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Abstract: Pattern projection-based 3D measurement systems are widely used for contactless,
non-destructive optical 3D shape measurements. In addition, many robot-operated automation tasks
require real-time reconstruction of accurate 3D data. In previous works, we have demonstrated
3D scanning based on statistical pattern projection-aided stereo matching between two cameras.
One major advantage of this technology is that the actually projected patterns do not have to be known
a priori in the reconstruction software. This allows much simpler projector designs and enables
high-speed projection. However, to find corresponding pixels between cameras, it is necessary to
search the best match amongst all pixels within the geometrically possible image area (that is, within a
range on the corresponding epipolar line). The well-established method for this search is to compare
each candidate pixel by temporal normalized cross correlation of the brightness value sequences
of both pixels. This is computationally expensive and interdicts fast real-time applications on
inexpensive computer hardware. We show two variants of our algorithm “Binary Correspondence
Search” (BICOS), which solve this task in significantly reduced calculation time. In practice, our
algorithm is much faster than traditional, purely cross-correlation-based search while maintaining a
similar level of accuracy.

Keywords: real-time; active stereo vision; 3D measurement; GOBO projection; statistical pattern
projection; aperiodic sinusoidal fringes; GPGPU; BICOS; correspondence search; binary features

1. Introduction

1.1. Stereo Vision Based 3D Sensors

Stereo vision based 3D measurement setups are being applied in the industry for many years.
Applications include, for example, reverse engineering, digitization of cultural heritage objects [1],
medicine [2]. These 3D sensors triangulate 3D points from pixel correspondences between two cameras
or between a camera and a projector. They can be classified into passive systems which work on
images taken with ambient illumination only, and active systems with an illumination unit which
projects patterns onto the measurement object.

Appl. Sci. 2019, 9, 3330; doi:10.3390/app9163330 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/9/16/3330?type=check_update&version=1
http://dx.doi.org/10.3390/app9163330
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 3330 2 of 18

Active illumination stereo vision systems can be classified in three different ways:

1. Single-shot vs. multi-shot. Single-shot systems work on a single image (or image pair for
stereo camera systems) and a fixed projection pattern. Multi-shot systems record a sequence of
images (or sequence of image pairs). The projected pattern is different for each successively taken
image/image pair.

2. Single-camera vs. multi-camera. Systems which use a single camera find correspondences
between the camera and the projector. Multi-camera systems use at least two cameras and find
correspondences between them.

3. Coded light vs. statistical patterns. Coded light systems project well-known patterns or pattern
sequences onto the measurement object. An overview of coded light techniques can be found in
Reference [3]. On the other hand, statistical pattern systems do not require well-known patterns
but can work with quasi random patterns which do not need to be known to the reconstruction
algorithm.

The Microsoft Kinect sensor is an example of a single-shot, single-camera, coded light system [4].
Classical photogrammetry could be interpreted as a single-shot, multi-camera, statistical pattern
system which utilizes the measurement object’s texture as a pattern.

One of the most popular 3D sensor concepts is phase-shift profilometry, also called digital
fringe projection with phase-shifting or phase-shift interferometry [5]. It is a multi-shot, coded light
technique [6], typically implemented with a single camera but sometimes extended with additional
cameras [7]. The projection patterns are (periodic) sinusoidal fringes which are shifted by a fixed
phase-offset with each successive projection [6]. Some systems project additional patterns for
fringe-phase unwrapping [8]. Algorithms for phase-shift pattern processing are a field of high research
activity [9–11]. A correspondence between camera and projector can be found by decoding the
brightness values of a single camera pixel. The 3D reconstruction only works on a very specific pattern
sequence. In other words, information about the actually projected pattern sequence is required as
an input for the reconstruction algorithm. Therefore, phase-shift profilometry (and other coded light
methods) need a very well controllable and calibrated projector [12].

In contrast, the statistical pattern method makes this requirement unnecessary. It is always
implemented with multiple cameras (usually two). It can be implemented as a single-shot system [13]
or as a multi-shot system which yields higher accuracies [14]. The main reason for using statistical
patterns (instead of coded light) is the possibility to build simpler projectors. The projector
requirements are lower compared to the coded light method: the patterns just need to have “sufficient”
spatial and temporal variation but the system does not rely on a known pattern sequence. Projection
methods include, for example, laser speckle projection [13,15], projection of band limited random
patterns [15,16], and projection of aperiodic sinusoidal fringes [17,18].

In the past years, we have developed several multi-shot, dual camera, statistical pattern sensor
systems. This technique has proved to work well, especially for applications where commercial
projectors are not available (e.g., extended spectral ranges, high camera frame rates of 10 kHz or higher).
We have realized irritation free (near infrared—NIR) facial measurement systems [19], high speed
measurement systems to measure fast human body motions [20] or air-bag inflations [21], and a system
with a thermal laser projector to measure glass and transparent plastic objects [22].

However, these systems also have disadvantages. While in phase shift profilometry, a pixel
correspondence can be found by decoding the brightness values of a single pixel, with statistical
patterns, pixel correspondences between the cameras must be found by searching the best match
amongst a set of candidates. This is computationally more expensive.

Some applications require that a 3D result is available within a short time after image acquisition,
that is, these applications have real-time requirements. Examples include continuous position
monitoring of patients during therapy, face measurement at security checks or 100%–inline quality
control during industrial production. The latency between image acquisition and the availability of the
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resulting 3D model must be low. Therefore, the reconstruction of the 3D model from the camera images
must be fast. To satisfy this requirement, we present a real-time correspondence search algorithm for
multi-shot, dual-camera, statistical pattern sensor systems in this paper.

1.2. Existing Algorithms and Algorithms in Related Fields

For passive stereo vision, a large research field of correspondence search algorithms exists [23],
including many algorithms targeting real-time applications. However, the conditions for our active
multi-shot systems are different (Table 1). We do not share many of the challenges which exist for the
passive case.

Table 1. Data processing challenges: differences between passive stereo and active multi-shot stereo
with statistical patterns.

Passive Stereo Active Multi-Shot Stereo with Statistical Patterns

All information for correspondence search must be
found from spatial features, for example, texture,
object edges, shadows, etc.

We can rely on temporal features. For a given pixel in
the left camera we can find a correspondence without
looking at any other pixel in the same camera.

Correspondences for smooth image areas without
texture or other features must be guessed from
surrounding image features.

The projected patterns are visible on all object parts,
pixel-wise correspondences can also be found in
smooth image areas.

Spatial image features look slightly different from
each camera perspective, they have a different
projected geometry. The correspondence search
algorithm must account for that.

If only temporal features are used (i.e., only the
brightness value sequence of a single pixel), there is
only minimal geometric change.

The reflected ambient light intensity may be different
at each camera view-point because the reflectivity
of most objects depends on the angles towards light
source and view point.

In addition to (unwanted) ambient light, the projected
patterns may have a different intensity for each
camera. The reflection factors for the projected light
and the ambient light are different, because the angles
towards the light sources are different.

To find correspondences, a similarity measure is required. In the passive case, the similarity
measure compares a region of pixels in the first camera with a region in the second camera [23]. In the
active case, this is an option too, but more often the grey value sequences of a single pixel from
each camera are compared (i.e., purely temporal) which yields higher accuracies [14]. A combination
of both (a small spatial window for each image in the temporal sequence) has also been applied
successfully [15].

Similarity measures for passive stereo include, for example, the Sum of Absolute Differences
(SAD), the Sum of Square Differences (SSD) and the Normalized Cross Correlation (NCC) [23–25]. For
the active case the NCC is by far the most popular similarity measure [14–16]. Other measures have
been tried: SAD, SSD, correlation of temporal gradients, Sum of Absolute Differences of temporal
gradients; but NCC yields the most accurate results [26].

In this paper, we propose to split the correspondence search into two parts: 1. a coarse
correspondence search which is based on our newly developed algorithm and 2. a correspondence
refinement step which uses NCC. The result from the first step is used as a initial solution for the
refinement step. In this way, we can significantly improve the speed of the correspondence search
without compromising the measurement accuracy.

We have proposed one variant of our new algorithm “Binary Correspondence Search (BICOS)”
in Reference [27]. Since then, we have improved it (BICOS+) and now present an evaluation of both
algorithm variants. We compare it against a reference algorithm which is purely NCC based.

Our algorithm uses binary features (BF) to describe the temporal brightness value sequence
of a pixel. Binary features have also been proposed for correspondence search in photogrammetry
between uncalibrated cameras [28–30] and have been used extensively for texture classification [31].
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In these applications, binary features are used to describe a spatial image area whereas we use them to
describe a single pixel in a temporal image stack.

2. Materials and Methods

2.1. General Reconstruction Algorithm Outline

The reference algorithm (see Section 2.2) as well as our new algorithm (BICOS and BICOS+) have
the following outline (Figure 1).

Figure 1. General outline of the 3D reconstruction.

1. Image Aquisition. A sequence of image pairs is recorded synchronously with the two cameras of
the stereo setup.

2. Rectification. We rectify the camera images, that is, we apply a geometric transformation to the
images to simulate two cameras with parallel image planes. The rectification algorithm also
corrects lens distortion. After rectification, the images have the important property that an object
point, which is visible in a specific image row r of the first camera’s images, also appears in the
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identical row r in the other camera’s images. This means that the epipolar lines [32,33] are parallel
to the image rows.

3. Coarse Correspondence Search. We search corresponding pixels between the cameras. For each
pixel in the left camera at position (cL, r), we search a pixel in the right camera at position (cR, r)
which shows the same object point. Due to rectification (step 2), this pixel can be found on the
same image row r. The column cR has to be determined. In the coarse correspondence search,
we consider any cR with a distance of up to two pixels from the real correspondence correct.
The difference of the column numbers d = cL − cR is called “disparity”. The result of the coarse
correspondence search is the coarse disparity map.

4. Correspondence Refinement. We refine the result by searching an interval around the coarse
correspondence. We then interpolate between pixels in the right image and find the best match
amongst the interpolated sub-pixels. The result is the refined disparity map.

5. Calculation of 3D points. For each pixel in the disparity map, we calculate a 3D point
by triangulation.

Open-source code which facilitates writing algorithms based on this approach is readily
available [34,35]. As we work with statistical patterns, we do not have a-priori information about the
projected patterns. This means that, in the coarse correspondence search (step 3), the best matching
pixel needs to be searched amongst all candidates. In practice, this is the most time consuming part
of the algorithm. We therefore focus on the coarse correspondence search in this paper. Its goal is to
find the approximate position of the correspondence up to an accuracy of a few pixels. All further
correspondence refinement (step 4) happens afterward in a separate algorithmic step where sub-pixel
accuracy is achieved.

Starting with a pixel in the left camera’s rectified image sequence, we search a set of candidate
pixels in the same row of the right camera’s rectified image sequence. The set of candidate pixels is
determined by the sensor geometry and the size of the measurement volume. This means that only
a restricted interval of disparities have to be searched.

To compare two pixels, a measure of similarity is required. This is where the algorithms differ
from each other (Sections 2.2 and 2.3). The pixel which is the most similar according to the measure is
picked amongst the candidates.

When the matching pixel has been found (in the right camera’s image sequence), we validate it by
reverse searching the best match for it in the left camera image sequence. Only if the so found reverse
match is equal (or at a maximum distance of 2) to the original pixel, the match is accepted.

2.2. Reference Algorithm (NCCCOS)

The reference algorithm uses normalized cross correlation (NCC) as the similarity measure [14,16].
We therefore call it NCC-based correspondence search (NCCCOS). To compare two pixels, the cross
correlation between the temporal sequences of the brightness values of those pixels are calculated.
The NCC takes on values from −1.0 to 1.0. A cross correlation of 1.0 means that the two pixels match
perfectly; the lower the cross correlation, the less the similarity.

The coarse correspondence search is far more time-consuming than any other part of the algorithm.
This has two reasons: the number of comparisons between pixels is huge and each such comparison
is computationally expensive. There are two possible ways to improve computation speed for the
coarse search:

1. reduce the number of pixel comparisons (e.g., by further restricting the scan volume)
2. reduce the calculation time which is required for each pixel comparison

We take the latter approach with our BICOS and BICOS+ algorithms, that is, the number of pixel
comparisons is the same but the pixel comparisons are faster in our algorithms.
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2.3. BICOS Algorithm

This section contains the details of our BICOS algorithm. We add a pre-calculation before the
actual correspondence search which allows us to reduce the number of required calculations for each
pixel comparison. Our coarse correspondence search comprises three steps:

1. Calculation of binary features. For each pixel, we first calculate a bit string of “binary features”.
A binary feature is generated by comparing two of the brightness values of a pixel with each other
(Figure 2a,b). For example, comparing brightness values b1 with b2 yields a binary feature with a
value of 1 if b1 > b2 and 0 otherwise. It does not matter, if a >, <, ≥ or ≤ operator is used, as
long as it is consistent.
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Figure 2. Creation of binary features from a pixel’s sequence of brightness values. (a) Comparison of
temporally adjacent brightness values. (b) Comparison of each brightness value with every second
brightness value. (c) Comparison of each brightness value with the mean brightness of the pixel (BICOS
and BICOS+).

We can compare every brightness value with every other brightness value within the sequence.
For instance, for a sequence length of 10, we compare brightness value b1 with b2, b2 with b3,
..., b9 with b10, b10 with b1, b1 with b3 and so forth. This yields 45 binary features. In addition,
each brightness value can be compared to the mean brightness value of the sequence, yielding
another 10 binary features for a sequence length of 10 (Figure 2c). We restrict the number of binary
features to 64 to allow fast computation.

2. Comparing the binary features. To find a correspondence we do not compare the brightness
values but we compare the binary features of a pixel in the left camera with the binary features
of a pixel in the right camera. The more binary features coincide, the better the match. Thus the
pixel similarity measure for BICOS (and BICOS+) is the Number of Equal Binary Features (NEBF).
Calculation of the NEBF is very fast because only two operations are required: compare and count.
Like in the NCCCOS, we perform the correspondence search in both directions, that is, first from
left to right, then from right to left. We accept only consistent results.

3. Filtering the coarse correspondences. The coarse disparity map which we generate by using
the NEBF contains more outliers and holes than the one created with the NCC which is used in
NCCCOS. For an explanation why this is the case, see Section 3.2. We compensate for this by
applying a 3× 3 median filter to the disparity map, which also fills the holes. Please note that this
does not mean that the final 3D result is filtered because we apply this filter only to the coarse
disparity map which is used as a start solution for the refinement step.
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2.4. BICOS+ Algorithm

The difference between the original BICOS and the improved BICOS+ algorithm is the type
of binary features which we use. Both algorithms use the binary features which are calculated by
comparison of single brightness values with the mean brightness value (Figure 2c). However, the other
binary features in BICOS+ are calculated with the following rule which we show exemplary in Figure 3.

1. form pairs of brightness values (from the brightness value sequence of a pixel)
2. sum up the two brightness values of each pair
3. compare two such sums with each other and save the result of the comparison as a binary feature

(only sums which do not share a common brightness value are compared)

The main advantage of this method over the original BICOS is the higher number of features
which can be created this way (Figure 4). Only for sequence lengths of 6 and lower this method yields
less than 64 binary features. For these short sequence lengths, the missing binary features are filled up
with other binary features from direct comparisons of 2 brightness values (as in the original BICOS
algorithm, Figure 2a,b).
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Figure 3. Creation of binary features from two sums of brightness values (BICOS+).
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Figure 4. Number of binary features (BF) by type. Blue: BF created by comparing single brightness
values with the mean brightness of the pixel. Orange: BF created by comparing 2 brightness values of
the sequence with each other. Green: BF created by comparing two sums with each other, which have
each been calculated from two brightness values (only for BICOS+).
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2.5. Robustness of the Algorithms against Ambient Light and Changes in Reflectivity

The NCC is invariant under the following changes from left to right camera: ambient light,
object reflectivity and camera sensitivity [26]. This means, it has the following property:

NCC(~a,~b) = NCC(~a, s ·~b + A) ∀s > 0

where~a and~b are the two brightness sequences in the left and right image sequence, s represents the
deviation in camera sensitivity and reflectivity of the measured object towards the left and the right
camera, A represents ambient light which may be different in the left and right camera.

A similar property can be derived for the NEBF. Each binary feature is calculated by comparing
two brightness values of the same pixel. Any additional temporally invariant ambient light is added to
both values and thus does not change the outcome of the comparison. In addition, each binary feature
is scaling invariant. In other words,

b1 < b2 ⇔ (s · b1 + A) < (s · b2 + A) ∀s > 0

and therefore
NEBF(~a,~b) = NEBF(~a, s ·~b + A) ∀s > 0

However, both object reflectivity and ambient light have an influence on the signal to noise ratio
(see Section 2.7).

2.6. Sensor for Image Acquisition

We use a 3D sensor which is composed of two near-infrared (NIR) cameras and a GOBO projector
in between [19]. The scanner is depicted in Figure 5. The projector comprises a rotating slide wheel
(GOBO) with a random binary stripe pattern, an LED illumination unit with a center frequency
at 850 nm wavelength, and a projection lens. The binary stripe pattern becomes sinusoidal in the
camera images due to lens blur and motion blur because the slide wheel is rotating during image
integration time.

Figure 5. 3D sensor (with removed outer housing) which we used for data recording. From left to
right: near infrared (NIR) camera, color camera (not used for this paper), NIR GOBO projector with
rotating slide wheel, second NIR camera. The NIR cameras acquire the image sequences for the 3D
reconstruction.

We measured the noise level of the cameras with the following method. We recorded 400 images
for each camera of a static scene with stopped slide wheel. For each camera, all images contain the
same scene with the same illumination except for noise. For each pixel, we calculated the temporal
mean brightness value (over the 400 images) and the temporal deviation from that mean. The deviation
is a measure for the noise. We show the deviation as a function of the mean in Figure 6. Please note
that the measured noise levels for high brightnesses are too low because of clipping when the sensor
pixels become saturated.
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Figure 6. Noise levels of the rectified camera images.

2.7. Test Scene and Ground Truth Data

We set up a test scene with a size of about 0.4× 0.4× 0.4 m3 (Figure 7). It consists of several
objects with different surface materials: Two ceramic busts with matt surface and slightly different
reflectivities, a wooden box, a ceramic cup with a glossy surface and a felt handle, a 3D printed
intricate plastic model, a cast iron disk and a rusty cast iron turbine housing. The scene is placed on an
industrial fabric. We added an inhomogeneous NIR ambient light source from the left side of the scene
to simulate real world conditions.

Figure 7. Photograph of the test scene.

We recorded a data set of 400 image pairs at a resolution of 1 Megapixel per image while the
projector was running. Each image pair contains a different aperiodic sinusoidal stripe pattern
(Figure 8). We rectified the images and worked exclusively with this rectified version throughout the
survey. These rectified images are available for download as Supplementary material.

We calculated the temporal mean (Figure 9a) and temporal standard deviation (Figure 9b).
The ambient light which is temporally constant is visible in the mean but not in the standard deviation.
Because the NCC and the NEBF both work on temporal brightness contrast, the standard deviation
represents the signal strength for the reconstruction algorithm. We looked up the noise level (as shown
in Figure 6) for each pixel in the mean image. We then divided the temporal standard deviation by it.
The result is an approximated signal to noise ratio (ASNR) (Figure 9c). The more ambient light, the
higher the mean and therefore the higher the noise. This means that the ambient light has a negative
influence on the ASNR.
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Figure 8. Rectified images of the left and right camera (brightness and contrast adjusted for
better visibility).

Figure 9. (a) mean of 400 images with changing projected pattern. Note the inhomogeneous ambient
light coming from the left and the shadows thrown by it on the background farbic. (b) temporal
standard deviation of the same images. Note the absence of the (temporally constant) ambient light.
(c) approximated signal to noise ratio (ASNR). Note the negative influence of the ambient light on the
ASNR value on the background fabric.

We created an accurate reference 3D model which we consider ground truth (Figure 10). We used
the reference algorithm (NCCCOS) with the full sequence of 400 image pairs to calculate it.

Figure 10. Ground truth 3D model calculated from 400 image pairs.
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3. Results

3.1. Relationship between NCC and NEBF

We examined the relation between the two pixel similarity measures, the normalized cross
correlation (NCC) and the number of equal binary features (NEBF), that is, what NEBF can be expected
for a given NCC.

We used a sequence of 10 image pairs and the original BICOS algorithm, which has 55 binary
features per pixel for this sequence length. We compared each pixel of the left camera with every
candidate pixel of the right camera and stored the NCC and NEBF values for each comparison.
From this data, we created a 2D histogram by dividing the data set into bins with a certain NEBF and
a certain range of NCC (Figure 11).
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25 %

Figure 11. Relation between the two pixel similarity measures. 2D histogram of all pairs of normalized
cross correlation (NCC) and Number of Equal Binary Features (NEBF) for all pixel comparisons of a
measurement with a sequence length of 10 image pairs. For better visibility, the histogram is normed
to the total number of pixels which fall in the same cross correlation bin.

The two measures show a quasi-linear relation for a large part of the value ranges. In the
important range, where the two compared pixels are very similar (i.e., a NCC of close to 1.0), the “curve”
becomes steeper.

3.2. How Well Can NCC and NEBF Distinguish between Correct and Wrong Correspondences?

We assessed how well each of the measures (NCC and NEBF) can distinguish between the correct
correspondence and wrong correspondences. We calculated the differences between the measure
value at the correct correspondence (according to the ground truth) and at the most similar wrong
correspondence. We call this difference NCC margin and NEBF margin, respectively. For example,
for a given pixel of the left camera, the NEBF might be 62 at the correctly corresponding pixel of the
right camera and the best NEBF value for any pixel which is more than two pixel away from the
truly corresponding pixel might be 59; the NEBF margin is then 62− 59 = 3. Large positive values
mean that the true correspondence can be well distinguished from wrong correspondence candidates.
Negative values mean that the wrong correspondence has a better measure value than the correct
correspondence, which leads to a mismatch. It is also possible that several candidate correspondences
have the same measure value (especially for the discrete NEBF). In that case, the margin is 0 and there
are several equally good correspondence options. (The algorithm picks the first one. If this pick was
wrong, it is likely to be removed in the reverse search. See Section 2.1.) We calculated the histograms
of the margins for several sequence lengths (Figure 12).
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Figure 12. Histogram of margins of the NCC (left) and the NEBF (right) at the true correspondence vs.
the most similar pixel amongst the wrong correspondences. Large positive values mean that the true
correspondence can be well distinguished from wrong correspondence candidates. Negative values
mean that the wrong correspondence has a better NCC/NEBF value than the correct correspondence
which leads to a mismatch. For the NEBF calculation, the binary features of BICOS+ were used.

The NEBF shows more margin values close to zero than the NCC. This means that for some
pixels, the NEBF performs worse at distinguishing between correct and wrong correspondences. It has
more points with margins < 0. It thus produces more mismatches than the NCC. This explains the
worse correspondence matching rate of BICOS(+) when omitting the median filter (Figures 13 and 14).
However, this problem is reduced by the filter.

3.3. Quality of the Coarse Correspondence Search

We calculated disparity maps for sequence lengths of 3 to 12, including the intermediate results
before applying the 3× 3 median filter for BICOS(+). We compared the coarse disparity maps to the
ground truth disparity. Correspondences whose disparity differs more than 2 px from the ground truth
were classified as “incorrectly matched”. We show examples of which part of the test scene produces
what percentage of missing or mismatched correspondences in Figure 13. In Figure 14 we show the
combined percentages over the whole scene.
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Figure 13. Percentage of wrong or missing correspondences (out of 39 data sets). Top to bottom:
sequence lengths 5, 6, 7 and 8. Left to right: BICOS+ without median filter, BICOS+ (with median filter)
and NCCCOS.
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Figure 14. Quality of coarse correspondence search: green: percentage of correctly found
correspondences, red: percentage of incorrectly found correspondences, blue: percentage of not
found correspondences.

3.4. Speed of the Coarse Correspondence Search

We assessed the calculation speed of the algorithms. The BICOS and BICOS+ algorithms have
the same speed because they only differ in the type of binary features which they use. We use
OpenCL-based implementations of the algorithms and run them on NVIDIA GeForce 1080 graphics
chips. We made 100 3D measurements of the test scene with a sequence length of 10 and recorded the
calculation times of each part of the algorithms with the NVIDIA NSight profiler. Figure 15 shows
the average calculation times. While the NCCCOS algorithm takes (365± 12)ms for rectification
and coarse correspondence search, our BICOS(+) algorithm only takes (19.0± 1.8)ms (including
rectification, pre-calculation of binary features and median filter).

rectification

rectification + creation of binary features

coarse correspondence search

median filter

sub-pixel refinement

each square represents 1 ms of calculation time

Runtime NCCCOS

Runtime BICOS(+)

a

b

time in ms

time in ms

Figure 15. Algorithm runtime on NVIDIA GeForce 1080; each square represents one millisecond.
(a) runtime of NCCCOS (reference algorithm), (b) runtime of BICOS(+).
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4. Discussion

4.1. Interpretation of Results

As we show in Figure 11, when comparing two pixels, the pixel similarity measures NCC and
NEBF are closely related to each other. However, the measure margins between correct and incorrect
correspondences are better for the NCC than the NEBF (Figure 12). We think that this is a consequence
of the reduction of information content in the binary features compared to the original brightness
values. Therefore, it cannot be expected that an NEBF-based algorithm can produce better quality
than the NCCCOS algorithm. This leads to more false matches and non-matches compared to the
NCC-based correspondence search. The additional median filter step in BICOS(+) mostly compensates
for this lower initial matching quality.

The effect of the signal to noise ratio (Figure 9c) on the coarse correspondence search result can
be observed in Figure 13. The dark areas on the metal objects in the front of the scene have slightly
increased error rates. A similar effect can be expected for a weaker projection light because it reduces
the signal to noise ratio.

In comparison with the original BICOS algorithm, BICOS+ works on a higher number of binary
features for sequence lengths of 10 and lower. This results in significant improvements at short
sequence lengths of 7 and lower. The different way of calculating the binary features shows no
disadvantages in the results.

Other ways of calculating binary features are possible, for example, comparing the sums of three
or more brightness values. As the two types of binary features which we tested already show very
similar results, we do not expect significant improvements with differently calculated binary features.

4.2. Comparison with Other Methods

Stereo vision with multi-shot statistical pattern projection is a comparatively small field of research.
We know of no other publication on reconstruction algorithm speed for this special case. We hope to
see more research in this field published in the future. In phase shift profilometry, correspondence
search is not required, instead correspondence can be decoded from the brightness values of each
single pixel. The computational workload is therefore significantly lower compared to our system
with statistical patterns. For instance, Zhang and Huang [36] reported a computation time of 24.2 ms
for the 3D-reconstruction of a scene with 532× 500 pixels on a PC in the year 2004.

We did not asses the measurement accuracy of the final scan result in this contribution because the
coarse correspondence search algorithms which we evaluated have little influence on it. The accuracy
depends on the fine correspondence search which takes the coarse correspondence as an input.
Schaffer et al. [15] have examined similar measurement accuracies for their statistical pattern system
compared with a phase shift based system used by Zhang [37]. In previous publications, we have
demonstrated the theoretical [17] and practical [18] equivalence of the statistical pattern projection
method with the phase shift method in terms of accuracy.

5. Conclusions and Outlook

In this contribution, we described our algorithm Binary Correspondence Search (BICOS) and its
improved variant BICOS+. It is a coarse correspondence search algorithm for multi-shot stereo sensors
with statistical pattern projection. We compared it to the NCC-based reference algorithm (NCCCOS) in
terms of speed and correctness of the coarse correspondence search result. Both algorithms share the
same final correspondence refinement stage and therefore yield the same final results given a correct
input from the coarse correspondence stage.

BICOS(+) is much faster than the NCCCOS algorithm. This results in a significantly reduced
latency between image acquisition and availability of the 3D point cloud. While in an offline calculation
scenario, this may be of little advantage, it is vital for applications like live patient monitoring.
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We can thus conclude that for applications which require short latencies or high 3D frame
rates, BICOS+ is the algorithm to use, while NCCCOS is to be preferred when 3D reconstruction
speed is of no concern due to its slightly better coarse search correctness. If the additional flexibility
which the statistical pattern method provides is not needed (i.e., much simpler projector construction,
e.g., for extended spectral ranges or high-power, high-speed projection for large fields), classical phase
shift profilometry can be a good alternative because it offers similar measurement accuracy and has
much lower computational requirements.

In our future research, we want to investigate the influence of the projected patterns on the
coarse correspondence search quality. Our goal is to achieve better results at shorter sequence lengths.
This would allow us to reduce the total latency (of the image acquisition plus the reconstruction)
even further.

Supplementary Materials: The rectified camera images which we used for our experiments are available online
at https://drive.google.com/file/d/16E-vWnBAJGZZuj-labq4GPqjl7vSlq00/view?usp=sharing.
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Abbreviations

The following abbreviations are used in this manuscript:

Abbreviations
BICOS BInary Correspondence Search
BICOS+ Improved Binary Correspondence Search
GOBO GOes Before Optics (rotating slide)
NCC Normalized Cross Correlation
NCCCOS NCC-based Correspondence Search (the reference algorithm)
NEBF Number of Equal Binary Features
NIR Near-InfraRed light
SAD Sum of Absolute Differences

Mathematical Symbols
r row in a rectified image
cL column in a rectified image of the left camera
cR column in a rectified image of the right camera
d the disparity between an object point in a left and in a right rectified image d = cL − cR
~a = a1, ..., an the brightness values of a pixel in an image sequence which consists of n rectified images~b = b1, ..., bn

A ambient light

s
factor representing the difference in camera sensitivity and
reflectivity of the measured object towards the left and the right camera
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