prediction Value Actual Value

Total Trajectory Distance (m) 204.63 193.30 208.76 201.08
Min Speed of UAV (m/s) 0 0 0 0
Max Speed of UAV (m/s) 5 0.34 5 0.33
Weight of UAV (kg) 1.41 1.41 1.41 1.41
Total UEC (Wh) 4.47 11.54 5.71 11.99
Algorithm Run Time (s) 11.51 20.34
SOC Leftover (%) 72.00 70.80
SOP Peak (W) 566.20 543.47

The percentage difference between the actual values of SPP and EEPP is shown in Table 3 and
Figure 14. According to the result, the SOC leftover is larger and the SOP peak is lower when using SPP.
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Figure 13. State of charge (SOC) and state of power (SOP) comparison (simulation): (a) SOC and
(b) SOP.

Table 3. Comparison results in percentage (simulation).

SPP−EEPP
SPP ×100 (%)

Total Trajectory Distance (m) −4.02
Min. Speed of UAV (m/s) 0
Max. Speed of UAV (m/s) 2.94

Weight of UAV (kg) 0
Total UEC (Wh) −3.90

Algorithm Run Time (s) −76.72
SOC Leftover (%) 1.67

SOP Peak (W) 4.01
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6.2. Experimental Result

From the flight experiment, the obtained current and voltage profiles are shown in Figure 15.
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Energy consumption comparison results of the SPP and EEPP algorithms are shown in Table 4
and Figure 16.

Table 4. Energy consumption comparison (experiment).

SPP EEPP

Prediction Value Actual Value Prediction Value Actual Value

Total Trajectory Distance (m) 205.75 174.11 212.17 183.64
Min. Speed of UAV (m/s) 0 0 0 0
Max. Speed of UAV (m/s) 5 4.20 5 4.61
Weight of UAV (kg) 1.41 1.41 1.41 1.41
Total UEC (Wh) 4.47 7.94 5.71 7.41
Algorithm Run Time (s) 11.51 20.34
SOC Leftover (%) 83.73 84.53
SOP Peak (W) 448.85 498.37
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The percentage difference between the actual values of SPP and EEPP is shown in Table 5 and
Figure 17. According to the result, the SOC leftover is larger and the SOP peak is lower when
using EEPP.
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Table 5. Comparison result in percentage (experiment).

SPP−EEPP
SPP ×100 (%)

Total Trajectory Distance (m) −5.47
Min. Speed of UAV (m/s) 0
Max. Speed of UAV (m/s) −9.76
Weight of UAV (kg) 0
Total UEC (Wh) 6.68
Algorithm Run Time (s) −76.72
SOC Leftover (%) −0.96
SOP Peak (W) −11.03

Appl. Sci.  2019, 10, x FOR PEER REVIEW  15 of 20 

 

 
SPP EEPP 

Prediction Value Actual Value Prediction Value Actual Value 
Total Trajectory Distance (m) 205.75 174.11 212.17 183.64 
Min. Speed of UAV (m/s) 0 0 0 0 
Max. Speed of UAV (m/s) 5 4.20 5 4.61 
Weight of UAV (kg) 1.41 1.41 1.41 1.41 
Total UEC (Wh) 4.47 7.94 5.71 7.41 
Algorithm Run Time (s) 11.51 20.34 
SOC Leftover (%) 83.73 84.53 
SOP Peak (W) 448.85 498.37 

The percentage difference between the actual values of SPP and EEPP is shown in Table 5 and Figure 
17. According to the result, the SOC leftover is larger and the SOP peak is lower when using EEPP. 

  
(a) (b) 

Figure 16. SOC and SOP comparison (experiment): (a) SOC and (b) SOP. 

Table 5. Comparison result in percentage (experiment). 

 𝑺𝑷𝑷 𝑬𝑬𝑷𝑷𝑺𝑷𝑷 × 𝟏𝟎𝟎 (%) 
Total Trajectory Distance (m) −5.47 
Min. Speed of UAV (m/s) 0 
Max. Speed of UAV (m/s) −9.76 
Weight of UAV (kg) 0 
Total UEC (Wh) 6.68 
Algorithm Run Time (s) −76.72 
SOC Leftover (%) −0.96 
SOP Peak (W) −11.03 

 
Figure 17. The comparison results in percentage (experiment). 

Figure 17. The comparison results in percentage (experiment).

The overall reference, simulation, and experiment flight trajectories of the SPP and EEPP algorithms
are drawn on Google Earth, as shown in Figure 18. Here, yellow polygons represent imaginary obstacles
that the UAV should avoid. The blue line represents the reference trajectory that the UAV should
follow. The red line represents the simulation flight trajectory. The green line represents the experiment
flight trajectory.
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Figure 18. Reference, simulation, and experiment flight trajectories of: (a) SPP algorithm (2D), (b) EEPP
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7. Conclusions

In this work, the EEPP algorithm is proposed and its performance is compared to the generic
SPP algorithm using EKF-filter-based SOC estimation. Using the proposed path planning tool, two
different path plans can be obtained and compared in advance. According to the experimental results,
the EEPP algorithm results in an energy-efficient path.

Regarding the SOC, 0.96% is saved when using the EEPP algorithm, and this implies that the fuel
economy is improved. Regarding the SOP, 11.03 (W) is lowered, and this implies that the internal shock
of the battery pack is reduced. Although the rate of improved fuel economy and internal shock of the
battery pack is not as good in this study, these two key factors can be enhanced in mission planning
with longer trajectories. Here, the difference between simulation and experiment results appears to be
caused by factors such as environmental effects and a less mature quadrotor simulation model.

In the future, instead of 2D path planning, 3D path planning with an enhanced EEPP algorithm are
planned to greatly improve the fuel economy of the UAV. Also, rather than the offline method presented
here, the development of online real-time energy-efficient path planning based on the probabilistic
method is planned.
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