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Abstract: As a major device for reducing vibration and protecting passengers, the low-frequency
vibration control performance of commercial vehicle seating systems has become an attractive research
topic in recent years. This article reviews the recent developments in active seat suspensions for
vehicles. The features of active seat suspension actuators and the related control algorithms are
described and discussed in detail. In addition, the vibration control and reduction performance of
active seat suspension systems are also reviewed. The article also discusses the prospects of the
application of machine learning, including artificial neural network (ANN) control algorithms, in the
development of active seat suspension systems for vibration control.
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1. Introduction

Modern research has shown the potential hazards of whole-body vibration (WBV). Based on previous
studies, Krajnak (2018) [1] summarized the various diseases that may be caused by whole-body vibration,
including back and neck pain, neuropathy, cardiovascular disease, digestion disorders, and even cancer.

As a risky occupation, the drivers of heavy commercial vehicles are prone to prolonged exposure
to low-frequency whole-body vibrations generated from road excitation, which could influence drivers’
comfort or even adversely affect their health. According to [2], the long-term operation of heavy commercial
vehicles with low-frequency vibration can cause diseases of the muscles, bones, digestive system, and
even the visual system. This is because low-frequency vibrations might cause resonance of the organs
and tissues in the human body, and this kind of vibration energy must also be absorbed and dissipated
by the body. According to [3], due to the high social cost of musculoskeletal diseases caused by working
environments with low-frequency vibrations, Europe has issued regulations requiring that the vibration
level of a working vehicle must be evaluated to provide a healthy and safe operation environment, where
the max accelerations of 0.5 and 1.5 m/s2 are, respectively, set for 8 hours action and limit values. In [4],
it was proved that the WBV affects the posture control of the human body and may cause health risks
to the muscular system and spine. In [5], it was shown that if the exposure to low-frequency vibrations
produced by commercial vehicles were more than 8 hours every day, conventional vehicle seating with
passive suspension could not protect the driver’s body from the effects of WBVs. According to a medical
research report by Johanning (2011) [6], low-frequency vibrations may cause resonances of human organs
and tissues. There, it was claimed that back pain disease is one of the most common occupational injuries
because the lower back of the human body is sensitive to low-frequency vibrations of 4–10 Hz. Therefore,
long-term exposure to large amplitude low-frequency vibrations can cause back pain disorders, especially
common diseases of the lumbar joints. These diseases include degenerative spinal changes, lumbar disc
herniation, and sciatic nerve injuries, and according to ongoing medical reports, these diseases are common
among tractor drivers, truck drivers, bus drivers, and other commercial heavy machinery operators who
are often exposed to vibrations throughout the body.
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The diagram (Figure 1) shows the vibration amplitude of commonly used heavy commercial
machinery. According to the international standard ISO 2631-1 1997, as the vertical acceleration
increases, the ride comfort decreases and the WBV level increases, which also increases health risks.
Therefore, the development of an efficient vibration reduction seating system is a practical and effective
way to protect drivers. Researchers have studied the vibration control of vehicle seating systems as
well as the various effects that vibrations and vibration transmission have on the human body. In [7],
the seats of 100 commercial heavy-duty vehicles from 14 different categories were tested and evaluated
for vibration isolation performance. Two groups of Seat Effective Amplitude Transmissibility (SEAT)
values calculated by the weighting parameters of different standards (BS6841 and ISO2631) showed
that the average SEAT values of these seats were all less than 100%, indicating that they provided
a certain degree of protection. This article also proposed improving the dynamic performance of
seats, which can reduce the severity of WBV exposure in many working environments. In addition
to the dynamic characteristics of seats, the dynamic response of the human body under vibration
excitation is also a topic of considerable interest. In [8], 41 male and 39 female subjects between 18
and 65 years of age were selected to participate in an experiment to study the factors that may affect
the apparent mass of the human body, which is a method that can be used to present comfort levels
and to estimate WBV levels. According to this study, aging can affect the resonant frequency of the
human body and the transmission ratio of vibration. Further, gender and body mass index (BMI) are
also factors that affect vibration transmissibility. In addition to research on the whole seat, the seat
cushion, as an important vibration isolation device, was examined in [9]. There, they investigated
the seat cushion–body interaction by measuring and analyzing the contact force distribution and the
contact area between the human body and the seat cushion when vibration is experienced. It was
found that the pressure distribution at the interface between the body and the cushion showed strong
asymmetry in terms of dynamic contact force, and the effective contact area was affected by the
nonlinear characteristics of the cushion itself and the characteristics of the soft tissue of the human
body. Further, under large vibration excitation, a seat cushion with high stiffness, a large damping
coefficient, and large static deflection is able to effectively reduce the transmission of vibration.
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In terms of seat vibration isolation measurements, Mozaffarin et al. (2008) [10] designed an active
dummy technique (Figure 2), which adopted lateral and longitudinal actuators to produce forces in
the vertical and lateral directions, respectively, to simulate the dynamic response of three different
human body masses by reproducing the equivalent dynamic mass.
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Of course, in all of these works, determining how to control vibration is the most critical
aspect. Three current mainstream research directions in this area are passive, semiactive, and active
vibration controls.

Passive vibration control of a seating system can reduce vibration by using conventional spring and
damper components in the seat suspension system, but due to its characteristic limitations, vibration
control that targets multiple frequencies cannot be achieved even with a well-tuned traditional positive
spring–damper system. Therefore, a quasi-zero static stiffness seat suspension system based on the
combination of negative stiffness and positive stiffness springs was proposed by Le and Ahn (2013) [11]
to improve the vibration control efficiency of a seating system, since the characteristics of high static
stiffness and low dynamic stiffness can be used to eliminate seat vibration. In [12], a poly-optimal
solution was sought for a seating system combined with a pneumatic spring and damper. This
improved the performance of the traditional passive seating system by attenuating low-frequency
vibrations in the frequency range of 0–4 Hz.

Semiactive vibration control of a seating system utilizes the characteristics of magnetorheological [13–16]
and the electrorheological materials [17], which can change the stiffness or Young’s modulus under magnetic
field variations and achieve vibration control in a specific frequency range. In [18], a negative stiffness seat
suspension system combined with a pneumatic spring and stiffness control mechanism was proposed, and
the related control algorithm that affects device stiffness variations associated with position and velocity
data evaluation was designed. The semiactive vibration control method can achieve vibration control in
a relatively certain frequency bandwidth with less energy consumption and fewer costs than the other
two methods.

In [19], the difference between seating systems with active electromagnetic seat suspension
and passive seat air suspension in reducing the WBV level and improving comfort was compared.
The experimental results showed that the active electromagnetic suspension performed better at
vibration reduction than the passive air spring suspension. In particular, passive suspensions may
increase the amplitude of lateral vibration, which also has a negative effect on driver comfort.

In terms of structure, in addition to traditional shock absorbers, semiactive seat suspensions have
also been designed in different styles. Bai et al. (2017) [14] designed an integrated semiactive seat
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suspension that included a swing mechanism (Figure 3) that converts longitudinal and vertical motion
into rotational motion and a torque-controlled rotary magnetorheological (MR) damper operated in a
pure shear mode to attenuate vertical and longitudinal vibrations. Ning et al. (2019) [20] proposed
a new semiactive seat suspension based on the variable admittance (VA) concept and designed a
rotating VA device based on the MR damper. A random vibration test showed that the semiactive seat
suspension had excellent low-frequency vibration cancellation performance. The frequency-weighted
root-mean-square (FW-RMS) acceleration of the seat was reduced by 43.6%, indicating that ride comfort
was greatly improved. Ning et al. (2018) [21] developed a semiactive vibration control seating system
based on an energy harvest device with variable external resistance. The energy regeneration seat
device included a three-phase generator and a gear reducer mounted at the centre of the scissor-like
structure of the seat, and the vibrational energy was collected directly from the rotational motion of the
scissor-like structure. An H-infinity-state feedback controller was designed for a semiactive vibration
control seating system, and the FW-RMS acceleration was reduced by 22.84% compared with passive
vehicle suspension. At the same time, the generated RMS power was 1.21 W.
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For the controller design, Sky-hook control theory [22–25], H-infinity control algorithm [26–32],
nonresonance theory [15], on-off control strategy [33], fuzzy control theory [34–36], optimal control
theory [37–39], lyapunov control scheme [40], PID control algorithm [41] and sliding-mode control
algorithm [42] are applied for the design of the controllers.

Compared with controller designs based on a single traditional adaptive control algorithm,
an increasing number of controllers integrating multiple control algorithms with semiactive
vibration control seating systems have been proposed to improve vibration attenuation performance.
Phu et al. (2015) [43] developed a new adaptive fuzzy controller combining the H-infinity and
sliding-mode control algorithms for a semiactive seat suspension with an MR fluid damper. This
controller features a fuzzy control method that does not require an accurate dynamic model, even in a
dynamic system with an uncertain environment. Phu et al. (2017) [44] designed a new adaptive hybrid
controller integrating the H-infinity control algorithm, the sliding-mode control algorithm, and the
Proportional-Intergral-Derivative (PID) control algorithm with the vibration attenuation of a semiactive
seating system. This controller features a combination of the Hurwitz constant matrix as components of
the sliding surface and the H-infinity algorithm with robust stability. In addition, a fuzzy logic module
based on the interval type-2 fuzzy logic system was established, and a model was characterized by
on-line clustering considering external interference. Phu et al. (2017) [45] proposed a new hybrid
controller combining a neural fuzzy control module, a Proportional-Integral (PI) control module, and a
sliding mode control module to control a semiactive seat suspension with an MR damper. The interval
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type-2 fuzzy model with an on-line rule updating function was adopted, and a granular clustering
method was used to find data for the initial fuzzy set used to support the fuzzy model. Compared
with conventional controllers, the proposed controller can provide better stability for vibration control
performance. Nguyen et al. (2015) [46] designed a novel neuro-fuzzy controller (NFC) for a semiactive
seat suspension system with an MR damper. This adaptive neuro-fuzzy inference system (ANFIS)
is based on an algorithm called B-ANFIS, which is combined with a fuzzy inference system (FIS).
Compared with the skyhook control theory, the NFC is better at improving the ride comfort of the
vehicle. In addition, the NFC’s ability to track trajectories and transient response characteristics is
superior to that of conventional skyhook controllers. Phu et al. (2017) [47] proposed a new adaptive
fuzzy controller based on inversely fuzzified values related to the H-infinity control algorithm to
control the vibration of a semiactive seat suspension system with an MR damper and a Riccati-like
equation with fuzzified values to enhance system robustness.

This paper aims to review and classify the active vibration control of seating systems proposed in
previous works that have active seat suspension. In addition, the algorithms and structures of the active
controllers are analyzed and discussed. Finally, the development of artificial neural network (ANN)
controllers and their applications in active vibration control in seating systems are also discussed.

2. Seating Systems with Active Suspension

2.1. Experiments with Prototypes

Active seat suspension prototypes in several research projects have used electromagnetic, hydraulic,
or air actuators to generate a corresponding compensation force for vibration cancellation in a finite
number of frequencies, thereby reducing the vibration acceleration amplitude and improving the
comfort of the seating system. According to [48], using an active vibration control suspension in a
vehicle has better vibration cancellation performance than passive seat suspension. In [49], comparative
experiments demonstrated that active and semiactive seat suspensions could improve comfort by
approximately 50% compared with passive seat suspensions.

The actuators used for active seat suspensions generally fall into three categories: electromagnetic
actuators using linear or conventional rotating motors, hydraulic actuators using hydraulic servos, and
air actuators using air springs. Among these three types of actuators, electromagnetic actuators have
attracted the most attention because they have good dynamic responses; do not require an additional
hydraulic servo system, tubes, or compressors; and have small space requirements. The large output of
hydraulic actuators makes them easy to carry with greater mass. The air actuator has a good vibration
isolation effect in high frequencies.

2.1.1. Pneumatic Actuator

Stein (1997) [50] developed an active seat suspension using a pneumatic spring and a corresponding
feedback controller. According to the results, the active seat suspension using vibration compensation
can reduce the vibration amplitude by 10 dB, which is about 3 times. The vibration transmission rate is
reduced by 30%–40% compared with a conventional passive seat suspension.

In another research project, Stein (1997) [51] proposed an active vibration control seating system to
attenuate low-frequency vibration with an active seat suspension (Figure 4) composed of a pneumatic
spring and a related linear control system. The conventional metal spring in the system is used to carry
the static load, and the pneumatic spring is used to generate damping and compensating forces to
mitigate vibration. The pneumatic spring is driven by compressed air which is controlled through
a proportional valve. The benefit of such a parallel structure is that the energy consumption of the
whole system can be reduced. Two acceleration sensors and one displacement sensor were used in
the experimental equipment, and the electric signals generated by the excitation were respectively
collected by the corresponding controller and summed at the sum point to control the actuator. There
is no actual damper in this system, and the function of the damper is replaced by absolute damping,
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which is generated from the air spring through the skyhook control method. This active suspension
needs to consider the complex state and parameters of the entire pneumatic subsystem and take into
account the state equation of compressed air. In addition, the flow rate of the air, the corresponding
pressure changes in the air spring and the corresponding forces are also considered. For the control
system, a simple and practical linear controller system is used that is based on feed-forward and
feed-back algorithms to reduce the vibration effect on the human body by controlling the static position,
damping force, and compensation force of the seating system. Researchers have found that this active
pneumatic spring seat suspension can reduce vibration transmissibility by approximately 8–10 dB
with the feed-forward compensation path for a mass of 80 kg. In an experiment, by adjusting the
parameters of the pneumatic spring, it was found that the active vibration control of the seating system
performed well in a frequency range less than 4 Hz. However, this control system needs to work under
an ideal condition.
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An active seat suspension incorporating a hydraulic shock absorber and an active pneumatic
spring (Figure 5) was developed in [52–54]. In this seating system, a hydraulic shock absorber is
connected to a scissor-like frame for vibrational energy absorption, while a pneumatic spring is
attached to the bottom of the seat and a rod of the frame to produce the corresponding compensation
force. The air spring is inflated and deflated by using compressed air and a proportional air valve.
The advantage of this configuration is that configurations of commonly existing vehicle seating systems
can be used without large modifications. Based on this type active seat suspension system, a robust
controller (Figure 6) that can work with different mass loads was proposed by Maciejewski et al.
(2010) [52] for an active seat suspension. In the design of the controller, the author used a triple feedback
loop system to detect the acceleration, the relative speed, and the displacement of the suspension system
and to control the system. The results of the experiment demonstrated that active vibration control
of this seating system could be used to reduce the amplitude of the vibration by half compared with
conventional passive seating systems at a resonant frequency. The system can control the suspension
well in the range of 0.5–4 Hz and can reduce response amplitudes under different mass load conditions.
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With the same active seat suspension, Maciejewski et al. (2014) [54] proposed an adaptive controller
for an active seat suspension (Figure 7). This is a multicontroller approach to control the entire system,
where the primary controller is used to calculate the force required to reduce the vibration. The inverse
model is used to calculate the effective area of the proportional control valve. The application of the
inverse model in the controller can directly derive the input signal according to the required force.
The Proportional-Derivative (PD) predictor is used to generate the corresponding control signal to
speed up the controller. Finally, the adaptive mechanism is able to estimate the load mass based on the
inflation and deflation of the pneumatic spring. This active seat suspension is able to achieve good
vibration control performance compared with a passive system, having a load range from 50 to 150 kg
at a resonant frequency of 1.3 Hz. The advantage of this controller is that the adaptive control itself
makes the system quickly return to stability by estimating the initial suspended load. The shortcoming
of the controller is that the complexity of the multicontroller may delay signals, and in the case of high
road roughness, the vibration control performance of the seating system is degraded.
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Maciejewski et al. (2018) [55] developed a horizontal active seat suspension using pneumatic
muscles (Figure 8) for horizontal vibration control. This original control system (Figure 9) combined a
primary controller and an inverse model module to provide a control signal to the pneumatic muscles,
and a PD control module was used to speed up the signal. According to the final results, the proposed
active seat suspension performed better than a passive seat suspension for vibration attenuation in the
1–10 Hz frequency range.Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 30 
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The utilization of pneumatic springs as actuators has some advantages, such as being simple,
reliable, and compact. At the same time, their low response speed, poor control precision, and
dependence on a compressor pipeline hinder their actual use.

2.1.2. Hydraulic Actuator

Stein and Ballo (1991) [56] developed an active seat suspension (Figure 10) using a hydraulic
actuator. In this system, the hydraulic actuator is controlled by a solenoid valve to control the direction
of the force generated by the actuator. The control system generates a corresponding compensation
force to reduce the vibration based on signals collected by two acceleration sensors and a displacement
sensor. A PI controller was designed for the active seat suspension. Since the acceleration sensor and
amplifier are integrated for the displacement of the positioning system, the system can be simplified
using only one accelerometer placed on the chassis. This structure greatly simplifies the control system.
This structure can also be achieved by connecting two first-order low-pass filters in series or by using a
second-order analog circuit to adopt a very low resonant frequency (Figure 11).Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 30 
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In this study, the delay of hydraulic performance was also considered and solved by using the
cut-off frequency method. In addition, the hysteresis effect of the hydrodynamic device was also
carefully considered in the process of controller design. Depending on the result, the active seat
suspension with the controller can reduce the acceleration Power Spectral Density (PSD) amplitude up
to 16 dB at a frequency of 2 Hz compared with a passive system.
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Active hydraulic control has the advantages of a large output force and high control precision,
but the huge hydraulic pipeline and servo system of hydraulic control also greatly limit its application.

2.1.3. Electromagnetic Actuator

A new active seating vibration reduction structure (Figure 12) was proposed in [57–60]. This seating
system is based on the common scissor-like structure of commercial vehicle seating systems, using an
inexpensive conventional rotary electric motor instead of an expensive linear motor as the actuator. The
1:40 gearbox allows the 400 W Panasonic DC motor to produce a torque output of 52 Nm. Moreover,
due to the enlarged gearbox, the internal friction of the active suspension is greater than that of a
conventional suspension system. The system can save some space because there is no need to install a
conventional shock absorber. In addition, the spring stiffness of the seat is carefully selected to keep
the resonant frequency of whole seating system lower than 4 Hz, which is the most sensitive vibration
frequency range of human body and may cause an uncomfortable feeling.Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 30 
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In terms of the control system, an H-infinity algorithm based on output feedback was developed
by Ning et al. (2016) [57] to reduce the seating system vibration. The feature of this project was the
estimation of the friction generated by the active vibration control system. A special controller with
friction compensation was employed to improve the precision of the control, which can affect the
performance of the vibration control. The final test results showed that in the low-frequency range,
from 3 to 5 Hz, the driver’s body RMS acceleration can be reduced by more than 35%.

In another study, Ning et al. (2016) [58] proposed an H-infinity controller with friction
compensation to control the previously mentioned active seat suspension. Due to the usage of
the friction observer based on the acceleration measurement, the H-infinity controller can be more
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sensitive to the response of vibration excitation and can also improve the vibration control performance.
The results of the experiment showed that the entire vibration control system could reduce vibration
very well in a frequency range from 1 to 4.5 Hz. According to the ISO 2631 standard, the FW-RMS value
of the vibration is reduced up to 35.5% by the vibration control system compared with a conventional
well-tuned passive suspension system. The RMS energy consumption of 3.82 Watts indicates that the
system’s energy usage is very low.

In [59], a terminal sliding mode controller based on a space observer and a disturbance observer
was proposed by Ning et al. (2017) to control an active seat suspension system (Figure 13). In the case
where the suspension acceleration and relative displacement are measurable, but the absolute seat
speed is immeasurable, the settings of the disturbance and state observers can reduce the switching
gain of the controller. The controller proposed in this paper had better control performance than the
state feedback terminal sliding mode controller and could improve the comfort of the seating system.
According to the experimental results, FW-RMS and Vibration Dose Value (VDV) were reduced by 34%
and 33%, respectively.Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 30 
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With the same active seat suspension system, a disturbance observer based on the Takagi–Sugeno
(TS) fuzzy controller was proposed by Ning et al. (2017) [60] for active seat suspension vibration control
(Figure 14). The controller used a closed-loop feedback control with acceleration and seat suspension
displacement measurement signals to achieve good adaptability and robustness. The disturbance
observer can estimate disturbances caused by friction and model simplification. The TS fuzzy control
improves the vibration reduction performance of the controller by estimating load changes. During
the experiment, the controller worked well in vibration frequencies below 4 Hz. Two different loads
of 55 and 70 kg could achieve a good response through the controller. The active seat suspension
control was able to reduce the RMS acceleration by more than 45% compared to a well-tuned passive
seat suspension.
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Based on previous research, Ning et al. (2018) [61] proposed active vibration control of a
multi-degree-of-freedom (multi-DOF) seating system with a double-layer structure (Figure 15) and
an associated controller. A second layer was added to the preceding scissor-like structure to control
the vibration of pitching and rocking. The second layer consists of a universal joint and four support
springs. The universal joint connects two conventional rotating motors and a gearbox to generate a
torque of 52 Nm to remove the rolling and pitching vibrations. The spring system is responsible for
supporting the static load. This is a simple and efficient active vibration control of a multi-DOF seating
system compared with other active vibration controls of multi-DOF seating systems. For the control
system, a sliding mode controller to reduce the roll vibration was designed. This algorithm has the
advantages of fast convergence and good robustness and can be used to control the vibration in the
swinging direction. In the design, for the swaying and pitch, the controller uses the minimum lateral
acceleration and the minimum rolling angle as the control target, while the vertical vibration control
uses the vertical acceleration as the control target.Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 30 
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In another project, with the same double-layer active seat suspension, an associated motion
controller was designed by Ning et al. (2018) [62] to reduce the WBV of commercial vehicle drivers.
The proposed active seat suspension can attenuate vibrations in 5-DOF, except the yaw vibration.
The experimental results showed that when the seating system is fully controlled, the WBV can be
reduced over 40%.

An active seating system vibration control (Figure 16) using an electromagnetic linear actuator and
a related controller was designed by Gan et al. (2015) [63]. The system uses a combination of active and
passive suspensions, where the passive suspension is primarily responsible for static load bearing, while
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two electromagnetic active suspensions (XTA-3806) that can produce a peak force of 1116 N are placed
at both ends of the seat to generate the force needed to reduce vibration. In the next step, an adaptive
controller (Figure 17) based on the traditional filtered-X least mean square (FXLMS) algorithm combined
with an on-line fast-block LMS identification method was developed. For this project, the conventional
FXLMS method was used to deal with the time-varying and nonlinear nature of the system, and
the narrowband feed-forward FXLMS algorithm was employed to reduce the narrowband vibration
caused by mechanical equipment. Finally, an online identification using a Fast-block least-mean-square
(FBLMS) controller was used to mitigate low-frequency periodic vibrations, and multiple two-weighted
adaptive filters were used in the system to reduce multiple harmonics.Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 30 
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Frechin et al. (2004) [64] developed an active vibration control seating system and the related
displacement compensation controller. The seat is mounted on a hemispherical motion base (Figure 18)
to attenuate the 4-DOF vibration control through the active seat suspension. The acceleration on each
axis is measured by a set of acceleration sensors mounted on the seat, and the displacement in the
corresponding direction is calculated by the controller (Figure 19). The controller then sends a signal to
drive the actuator for displacement compensation to eliminate vibration. The final experimental results
proved that this active seating system could reduce low-frequency vibration (2–6 Hz) and improve the
comfort of drivers [64].
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The actuators used in the prototypes are summarized in Table 1.

Table 1. Summary of the actuators of active seat suspension systems.

Author Actuator and
Driver

Degree-of-Freedom
(DOF) Control

Max
Output

Work
Load Pros and Cons

Stein (1997)

Pneumatic spring
Proportional

electropneumatic
transducer

Vertical
1-DOF

Pros
Simple structure

The characteristics of the pneumatic
spring itself help to reduce vibration

Cons
The pneumatic structure responds

slowly
Low control accuracy
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Table 1. Cont.

Author Actuator and
Driver

Degree-of-Freedom
(DOF) Control

Max
Output

Work
Load Pros and Cons

Maciejewski et al.
(2014) Pneumatic spring Vertical

1-DOF
55 kg
98 kg

Pros
Common structure

Traditional shock absorbers reduce
energy consumption

Cons
Slow dynamic

response
Need pipeline and compressor

Maciejewski et al.
(2010) Pneumatic spring Vertical

1-DOF

50 kg
80 kg

120 kg

Pros
Common structure

Traditional shock absorbers reduce
energy consumption

Cons
Slow dynamic

response
Need pipeline and compressor

Maciejewski
(2012) Pneumatic spring Vertical

1-DOF
Force =
400 N

51 kg
102 kg

Pros
Common structure

Traditional shock absorbers reduce
energy consumption

Cons
Slow dynamic response

Need pipeline and compressor

Ning et al. (2016)
400 W Panasonic
servo motors ×2

(MSMJ042G1U)×2

Vertical
1-DOF

Torque
= 104
Nm

80 kg

Pros
Simple structure

Responsive
Easy to control

Con
Bulky

Ning et al. (2017)

400 W Panasonic
servo motors
servo motor

drivers
(MBDKT2510CA1)

Vertical
1-DOF

Torque
= 26
Nm

55 kg
70 kg

Pros
Simple structure

Responsive
Easy to control

Con
Bulky

Ning et al. (2017)

400 W Panasonic
servo motors
servo motor

drivers
(MBDKT2510CA1)

Vertical
1-DOF

Pros
Simple structure

Responsive
Easy to control

Con
Bulky

Ning et al. (2016)

400 W Panasonic
servo motors
servo motor

drivers
(MBDKT2510CA1)

Vertical
1-DOF

Torque
= 52
Nm

55 kg

Pros
Simple structure

Responsive
Easy to control

Con
Bulky

Ning et al. (2018)

400 W Panasonic
servo motors ×4

servo motor
drivers

(MBDKT2510CA1)
×4

Vertical and roll
2-DOF

Torque
= 52
Nm

Force =
350 N

80 kg

Pros
Simple structure

Responsive
Easy to control

Con
Bulky

Stein and Ballo
(1991) Electrohydraulic Vertical

1-DOF 75 kg

Pros
High output power

High control precision
ConBulky

Gan et al. (2015)
Electromagnetic
linear actuator
(XTA-3086) ×2

Vertical
1-DOF

Force =
1116 N 55 kg

Pros
Simple structure

Responsive
Easy to control

Con
High power consumption
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2.2. Simulation

In the study of active seat suspension of vehicles, in addition to using a prototype to verify the
control algorithm, conducting simulations with professional software is also a common method to
verify the feasibility of the controller design.

Du et al. (2013) [65] proposed a model combining automotive chassis suspension, active seat
suspension, and the driver’s body to analyze and achieve integrated vibration control. A static output
feedback controller considering driver weight changes and actuator saturation was designed for an
active seating system. The simulation results showed that this integrated control strategy for an active
seat suspension system could improve comfort and robustness.

Different controllers are always compared to find out the most suitable control method for the
active vibration control of the seating system. Wang and Kazmierski (2005) [66] developed a Very High
Speed Integrated Circuit Hardware Description Language that Includes Analog and Mixed-Signal
Extensions (VHDL-AMS) model for vibration control of a car seating system, including an active
electromechanical actuator. In that study, five different controllers were compared and analyzed, and
the optimal control (OC) algorithm was identified as providing the best results for vibration control.
In another study, Al-Junaid et al. (2006) [67] proposed a seating system model (Figure 20) under active
vibration control by the SystemC-A modelling technique. Four control algorithms were compared
with the OC algorithm for vibration mitigation performance.
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Wang et al. (2018) [68] proposed a parameter identification method to identify the system
parameters of a 5-DOF discrete spring–mass–damper seating system model of a truck-based on truck
field test data. The parameter identification method is based on trial and error to match the measured
natural resonant frequencies and vibration acceleration amplitude at the selected frequencies with the
simulated ones of the 5-DOF discrete spring–mass–damper seating system model. The disadvantage of
the trial and error method is the inefficient parameter identification process, which requires much time
and effort. The 5-DOF discrete spring–mass–damper seating system model can be used to simulate the
vibration response of the human body. A sensitivity analysis was conducted using the Monte Carlo
method based on the 5-DOF model. In that paper, primary and secondary PID controllers were applied
to the seating system for active vibration control (Figure 21). The secondary PID controller produces a
desired output control force signal according to the acceleration feedback signal of the mass oscillator.
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The primary PID controller uses the relative displacement feedback signal and the signal generated
from the secondary PID controller as input error signals. Then, the primary PID controller generates a
final output control force signal to drive the actuator to provide control to mitigate vibrations of the
seating system. The advantages of the PID control from that research are that it is simple and practical,
but it also has the disadvantage of poor robustness.
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Another PID control algorithm application for active vibration control of seating systems was
proposed by Ali et al. (2019) [69]. In that study, a 13-DOF biodynamic model was designed for
improving comfort and reducing the effects of low-frequency vibration on pregnant women and fetuses.
For the controller design, the genetic algorithm was used to optimize the PID coefficients and the
performance of the PID controller. In addition, the fuzzy PID (Figure 22) control algorithm was also
used to design the controller to improve the robustness of the vibration control of the seating system.
The performances of these two different PID controllers were compared through simulation with that
of a seating system with a passive suspension. The results proved that the fuzzy PID controller in that
study was the best for the low-frequency vibration control of the seating system.
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Figure 22. Fuzzy logic controller block [69].

A feed-forward adaptive controller (Figure 23) combined with the FXLMS algorithm and a
feedback controller combined with the H-infinity algorithm was proposed by Wu and Chen (2004) [70]
to reduce the small-amplitude vibration of a vehicle seating system. The researchers compared three
different control methods and found that the FXLMS feed-forward adaptive controller alone could
reduce the vibration amplitude of 4.8 dB at 10 Hz when it was turned on compared with the situation
when the controller was turned off. The feedback controller with the H-infinity algorithm could reduce
the vibration amplitude of 3.6 dB. Finally, the hybrid controller combined with the two control methods
successfully reduced the vibration amplitude of 11 dB. The possible reason for this may have been that
although the feed-forward adaptive FXLMS algorithm has the advantage of taking less computational
time and easy implementation, it relies on the measurable reference signal. Once an unpredictable
change of the vibration source occurs, this change greatly affects the convergence speed of the adaptive
feed-forward controller algorithm. However, the feedback controller based on the H-infinity algorithm
has good and robust performance. Therefore, the hybrid controller combining the advantages of the
two algorithms should have the best and most robust performance for seat vibration control.
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Figure 23. Schematic of the hybrid controller [70].

A feedback controller based on the H-infinity algorithm was proposed by Sun et al. (2011) [71]
to reduce the vibration transmissibility of a seating system. A 3-DOF mass–spring biological model
(Figure 24) was introduced to simulate the human body to improve the accuracy of the controller.
Unlike the traditional H-infinity algorithm controller, the controller in this paper was optimized with a
targeted frequency range by using the generalized Kalman–Yakubovich–Popov (KYP) lemma, which is
mainly controlled in the sensitive frequency range of human body (4–8 Hz). According to the ISO 2631
standard, the D-class road profile roughness was simulated as the road surface excitation for the active
suspension system. The simulation results showed that the system could significantly reduce vibration
in the targeted range (4–8 Hz).
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feedback H-infinity controller of model simplification provides good robustness, considering friction 
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Figure 24. Three-DOF biodynamic model [71].

Du et al. (2012) [72] proposed an integrated control strategy that combines the driver body
biodynamic model and the quarter car model to include active seat suspension and active vehicle
suspension vibration controls to enhance ride comfort (Figure 25). In the controller design, the state
feedback H-infinity controller of model simplification provides good robustness, considering friction
as a feedback signal. According to the experiment results, the system can largely reduce the driver’s
head acceleration. It was shown that integrated active seat suspension and vehicle suspension controls
could improve comfort compared with other separate controls.
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The different control system design details are summarized in Table 2.
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Table 2. Summary of the control system designs.

Author Method Target Frequency Vibration Control Performance
Criterion Model Performance Pros and Cons

Wang et al. (2018) PID control 7.51 Hz Displacement (m) 5-DOF The peaks of vibration amplitude are
reduced to around 5× 10−10 m

Pros
Simple

Practical
Con

Poor robustness

Maciejewski et al.
(2014)

Adaptive control
Reverse model

Proportional-Derivative
(PD) control

0.5–4 Hz

Seat Effective Amplitude
Transmissibility (SEAT)

(dimensionless)
Transmissibility (Dimensionless)

Acceleration (m/s2)

1-DOF The vibrations at about 1.3 Hz are
reduced by about 50%

Pros
Adaptable

Large range of load
Con

Signal delay

Maciejewski et al.
(2010)

Robust control
Triple feedback

control
0.5–4 Hz SEAT (Dimensionless)

Transmissibility (Dimensionless)
The amplitude at resonance is reduced

by about 50%

Pro
Can work with a different

mass load
Con

May cause chattering

Wu and Chen (2004) FXLMS control
H-infinity control 10, 20, and 30 Hz Accelerations in dB ref 1 m/s2 The active seating system achieves 11

dB vibration attenuation at 10 Hz

Pro
Good robustness

Con
May cause chattering

Ning et al. (2016)
H-infinity control

with friction
compensation

1–4.5 Hz

Root-mean-square (RMS)
acceleration (m/s2)

Frequency-weighted RMS
(FW-RMS) acceleration (m/s2)
Vibration Dose Value (VDV)

(m/s1.75)
SEAT (dimensionless)

VDV ratio (dimensionless)

1-DOF

Compared with a passive seating
system,

the RMS is reduced by 57%, the
FW-RMS is reduced by 35.5%, the

VDV value is reduced by 34.6%, the
SEAT value is reduced 35.6%, and the

VDV ratio is reduced by 34.6%.

Pro
Good robustness

Con
Highly reliant on the
accuracy of the model

Sun et al. (2011)
H-infinity control in
the finite frequency

domain
4–8 Hz

Power Spectral Density (PSD)
(m2/s3)

Acceleration (m/s2)
3-DOF

Pro
Good robustness

Con
Highly reliant on the
accuracy of the model

Gan et al. (2015) FXLMS control
FBLMS control 4–12 Hz dB ref m/s2

For single-frequency cancellation, a 26
dB cancellation is achieved on the seat

pan at the frequency of 6 Hz.
For the multiple harmonic

cancellation, the average level of
vibration reduction is around 20 dB at

4, 6, 8, and 12 Hz.

Pro
Adaptable

Con
Can be affected by noise or

disturbance
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Table 2. Cont.

Author Method Target Frequency Vibration Control Performance
Criterion Model Performance Pros and Cons

Ning et al. (2016) H-infinity control 2–6 Hz

RMS acceleration (m/s2)
FW-RMS acceleration (m/s2)

VDV (m/s1.75)
SEAT (Dimensionless)

VDV ratio
(Dimensionless)

2-DOF

Compared with a passive seating
system, the RMS is reduced by 31.96%,
the FW-RMS is reduced by 43.42%, the
VDV value is reduced by 42.96%, the

SEAT value is reduced 43.41%, and the
VDV ratio is reduced by 42.68%.

Pro
Good robustness

Con
Highly reliant on the
accuracy of the model

Ning et al. (2018) Sliding mode control
H-infinity control

RMS (m/s2)
FW-RMS (m/s2)
VDV (m/s1.75)

2-DOF

Compared with a passive seating
system, for vertical acceleration, the

RMS is reduced by 41.9%, the FW-RMS
is reduced by 32.1%, and the VDV is

reduced by 32.8%.
For lateral acceleration cancellation,

the RMS is reduced by 55.4%, the
FW-RMS is reduced by 49.4%, and the

VDV is reduced by 52.2%.

Pros
Adaptable

High robustness
Con

Highly reliant on the
accuracy of the model

Ning et al. (2017)
Disturbance observer
Takagi–Sugeno fuzzy

control
2–4 Hz Acceleration (m/s2)

Transmissibility (Dimensionless)
2-DOF

Compared with a well-tuned passive
seating system, the active seating

system can reduce the RMS by 45.5%
and 49.5% with a mass load of 55 and

70 kg, respectively.

Pro
Effectively reduce the

workload

Du et al. (2012) H-infinity state
feedback control Head acceleration (m/s2) 8-DOF

Pro
Good robustness

Con
Highly reliant on the
accuracy of the model

Ning et al. (2017) Sliding mode control 1.5 Hz

RMS acceleration
(m/s2)

FW-RMS acceleration (m/s2)
VDV (m/s1.75)

SEAT (Dimensionless)
VDV ratio (Dimensionless)

2-DOF

Compared with a passive seating
system,

the RMS is reduced by 54.6%, the
FW-RMS is reduced by 34.1%, the

VDV value is reduced by 32.6%, the
SEAT value is reduced 34.1%, and the

VDV ratio is reduced by 32.6%.

Pros
Adaptable

High robustness
Con

Highly reliant on the
accuracy of the model
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3. ANN Control

Unlike a model-based controller, the ANN controller is data-based. It can be used to identify
complex nonlinear objects that are difficult to accurately model and can be used as a controller for
adaptive control. Compared with traditional controllers, ANN controllers have many features. They
have powerful nonlinear processing capabilities and are well suited for dealing with problems with
a large number of input variables, as well as multivariable output. In addition, the ANN can learn
unknown information autonomously. However, for active vibration control of a seating system,
the ANN system has not been widely accepted.

An ANN controller (Figure 26) was proposed by Guclu and Gulez (2008) [73] to control a nonlinear
vehicle model having 8 DOF. In this study, the active seat suspension system control was combined with
an active vehicle suspension system control. The ANN controller could solve the nonlinear problem
caused by the vehicle system under excitation disturbances. The ANN model was trained with errors
between actual and expected output results by using backpropagation. The results demonstrated that
the ANN controller performs well at controlling seating system vibration.
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suspension and active seat suspension system controls [73].

The control system for an active seat suspension combining an ANN module, the active force
control (AFC) method, and a PID controller (Figure 27) was proposed by Gohari and Tahmasebi
(2015) [74]. In the design of the ANN model, a hidden layer structure of 10 neural units was considered
to have the best performance. Reverse learning was used to train the ANN model to estimate the
mass of the seat–occupant system. In addition, the PID controller was designed to work with minimal
disturbance and at low speed, and the AFC controller was used to improve the robustness and vibration
control performance of the control system. In this controller, the system error was taken as the input,
and the estimated mass was set as the output. The Levenberg–Marquardt algorithm was used to
provide numerical solutions for nonlinear minimization. After comparison with the PID controller,
the ANN control performed better than the other controllers.
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The ANN controllers mentioned here are summarized in Table 3.

Table 3. Summary of ANN controllers.

Author
Number of

Hidden
Layers

Number of
Nodes

Training
Method Pros and Cons

Guclu and
Gulez (2008) 2 First layer: 9

Second layer:10
Back

Propagation

Compared with an
uncontrolled system, the
maximum displacement

of the passenger seat
with NN control is

reduced from 2.8× 10−3

to 0.2× 10−3 m.

Pro
Good on multi-input

and multioutput
control

Con
Low robustness

Gohari and
Tahmasebi

(2015)
1 10 Back

Propagation

Pro
Good on nonlinear

problems
Con

Need large ideal
training data

4. Biodynamic Modeling

In the study of the active vibration control of a vehicle seating system, an accurate biodynamic
model which aims to predict the dynamic response of a human body is necessary because it can
provide more efficient control. In [68], a 5-DOF seat–occupant model (Figure 28), which can be used
to simulate the dynamic behaviour of the human body, was proposed and the parameter sensitivity
was determined based on the model; the relevant data were also used in the design of the active
control system. In [71], a 2-DOF biodynamic model and a 2-DOF seat suspension system model were
combined, and a 3-DOF seat–occupant model was established to describe the dynamic response of the
human body in space. However, due to the difficulty of measuring actual human body properties and
because an accurate biodynamic model may dramatically increase the amount of computation time,
a simplified model has been used as a common method in research. In [59,60], the human body was
replaced by a mass, and the amount of calculation time was reduced by ignoring the complex dynamic
behavior of the human body itself.
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5. Our Contributions

Our group has been working on the active vibration control of a seating system since 2016.
A 5-DOF seat–occupant biodynamic model was developed and applied in vibration control simulation
research [68]. A new active vibration controller for a seating system that combines a traditional rotating
and a scissor-like structure was designed and built to reduce low-frequency vibration and increase ride
comfort [57]. The PID and H-infinity controllers were designed and applied to the active vibration
control seating system in [57,68]. An analysis of the parameter sensitivity of a 5-DOF model-based
Monte Carlo simulation was performed [68]. The measurement data and results recorded from four
actual trucks in a field test were applied in the research to identify the 5-DOF system parameters of
the human body seating system [68]. The relevant active vibration control of the seating system was
simulated in the Simulink software [68].

Identified Research Gaps, Research Questions, and New Directions

In previous research, a number of innovations in terms of the active vibration control of a seating
system have been proposed. Vibration control of a seating system has been well studied and analyzed
in the laboratory. However, there are still some research areas that could be improved or gaps that
need to be filled.

In terms of active vehicle suspension control, there are at least four active control algorithms that
have been applied to the active vibration control of seating systems. However, the vibration control
performance has not been crosswise compared to these various controllers. Such a project may allow
researchers to identify which control algorithm is best for vibration control performance.

Due to the particularity of the human body, it is difficult to identify its model parameters
in real-time. So, a real-time parameter identification method for human body biodynamic model
parameters will help improve controller performance.

Compared with traditional controllers, ANN control reduces many of the modelling and calculation
steps and simplifies controller design. However, ANN training requires a large amount of ideal data
for back-propagation training. Therefore, determining how to use an unsupervised learning algorithm
in place of a traditional supervised learning algorithm is an important future research direction.

An ANN control system has weak robustness due to sudden and unmanageable signals. Therefore,
combining the ANN system with a traditional control system, using the control results of the traditional
system to train the ANN controller, and enhancing the robustness of the system are also research areas
worthy of consideration.
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From the above-identified research gaps, the following research questions are raised:

1. What kind of ANN algorithm can be used to improve the PID control algorithm for active
vibration control seating systems?

2. How can an unsupervised deeper learning algorithm be used to improve the performance of
vibration cancellation in active seating systems?

3. How can an ANN algorithm be used to improve the robustness of a control system?

6. Conclusions

This article reviewed recent research on and developments in active vibration control in seat
suspension systems. The advantages and disadvantages of each of the actuators and control algorithms
were discussed. Examples of ANN control technology in the active vibration control of seating systems
were also illustrated. Finally, this article identified the research gaps and new research directions
which have not been covered by recent works, and research questions have been raised based on the
identified gaps and research directions.
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