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Abstract: Although considerable effort has been devoted to building commonsense knowledge bases
(CKB), it is still not available for many low-resource languages such as Uyghur because of expensive
construction cost. Focusing on this issue, we proposed a cross-lingual knowledge-projection method
to construct an Uyghur CKB by projecting ConceptNet’s Chinese facts into Uyghur. We used a
Chinese–Uyghur bilingual dictionary to get high-quality entity translation in facts and employed a
back-translation method to eliminate the entity-translation ambiguity. Moreover, to tackle the inner
relation ambiguity in translated facts, we made a hand-crafted rule to convert the structured facts
into natural-language phrases and built the Chinese–Uyghur lingual phrases based on the similarity
of phrases that corresponded to the bilingual semantic similarity scoring model. Experimental results
show that the accuracy of our semantic similarity scoring model reached 94.75% for our task, and they
successfully project 55,872 Chinese facts into Uyghur as well as obtain 67,375 Uyghur facts within a
very short period.
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1. Introduction

Knowledge Bases (KBs) play an important role in many natural-language processing (NLP) tasks
such as question answering, web searching and dialog tasks [1,2]. KBs describe the knowledge about
entities, relations, and their attributes. In a KB, each fact is a triple of the form (h, r, t) that indicates
the head entity h and tail entity t are connected with a relationship named r, e.g., (Bat, CapableOf, Fly).
As a part of KB, commonsense knowledge (CSK) is mainly referred to as background knowledge and
used in natural-language processing tasks that require reasoning based on implicit knowledge [3–6].
However, many languages, especially low-resource languages including Uyghur, have no existing
commonsense knowledge base (CKB) to use [7–9].

Constructing CKBs from scratch is very time-consuming and labor-intensive. Instead, there
are many available CKB resources in other rich-resource languages such as English and Chinese.
A straightforward way to construct an Uyghur CKB is to directly translate Chinese KB to Uyghur based
on the surface texts of a fact with the existing machine translation (MT) system or bilingual dictionary.
However, we find that this method suffers from the problem of ambiguity. For example, consider
translating Chinese fact (主机 <host computer>, CapableOf,发热 <heat>) shown in Figure 1. The head
entity “主机” (host computer) has six Uyghur translation candidates, includingP

�
ñ

�
KAÓ úæ�A�A


K(main

engine) andQ�..
�
K
�

ñJ
J�Óñ» ù


K
	Q�»P éÓ(central computer). The tail entity “发热” (heat) also has six translation

candidates including �
��

	Q�
�
¯(heat) and AÒ

�
JK

	Q�
�
¯(have a fever). Thus, (主机, CapableOf,发热) will generate

6 × 6 = 36 Uyghur translation candidates in total.
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candidates including قىزىش (heat) and قىزىتما (have a fever). Thus, (主机, CapableOf, 发热) will generate 
6 × 6 = 36 Uyghur translation candidates in total. 

 
Figure 1. An example of translation ambiguity in Chinese–Uyghur commonsense knowledge base 
(CKB) translation. Black words represent the semantically unrelated translation candidates while blue 
words represent the retained candidates after back-translation. 

There are two main challenges to effectively disambiguate these translation triples. The first 
challenge is how to remove the semantic unrelated translation candidates for a single entity. The 
second challenge is how to effectively model the semantics of the Chinese fact and Uyghur fact in 
common semantic space. 

In this paper, we address these two challenges by presenting a cross-lingual knowledge-
projection method to translate the Chinese CKB into Uyghur. Given a Chinese fact, first, the method 
uses a Chinese–Uyghur bilingual dictionary to get entity translations in fact and use back-translation 
to remove the semantically unrelated translation candidates. Then, the method converts each Chinese 
and Uyghur fact to a parallel sentence using a hand-crafted rule template and achieves their sentence 
representation by a recursive autoencoder. Finally, the method encodes the source and target 
sentence in the same semantic space using the bidimensional attention network, and calculates the 
distance between them to get the semantic similarity score. 

Being the largest multilingual CKB, ConceptNet [10] connects words and phrases of natural 
language with labeled edges and maintains knowledge as a triple of two concepts and relations 
between them. The relations come from a fixed set. The latest release (v5.6.0) of ConceptNet has 
369,687 unique Chinese facts (both head and tail nodes are Chinese) while the number of Uyghur 
facts is only 3872 (≈1.05%). We focus on ConceptNet in this paper. We project ConceptNet’s Chinese 
facts to Uyghur by using a Chinese–Uyghur bilingual dictionary and a bilingual semantic similarity 
scoring model, automatically building an Uyghur CKB from existing Chinese CKBs, taking the 
advantages of the cross-lingual knowledge projection. 

Suppose we project a Chinese fact 𝑓  into a target-side Uyghur fact, and obtain 𝑛 candidate 
translations by using dictionary translation. We denote these candidates as 𝑓 , 𝑓 , … , 𝑓 . Our goal is 
to estimate a projection score ℎ(𝑓 |𝑓 ) and find the most appropriate Uyghur fact that maximizes 
the score, which can be formulated in Equation (1). 𝑓 = 𝑎𝑟𝑔𝑚𝑎𝑥 ℎ(𝑓 |𝑓 ) (1)

The structure of this paper is organized as follows: in Section 2 we discuss the related works; in 
Section 3 we introduce our cross-lingual knowledge-projection method; in Section 4 we present the 
experiments and analysis of the results. Conclusions will be given in the last section. 

2. Related Works 

Figure 1. An example of translation ambiguity in Chinese–Uyghur commonsense knowledge base
(CKB) translation. Black words represent the semantically unrelated translation candidates while blue
words represent the retained candidates after back-translation.

There are two main challenges to effectively disambiguate these translation triples. The first
challenge is how to remove the semantic unrelated translation candidates for a single entity. The second
challenge is how to effectively model the semantics of the Chinese fact and Uyghur fact in common
semantic space.

In this paper, we address these two challenges by presenting a cross-lingual knowledge-projection
method to translate the Chinese CKB into Uyghur. Given a Chinese fact, first, the method uses a
Chinese–Uyghur bilingual dictionary to get entity translations in fact and use back-translation to
remove the semantically unrelated translation candidates. Then, the method converts each Chinese
and Uyghur fact to a parallel sentence using a hand-crafted rule template and achieves their sentence
representation by a recursive autoencoder. Finally, the method encodes the source and target sentence
in the same semantic space using the bidimensional attention network, and calculates the distance
between them to get the semantic similarity score.

Being the largest multilingual CKB, ConceptNet [10] connects words and phrases of natural
language with labeled edges and maintains knowledge as a triple of two concepts and relations
between them. The relations come from a fixed set. The latest release (v5.6.0) of ConceptNet has
369,687 unique Chinese facts (both head and tail nodes are Chinese) while the number of Uyghur facts
is only 3872 (≈1.05%). We focus on ConceptNet in this paper. We project ConceptNet’s Chinese facts to
Uyghur by using a Chinese–Uyghur bilingual dictionary and a bilingual semantic similarity scoring
model, automatically building an Uyghur CKB from existing Chinese CKBs, taking the advantages of
the cross-lingual knowledge projection.

Suppose we project a Chinese fact f s into a target-side Uyghur fact, and obtain n candidate
translations by using dictionary translation. We denote these candidates as f t

1, f t
2, . . . , f t

n. Our goal is
to estimate a projection score h( f t

i | f
s) and find the most appropriate Uyghur fact that maximizes the

score, which can be formulated in Equation (1).

f̂ = argmax
f t
i

h( f t
i | f

s) (1)

The structure of this paper is organized as follows: in Section 2 we discuss the related works;
in Section 3 we introduce our cross-lingual knowledge-projection method; in Section 4 we present the
experiments and analysis of the results. Conclusions will be given in the last section.
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2. Related Works

Low-resource languages often suffer from a lack of annotated corpora to estimate high-performing
neural network models for many NLP tasks. Cross-lingual knowledge projection is an efficient way to
bridge the gap across languages.

Named-entity recognition (NER) for low-resource languages has received great benefit from
cross-lingual language projection. Bharadwaj et al. [11] built a transfer model using phonetic features
instead of lexical features. These features are not strictly language-independent but work well when
languages share vocabulary but have spelling variations, as in the case of Turkish, Uzbek, and Uyghur.
Mayhew et al. [12] used lexicon to translate the available annotated data in one or several high-resource
language(s), and learned a standard monolingual NER model. They evaluated their model on 7 diverse
languages and improved the state of the art (SOTA) by an average of 5.5% F1 points. To improve the
mapping of lexical items across languages, Xie et al. [13] proposed a method that finds translations
based on bilingual word embeddings and uses self-attention to improve the robustness for word-order
differences. Their method achieved a SOTA NER performance on commonly tested languages.

Chen et al. [14], Wang et al. [15], and Klein et al. [16] represented concepts in multiple languages
in a common vector space and ensured a concept in source language has a similar vector representation
to its target-side counterpart. Xu et al. [17] treated the cross-lingual knowledge projection as a
graph-matching problem and proposed a graph-attention-based solution, which matches all the entities
in two topic entity graphs and jointly models the local matching information to derive a graph-level
matching vector.

Manaal et al. [18] presents a system that performs relation extraction (RE) on a sentence in the
source language by translating the sentence into English then performing RE in English and projecting
the relation phrase back to the source language sentence. Their method only needs a MT system from
the source language to English without any other analysis tools for the source language and can extract
relationships for any source languages.

Due to the lack of training data for sentiment analysis, Jeremy et al. [19] introduced a bilingual
sentiment embedding model for cross-lingual sentiment classification. Their model only requires a
small bilingual lexicon, a source-language corpus annotated for sentiment, and monolingual word
embeddings for each language. Experiments on three language combinations for sentence-level
cross-lingual sentiment outperforms the SOTA methods.

Several studies proposed methods for the one-to-one projection of facts. To expand Chinese KB
by leveraging English KB resources, Feng et al. [20] presented a gated neural network approach to
map the source triples and target triples in the same semantic vector space. Their experimental result
showed the model can successfully alleviate the projection ambiguity. The work by Naoki et al. [21]
is the closest related to our study. They treated cross-lingual knowledge projection as a structured
version of the MT task and generated a training corpus from ConceptNet using hand-crafted rules for
every type of relationship. By combining MT and a target-side knowledge-base completion model,
they projected the English CSK into Japanese and Chinese with high precision.

3. Method

3.1. Data Preprocessing

Being a multilingual commonsense KB, the ConceptNet contains facts from hundreds of languages.
Each fact consists of five parts: The URI of the whole edge, the relationship expressed by the edge,
the node at the head of the edge, the node at the tail of the edge and JSON-structured additional
information. To project the Chinese facts into Uyghur, first, we need to filter out the facts in which
both the head and tail node entities are Chinese, and convert them into a format of f s = (es

1, r, es
2),

where es
1 ∈ E1, r ∈ R, es

2 ∈ E2. Symbol E1 and E2 represent the set of the head and the tail nodes while R
represents the set of the relationships between nodes.
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3.2. Dictionary-Based Entity Translation

To project a given Chinese fact f s = (es
1, r, es

2) into Uyghur, we need to translate the head
and tail entity into Uyghur separately. To get a high-quality entity translation, we use a
Chinese–Uyghur bilingual dictionary to get the target fact f t = (et

1, r, et
2), where et

1 ∈
{
et

11, et
12, . . . , et

1n

}
and et

2 ∈
{
et

21, et
22, . . . , et

2m

}
. From the example shown in Figure 1, it can be seen that for most cases we

can get more than one candidate Uyghur entity for each Chinese entity after translation, but some of
them are semantically unrelated to the original Chinese entity.

Back-translation [22] method is first used in MT to enrich the training corpus. In this paper, we use
it to eliminate the entity-translation ambiguity. Firstly, we use an Uyghur–Chinese bilingual dictionary
to translate the translated candidate entities back to Chinese, then compare that with the original one,
and keep the candidate entities if they are equal.

After back-translation, we get translated head and tail entity ét
1, ét

2, which ét
1 ∈ {é

t
11, ét

12, . . . , ét
1ń},

ét
2 ∈ {é

t
21, ét

22, . . . , ét
2ḿ}, for a Chinese fact f s. Combining with relationship r, the translated fact and the

count of translated fact can be expressed as f́ t = (ét
1, r, ét

2) and L( f́ t) = L(ét
1) × L(ét

2) = ń× m ·, where
ń and ḿ is the count of the translated candidate head and tail entity, respectively.

3.3. Rule-Based Conversion of Structured Knowledge

Although we get the correct translation of the head and the tail entity by the dictionary-based
translation separately, when combining with relationship r, the generated Uyghur fact also displays
semantic ambiguity between the head and tail entity with the relationship. For the given example
above, the generated Uyghur fact (Q�..

�
KñJ
J�Óñ»

�
�AK. <host computer>, CapableOf, AÒ

�
JK

	Q�
�
¯ <have a fever>)

does not semantically have a CapableOf relationship. It is challenging to solve this inner relation
ambiguity in a single projected fact.

We suppose that the original Chinese fact does not have any ambiguity, and by calculating the
semantic similarity of the original and the projected fact, we can tackle this inner relationship ambiguity
in translated fact. However, it is difficult to calculate the semantic similarity of two facts while all facts
in ConceptNet are in triple structure. Therefore, we make hand-crafted templates for every relationship
in Chinese and Uyghur separately to convert the structured facts into phrases. Thus, we can get
the similarity of the facts by calculating the semantic similarity of the parallel phrases generated by
templates. Hand-crafted rule templates for Chinese and Uyghur are shown in Table 1. e1 and e2 in
templates will be programmatically replaced by head and tail entities in fact.

Table 1. Templates for converting Chinese and Uyghur facts into phrases. The English templates
were developed by ConceptNet organizers (https://github.com/commonsense/conceptnet5/wiki). The
content in parentheses after the entity in the Uyghur template represents the variations of affix in the
Uyghur template.

Relationship English Chinese Uyghur

IsA e1 is part of e2 e1是e2的一种 e1 A�ËñK.e2 (
�
½J

	
K) øP

�
ñ

�
K Q�K.

Causes The effect of e1 is e2 e1会e2 e1 A�ËñK.e2 �
ðYJËñK.

Desires e2 wants to e1 e1需要e2 e1 e2( é» , éÃ , A
�
¯ , A

	
«) h. A

�
Jë

�
ñÓ

CapableOf e1 can e2 e1会e2 e2 e1 (ú
	
G) �

ðYK
BCJ
�
¯

SymbolOf e1 represents e2 e1代表e2 e2 e1 (ú
	
G) �

ðYK
 éÊKXAJ��

K

HasProperty e2 is e1 e1是e2的 e1 e2
RelatedTo e1 is related to e2 e1跟e2有关 e1 	

à éÊJK.e2 ½JÊJ
�
K è

�
ñJ�A

	
K
�

ñÓ

UsedFor You can use e1 to e2 e2的时候可能会用到e1 e2 e1 (ú
	
G) 	á�ºÓñÓ úæ

�
�J

�
�JÊ

�
��


K

CausesDesire e1 makes you want to e2 e1让你想要e2 e1 ú
	
G

	Q��e2

MadeOf e1 is made of e2 e1可以用e2制成 e1 e2 �
ðYJÊJ�AK


�
�JÊJ

�
P̄A


K

NotDesires e1 not desires e2 e1不想e2 e1 e2 (ú
	
G) �

ðYK
AÒJËA
	

g

AtLocation You are likely to find e1 in e2 你可以在e2找到e1
	Q��e2( 	á�

�
K , 	áKX) e1(ú

	
G) 	Qå��
BAK�A

�
K

https://github.com/commonsense/conceptnet5/wiki
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Table 1. Cont.

Relationship English Chinese Uyghur

DerivedFrom e2 is derived from e1 e2源自e1 e1 e2 ( 	á�
�
K , 	áKX) 	

à éÂË é»

partOf e2 is part of e1 e2是e1的一部分 e1 e2 (
�
½J

	
K) ùÒ��

�
¯ Q�K.

HasSubevent One of the things you do when you
e1 is e2 当e1时,可能会e2 e1 A�ËñK.e2 	á�ºÓñÓ

Synonym 11 and e2 are synonymous e1和e2是同义词 e1 	
à éÊJK.e2 	P

�
ñ�

�
�@YJ

	
K éÓ

HasA e2 has e1 e2有e1 e2( é
�
K , èX , A

�
K , @X) e1 PAK.

Being an agglutinative language, Uyghur has many affixes which play an important role in syntax
information. In Uyghur, there are multivariant affixes with different variants of one affix added to
harmonize the phonetic characteristics of the particular stem. For example, the plural affix has two
variants “PB/P éË” and they must be chosen based on the phonetic harmony rule between stem and
variants [23]. Aizimaiti et al. [24] proposed a rule-based variant-selection algorithm for Uyghur affixes
based on Uyghur phonetic harmony. We use their method while replacing entities in a template to
select a correct affix variation to combine with the entity for each Uyghur entity.

3.4. Bilingual Semantic Similarity Scoring Model

Bidimensional attention-based recursive autoencoders for learning bilingual phrase embeddings
(BattRAE) were first proposed by Zhang et al. to evaluate the semantic similarity between a source
phrase and a target phrase in an MT task [25,26]. We introduced the BattRAE model to score the
semantic similarity of parallel phrases generated from the original and projected facts using the
hand-crafted template. This model learns bilingual phrase embeddings according to the strengths of
interactions between the linguistic items at different levels of granularity on the source side and the
target side. Figure 2 shows the overall architecture of the BattRAE model.
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network; and (c) semantic similarity layer.

3.4.1. Learning Multilevel Phrase Embeddings

We use recursive autoencoders (RAE, Figure 2a) to learn initial embeddings at different levels
of phrases. By combining two children vectors from the bottom up recursively, RAE can generate
low-dimensional vector representations for variable-sized sequences. The recursion procedure usually
consists of two main steps: composition and reconstruction.



Appl. Sci. 2019, 9, 3318 6 of 12

Composition: Generally, for a list of words in a phrase (x1, x2, x3), each of them will be embedded
into a d-dimensional continuous vector, RAE selects two neighboring children (e.g., c1 = x1 and
c2 = x2) via some selection criterion, and then composes them into a parent embedding y1, which can
be computed by Equation (2).

y1 = f (W(1)[c1 : c2] + b(1)) (2)

where [c1 : c2] ∈ R2d is the concatenation of c1 and c2, W(1)
∈ Rd×2d is a parameter matrix, b(1) ∈ Rd is

a bias term, f is element-wise activation function such as tan h (·), which is used in our experiments.
Reconstruction: After getting the d-dimensional representation for parent y1 in the composition

step, to measure how well the parent y1 represents its children, we reconstruct the original child nodes
via a reconstruction layer formulated in Equation (3).[

c′1 : c′2
]
= f (W(2)y1 + b(2)) (3)

where c′1 and c′2 are the reconstructed children, W(2)
∈ R2d×d and b(2) ∈ R2d, The minimum Euclidean

distance between [c1 : c2], and
[
c′1 : c′2

]
is usually used as the selection criterion during composition.

These two steps repeat until the embedding of the entire phrase is generated. While embedding,
RAE also constructs a binary tree. The structure of the tree is determined by the used selection criterion
in composition. We use a greedy algorithm [27] based on the following reconstruction error, which can
be seen as Equation (4).

Erec(χ) =
∑

y∈T(x)

1
2
||[c1 : c2]y −

[
c′1 : c′2

]
y
||

2 (4)

where y is an intermediate node of the binary tree T(x), and parameters W(1) and W(2) are learned to
minimize the sum of reconstruction errors.

Given a binary tree learned by RAE, the leaf, internal nodes, and root of the tree which represents
the representations of words, sub-phrases, and phrases separately, we can use RAE to produce the
embeddings of phrases at different levels. As shown in Figure 1, RAE learns representations of the
source and target phrases in different semantic spaces, marked as ds and dt, respectively.

3.4.2. Bidimensional Attention Network

We propose the bidimensional attention network (Figure 2b) to incorporate a multilevel
representation of embeddings from RAE into phrase embeddings and further into the semantic
similarity of bilingual phrases. We can put vectors from all nodes of a tree into the columns of a matrix
of size (2n− 1)× d (ns, ds for source and nt, dt for target), where d is the dimension of embeddings and
n is the length of phrase (there are n− 1 steps in RAE to construction and therefore are 2n− 1 nodes in
total). Let us denote these matrices by Ms and Mt for the source and target tree, respectively. Then
we can project all the embeddings into a common attention space by using by a non-linear projection
function f (Wx + b). In this attention space, all the embeddings from the source tree can “interact”
with all the embeddings from the target tree. We will measure the interaction strength between the i-th
projected source embedding and the j-th projected target embedding by Equation (7).

As = f (W(3)Ms + bA ) (5)

At = f (W(4)Mt + bA ) (6)

B(i, j) = g(AT
s,iAt,i ) (7)

where g(·) and f (·) are non-linear activation functions, e.g., the sigmoid(·) and the tan h(·) functions
are used in this paper, As (Equation (5)) and At (Equation (6)) are projections of Ms and Mt to the
attention space, W(3)

∈ Rda×ds and W(4)
∈ Rda×dt are transformation matrix, bA

∈ Rda is the bias
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term. We will use the same bias-term force model to learn to encode the attention semantics into
transformation matrices, rather than the bias term.

It can be seen that we define a (2ns − 1) × (2nt − 1) matrix B, which is called the bidimensional
attention matrix represented by Equation (7). Intuitively, this matrix is a result of handshakes
between source and target phrases at a multilevel representation. We can interpret the sum of the
i-th row as the total strength that the i-th source node has on the semantic similarity between the two
considered phrases.

ãs,i =
∑

j

Bi, j , ãt, j =
∑

i

Bi, j (8)

where ãs ∈ Rns and ãt ∈ Rnt are the semantic matching score vectors.
Because of phrase length uncertainty, we can normalize all these strengths using a so f tmax

function: as = So f tmax(̃as), at = So f tmax(̃at). This forces as and at to become real-valued distributions
in the attention space, known as attention weights. Then, we use them to obtain the final phrase
representations by the following Equation (9).

ps =
∑

i

as,iMs,i, pt =
∑

j

at, jMt, j (9)

where ps ∈ Rds , and pt ∈ Rdt , notice that they still are located in their language-specific vector space.

3.4.3. Semantic Similarity

To measure the semantic similarity of the bilingual phrase, first we transform the learned phrases
representations ps and pt into common dsim-dimensional semantic space by a non-linear projection
formulated in Equations (10) and (11).

ss = f (W(5)ps + bs ) (10)

st = f (W(6)pt + bs ) (11)

where W(5)
∈ Rdsim×ds , W(6)

∈ Rdsim×dt and bs
∈ Rdsim are the parameters. We will also use the same

bias term as shown in Equation (6).
Then, to get the final semantic similarity of bilingual phrases, we calculate the cosine similarity of

ps and pt by Equation (12) (Figure 2c).

s( f , e) =
sTs

||ss|| ||st||
(12)

where f and e indicate the source and target phrase, and || · || denotes the L2-norm of a vector.
According to the definition of semantic similarity, the semantic error will be introduced to measure

the semantic equivalence of source and target phrase. Given a positive bilingual phrase pair ( f , e) with
its negative samples ( f−, e) and ( f , e−), we use the following error-based max-margin function, which
is formulated in Equation (13).

Esim( f , e) = max(0, 1 + s( f , e−) − s( f , e) ) + max(0, 1 + s( f−, e) − s( f , e) ) (13)

Intuitively, minimizing this error will maximize the similarity of the positive instance and minimize
the similarity of the negative pairs. For each training instance ( f , e), the joint objective of BattRAE is
defined by Equation (14):

J(θ) = αErec( f , e) + βEsim( f , e) + R(θ) (14)

where Erec( f , e) = Erec( f ) + Erec(e), α+ β = 1, and R(θ) is regularization term.
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4. Experiment

4.1. Setup

• Facts dataset: Through the experiments, we will use the facts obtained from ConceptNet version
5.6.0 (https://github.com/commonsense/conceptnet5/wiki/Downloads).

• Dictionary: We use the Chinese–Uyghur bilingual dictionary, which contains 328,000 unique
Chinese terms and 531,000 unique Uyghur terms, to translate entity.

• Word embeddings dataset: We use the toolkit Word2Vec (https://github.com/tmikolov/word2vec)
to pretrain the word embeddings, which contains 11,500,000 Chinese sentences provided by Sogou
(http://www.sogou.com/labs/resource/list_yuliao.php) to train the Chinese word embeddings
and 1,500,000 Uyghur sentences crawled from the Tianshan website (http://uy.ts.cn/) to train the
Uyghur word embeddings.

• Semantic similarity model training dataset: To obtain high-quality bilingual phrases to train
the semantic scoring model, we use the Moses decoder (http://www.statmt.org/moses/) to force
decoding [28] on CWMT2013 Chinese–Uyghur parallel corpus (https://www.cis.um.edu.mo/

cwmt2014/en/cfp.html) which contains 109,000 parallel sentences, and the extra collected 1,380,000
bilingual phrases. To generate negative samples for each training phrase, we used the following
two strategies introduced by Ondrej [29]: (1) taking a completely different phrase; and (2) choosing
a random word from the phrase and replacing it with its farthest word by calculating the cosine
distance all over the vocabulary.

• Semantic similarity model hyperparameters: we set ds = ds = da = dsim = 50, α = 0.125 (so that
β = 0.875), use L-BFGS algorithm (libLBFGS (http://www.chokkan.org/software/liblbfgs/)) to
optimize the objective function.

4.2. Experiment

4.2.1. Entity Filtering and Translation Performance

The filtering and dictionary-based entity-translation results are shown in Table 2. We obtain
369,687 Chinese facts after filtering, which contains 67,400 unique start entities and 85,800 unique
end entities with 24 relations. Through dictionary-based entity translation, we translate the 99,600
Chinese facts to Uyghur and get 2,900,000 translated Uyghur facts with 24,800 head and 27,900 tail
entities with 23 relations. It can be seen that the translation generated from many incorrect facts leads
to entity-translation ambiguity. By using the dictionary-based entity back-translation, we can filter out
the incorrect or semantically unrelated entities on the source and translated side. The back-translation
result shows that we effectively remove 95% of the incorrectly translated facts while losing only 36.4%
of facts on the source side.

Table 2. Experimental results of dictionary-based entity translation.

Method
Source (Chinese) Translated (Uyghur) Relation

CountHead Tail Fact Head Tail Fact

Original 67,464 85,832 369,687 0 24
Translation 12,708 15,373 99,649 24,863 27,921 2,944,802 23

Back-translation 7336 8089 63,406 8835 9873 143,926 17

4.2.2. Bilingual Semantic Similarity Scoring Model Analysis

1. Semantic Accuracy

We obtain 143,900 translated Uyghur facts for 63,400 Chinese facts in the dictionary-based
translation step. By using the hand-crafted rule template, we can generate the 143,900 Uyghur–Chinese

https://github.com/commonsense/conceptnet5/wiki/Downloads
https://github.com/tmikolov/word2vec
http://www.sogou.com/labs/resource/list_yuliao.php
http://uy.ts.cn/
http://www.statmt.org/moses/
https://www.cis.um.edu.mo/cwmt2014/en/cfp.html
https://www.cis.um.edu.mo/cwmt2014/en/cfp.html
http://www.chokkan.org/software/liblbfgs/
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parallel sentences and score the semantic similarity of each sentence by trained bilingual semantic
similarity scoring model.

There is no publicly available test set for Uyghur–Chinese bilingual phrase similarity measurement,
so we randomly select 2000 scored bilingual sentences, using a combination of automatic test and
manual check, to get the accuracy of the semantic scoring model.

Automatic Test:

We also focus on whether our model can recognize correct bilingual phrases; in other words, we
assign higher semantic similarity scores for the correct bilingual phrases. We use semantic accuracy
metrics for this evaluation, which is mentioned in [25]. Formally, given a pair of correct bilingual
phrases ( f , e ) and its incorrect counterpart ( f , e−) (replaced with a non-translation target phrase) or
( f−, e) (replaced with a non-translation source phrase), the semantic accuracy (SAcc) of the bilingual
phrase is defined as follows: (we take ( f , e−) for example)

SAcc =
{

True i f s( f , e) > s( f , e−)
False otherwise

(15)

Manual Check:

We use crowdsourcing to check semantic scores, detailed as follows:

• As we use cosine similarity as a scoring metric, whose values are distributed from −1 to 1, we set
zero as the semantic similarity threshold.

• Workers check the Uyghur facts with labels: (1) “True, makes sense in every context”, (2): “False,
does not make sense, or does not make sense in some contexts”.

• Each Uyghur fact is judged by three workers.
• We aggregate the collected judgments by taking the median.

Finally, we kept the Uyghur facts that have been through the automatic and manual test verification.
Performance of the scoring model is shown in Figure 3. It can be observed that the model can achieve
94.75% accuracy for our task, which works well for many relationship templates, except for SymbolOf
and Synonym relationship.
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2. Error Analysis

After analyzing the semantic scoring result, we find two types of errors, as follows:

• Unknown Word Error: Although we have pretrained word embeddings on a fairly large corpus,
we also find that being an agglutinative language, Uyghur still has some words that could not
be included. They affect the accuracy of the model due to random initialization. For example,
the words 	

àñ

J��AJ
��(politician) and �

I
	
JK..

YK 	QK..
QK�(president) could not get a correct embedding when

training and testing, as the sentence which contains this word gets a low score.
• Template Error: We define a single template for each relationship type, which works well for

most facts. However, for some verbs, the dictionary-translated entities format does not match
with the hand-crafted template, so it generates ungrammatical sentences, especially for Uyghur.
For example, Table 3 shows the generated sentences of grammatical errors for the Causes relation.
Because we get translations of Uyghur verbs with the incorrect tense according to the dictionary,
the template generates ungrammatical sentences and gets incorrect score while testing.

Table 3. Failed Uyghur sentences generation example for Causes relation.

Method Chinese Uyghur (Incorrect) Uyghur (correct)

Sentences
难过会忧郁 �

ðYJËñK.
�

�
�

ñË
�

ñ
	
ªK
A

�
¯ A�ËñK.

�
�AÖÏ

�
ð 	P

�
ñK. úÎ

�
¿

�
ñ»

�
ðYKP

�
ñ

	
ªK
A

�
¯ A�Ë

�
ð 	P

�
ñK. úÎ

�
¿

�
ñ»

愚弄会翻脸
�
ðYJËñK. ¼ éÓ

�
ðP

�
ñ


K 	P

�
ñK
 A�ËñK.

�
�AÖ

�
ßBP

�
ðYËñ»

�
ðYKP

�
ñ


K 	P

�
ñK
 A�

�
�BP

�
ðYËñ»

4.2.3. Construct Uyghur CKB

To get the final projected Uyghur facts, we need to filter the bilingual phrases according to the
semantic similarity score. We use two filtering strategies, as follows:

• For Chinese facts which only have a single candidate projected Uyghur fact, we will keep this fact
if the semantic score is greater than zero.

• For Chinese facts which have multiple candidate Uyghur facts, we will sort the scores and keep
the highest one.

The results of filtered Uyghur facts are shown in Figure 4. After all the above steps, we can filter
out the projected 55,872 Chinese facts into Uyghur successfully and get the 67,375 facts.
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5. Conclusions and Future Work

We propose a method to project knowledge stored in Chinese into the Uyghur language. We focus
on CSK that is required to understand human communications. The main challenge of this work is
entity ambiguity and inner relationship ambiguity. To get the entity projection, our method uses a
Chinese–Uyghur dictionary for the entity translation and employs back-translation for entity ambiguity.
To resolve the inner relationship ambiguity, we make relationship templates to convert facts to bilingual
phrases and use a semantic similarity scoring model to filter facts. Experiments show that our method
works well for our projection task. Finally, we projected 55,872 Chinese facts into Uyghur and got 67,375
Uyghur facts successfully. There are still more than 300,000 Chinese facts that cannot be translated
correctly by the dictionary and we are planning to project them into Uyghur by using the existing
Chinese–Uyghur MT system combined with the proposed semantic similarity scoring model.
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