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Abstract: In order to realize the non-destructive intelligent identification of weld surface defects,
an intelligent recognition method based on deep learning is proposed, which is mainly formed
by convolutional neural network (CNN) and forest random. First, the high-level features are
automatically learned through the CNN. Random forest is trained with extracted high-level features
to predict the classification results. Secondly, the weld surface defects images are collected and
preprocessed by image enhancement and threshold segmentation. A database of weld surface defects
is established using pre-processed images. Finally, comparative experiments are performed on the
weld surface defects database. The results show that the accuracy of the method combined with CNN
and random forest can reach 0.9875, and it also demonstrates the method is effective and practical.

Keywords: weld surface defects; feature extraction; deep learning; convolutional neural network;
random forest; image classification

1. Introduction

As a traditional processing method, the welding process is widely used in aerospace, machine
design, energy generation, shipbuilding, petrochemical engineering, and other industries. Welding is a
complicated process, which is often affected by the welding process and environmental uncertainties,
and it is easy to produce welding defects such as overlap, pore, spatter, slag inclusion, and incomplete
fusion. Therefore, it is necessary to conduct research on the detection and identification of weld
surface defects. Common non-destructive testing methods for welds include ultrasonic testing [1], ray
detection [2], and eddy current testing [3]. However, these methods have some limitations: (1) ray
detection can easily result in side-effects on the human body; (2) ultrasonic testing is susceptible to the
location, orientation, and shape of the defect; (3) eddy current testing is only applicable to conductive
metal materials or non-metallic materials that can induce eddy currents.

During the last decade, computer vision became an important field of artificial intelligence, which
has been widely used in weld defect detection. It generally includes four steps: image acquisition,
image preprocessing, feature extraction, and classification [4]. Feature extraction is one of the most
critical technologies. Many studies have been carried out on feature extraction and classification
of weld defects. Sun et al. [5] isolated the defect features of thin-walled workpiece based on the
background subtraction of Gaussian mixture model and constructed a decision tree to discern weld
defects. Valavanis et al. [6] extracted texture and geometric features of different weld defects and used
support vector machine (SVM), k-nearest neighbor (KNN), and artificial neural network (ANN) to
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complete the classification. Yin et al. [7] proposed a new method to automatically extract four geometric
features from Lissajous figures and use machine learning-based classifiers to identify defects. Boaretto
et al. [8] obtained defect features by the exposure technique of double wall double image (DWDI)
and used multi-layer perception (MLP) to continuously classify defect or no-defect. Zapata et al. [9]
selected the shape and direction of weld defects as classification features, and proposed an adaptive
network based fuzzy inference system to detect welding defects. Zahran et al. [10] extracted feature
from the power density spectra (PDS) of the weld segmented areas and used ANN to match features in
order to recognize different defects. In References [11,12], a method based on principal component
analysis (PCA) and SVM was proposed. It can effectively transform weld defects images to principal
component space through PCA and complete the classification using SVM. However, the above feature
extraction and classification methods only utilize the texture or geometric features of the weld defects
images, and it is not ideal to form suitable features for classification.

The history of deep learning originates from neuroscience experiments. As early as 1943,
neurologist McCulloch and mathematician Pitts constructed the first artificial neuron model according
to the structure and working principle of biological neurons, which was called the “MCP model”. Since
then, many researchers have proposed various neural network models. However, due to the problem
of gradient disappearance in the training method proposed at that time, it has been difficult to use this
powerful model. This problem was not solved until the emergence of deep learning methods [13] in
2006. Krizhevshy et al. [14] used AlexNet to make a breakthrough in ImageNet image classification
competition, deep learning showed unprecedented development prospects. After that, researchers
have proposed ZFNet, VGGNet, GoogLeNet, and ResNet models for large-scale image classification.
Compared with the traditional feature extraction methods, these methods do not need to implement
any features of the pre-selected image. It can learn the high-level features of the target from the sample
data by supervised learning [15].

Recently, deep learning methods have been widely applied in weld defects detection.
Yang et al. [16] proposed a modified convolutional neural network (CNN) to implement classification
in X-ray weld images. Hou et al. [17] construct a deep convolutional neural network (DCNN) to
extracted high-level features from X-ray images. Khumaidi et al. [18] introduced the idea of Gaussian
kernel into deep learning. The purpose is to ensure that the main information of the image is extracted
while minimizing the occurrence of noise and interference and improving the classification accuracy.
In Reference [19], Liu Bin et al. utilized the VGG16 based fully CNN to inspect welding defect images
using the idea of transfer learning. High precision classification is achieved with a relatively small data
set. In Reference [20], Hou et al. proposed a deep neural network based on sparse automatic encoder.
It learns the feature information of the image in an unsupervised way, and then uses the softmax
classifier with supervised learning to identify the defects such as pore and undercut. In Reference [21],
Du et al. adopted feature pyramid network (FPN) and RoIAlign to realize defect detection of X-ray
images of automobile aluminum casting parts. The above methods usually need to construct deep
CNN architecture and utilize softmax to handle classification tasks. However, in the case of fewer
training samples, there is a poor performance for softmax that the features are confusing.

In order to solve the problems mentioned, an intelligent recognition method based on deep
learning is proposed. What is more, random forest is selected as the final classification algorithm
because random forest has good fault-tolerant ability and low generalization errors on the issue
of dealing with classification. The overview of the proposed method is shown in Figure 1. It is
mainly formed by two modules: CNN and forest random. The CNN architecture is constructed to
automatically extract high-level features of weld surface defects images. Random forest is trained by
using the high-level features to accomplish the classification task. In addition, the welding surface
defects images including normal, overlap, spatter, and pore are preprocessed by image enhancement
and threshold segmentation. A database of weld surface defects is established using pre-processed
images and is taken as input data. Finally, comparative experiments are carried out to verify the
effective and practical of proposed method.
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Figure 1. The overview of proposed method.

The structure of this paper is organized as follows. The Section 2 gives specific architecture of
the CNN module. In Section 3, the classification module applying random forests is described in
detail. Weld defect image pre-processing and experimentation are given in Section 4. The Section 5
summarizes the article.

2. CNN-Based Feature Extraction

2.1. Background

The basic idea of deep learning is to construct a deep nonlinear network structure. It initializes
the weights through unsupervised pre-training methods, and then fine-tunes through supervised
training. The problem of gradient disappearance is effectively suppressed with ReLU activation
function. Deep learning can gradually transform the initial low-level feature into high-level features
through multi-layer processing, which is beneficial to complete complex tasks such as image [22],
speech [23], and language [24].

At present, typical deep learning architectures include CNN [25,26], deep belief networks
(DBNs) [27], sparse automatic coding (SAEs) [28], and deep Boltzmann machines (RBMs) [29].
In view of the excellent feature extraction performance of convolution neural network in image
classification [25,26] and object detection [30,31], CNN is applied to automatically extract high-level
features of weld surface defects images in Section 2.2.

2.2. Feature Extraction Module

The task of CNN is to automatically extract high-level features of the weld surface defects images.
Inspired by LeNet-5 [32], a deep CNN architecture is constructed by overlaying multiple convolutional
layers. A typical convolutional layer usually contains convolution, nonlinear function activation and
pooling operations. Figure 2 shows the specific architecture of the CNN. The CNN mainly is made up
of three convolutional layers, two pooling layers, one fully connected layer, and one softmax layer.
The input of the CNN contains training and validation images with 80 × 120 (height ×width).
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Figure 2. The architecture of convolutional neural network (CNN).

In our paper, the convolutional layers are named C1, C2, and C3, respectively, which consists
of 4, 8, 16 filters. The size of corresponding filters is 5 × 5, 3 × 3, and 2 × 2. Let xl denotes the out of
convolutional layers, and it can be expressed as:

xl = f (bl +

J∑
j

I∑
i

wl
i, jx

l−1
i, j ) (1)

f (x) = ReLU(x) =
{

x x > 0
0 x ≤ 0

(2)

where (J, I) denotes the size of the filters, J is the height of the filters, and I is the width of the filters. bl

denotes the bias of the convolutional layer. xl−1 denotes the output of the previous convolutional layer.
wl denotes the weight of convolutional layer. f (·) is the nonlinear activation function. ReLU activation
function is selected and is shown as Equation (2).

Pooling operation [33] is another important component. The pooling layers are named S1 and
S2. Two max-pooling layers with stride 2 are used to combine a 2 × 2 patch of the convolutional
layers C2 and C3. Each pooling layer corresponds to the previous convolutional layer. The neurons
in the pooling layer perform aggregation statistics on specific regions in the convolution layer to
achieve the purpose of down-sampling for the input feature map. Common pooling operations include
average pooling, maximum pooling, and random pooling. The maximum pooling used in this paper is
expressed as follows:

a j = max
N×N

(
aN×N

i u(n, n)
)

(3)

where u(n, n) is the window function, which is applied to calculate the maximum value of a j in
the neighborhood.

After a series of convolution, activation, and pooling, the fully connected layer splices the feature
that is extracted from convolutional layer C3 and max-pooling layer S2 into a 128-dimensional vector.
The output of the fully connected layer can be obtained by:

vm = f
(
wmxm−1 + bm

)
(4)

where bm denotes the bias of the fully connected layer. wm denotes the weights of the fully connected
layer. xm−1 denotes the output of the previous max-pooling layer. f (·) is the ReLU activation function.
The CNN is trained by the cross-entropy function. The details explain of CNN are given in Table 1.
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Table 1. The details of CNN architecture.

Layer C1 C2 S1 C3 S2

Details 4 filters 5 × 5,
ReLU, stride 1 × 1

8 filters 3 × 3,
ReLU, stride 1 × 1

max pooling,
stride 2 × 2

16 filters 2 × 2,
ReLU, stride 1 × 1

max pooling,
stride 2 × 2

3. Classification with Random Forest

3.1. Random Forest Algorithm

Random forest [34] is a machine learning algorithm proposed by Leo breiman in 2001. It is an
integrated algorithm based on decision tree. The main idea is to use multiple weak classifiers to form a
strong classifier by voting. For the classification task, the random forest algorithm mainly includes
three steps: bootstrap sampling, constructing decision tree, and voting.

The bootstrap sampling refers to a uniform sampling method with a return. Self-sampling is
useful when the data set is small. It can generate different training sets from the initial data set, which
is beneficial to improve the image recognition ability. Decision tree construction is usually one of three
methods: iterative dichotomiser 3 (ID3), C4.5, classification and regression tree (CART). This paper
uses the CART algorithm to generate decision trees. CART assumes that the decision tree is a binary
tree, and the internal node features are divided into left and right branches according to the threshold.
Generally, the feature with the smallest Gini index in the subset and its corresponding threshold are
selected as the optimal feature and the optimal segmentation point. The data set is allocated to the left
branch node and the right branch node. The feature tree with the smallest Gini index splits the binary
tree to form a classification tree to form a random forest. The Gini index of feature M is defined as
follows:

Gini
(
D j, M

)
=

∣∣∣∣D1
j

∣∣∣∣∣∣∣D j
∣∣∣ Gini

(
D1

j

)
+

∣∣∣∣D2
j

∣∣∣∣∣∣∣D j
∣∣∣ Gini

(
D2

j

)
(5)

where Gini
(
D j

)
= 1 −

N∑
i=1

(pi)
2, D j denotes to the jth training set of the sample, and pi denotes the

proportion of the ith sample in the training set.
Based on the results of each classification tree, a voting mechanism is used to determine the final

classification result. The classification function is expressed as follows:

H(x) = argmax
∑
i=1

I(hi(x)) (6)

where I(·) denotes the indicative function, ranging from 0 to 1. H(x) denotes the combined classification
model. hi denotes the single decision tree classification model.

3.2. Classification Module

Training random forests with 128-dimensional vectors to achieve classification results. The
primary task of the random forest algorithm is to create decision trees. A decision tree consists of a
terminal node, several internal nodes, and several leaf nodes. First, T sample sets Dl (l = 1, 2, 3, ..., T)
that every sample set contains m training samples are sampled by using the bootstrap from deep feature
vector vm, and will be used as the terminal root of the decision tree. Terminal nodes are designed to
ensure that the training sample sets for each decision tree are different. Secondly, in order to avoid
over-fitting of the classification results, it is necessary to randomly choose features in the process of
establishing internal nodes in a single decision tree. f features are elected from h features without
replacement. The rule for feature selection is generally followed as f =

√
h, here ( f ≤ h). Next, the

feature attribute with the smallest Gini index in the feature subset
{
f
}

is calculated based on Equation
(5). The attribute and the corresponding threshold are taken as the optimal partition attribute and the
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optimal split point at the non-special node. The decision tree stops splitting until the Gini index of
the feature in the sample set is less than a predetermined threshold. Repeat the above steps until T
decision trees are generated.

Another task of the random forest is to perform predictions using the created random forest.
The classification model consisting of T decision trees uses the voting method based on Equation (6)
to calculate the largest number of votes among decision trees, and the decision tree with the largest
number of votes is selected the final classification result.

In a nutshell, the classification process with random forest is summarized in Algorithm 1 in details.

Algorithm 1 Random Forest for Classification

1: Input:
2: Initialization
3: procedure Random Forest
4: For t = 1 to T do
5: Draw n bootstrap sample Dl from input data
6: Build a decision tree T on Dl by recursively repeating the following steps for each terminal root
7: Select f features without replacement from the h features
8: Calculate the smallest Gini index of feature attribute among the feature subset

{
f
}

based on Equation (5)
9: end procedure
10: Output: the ensemble of trees {T}T1
11: Classification:
12: H(x) = argmax

∑
i=1

I(hi(x))

4. Experimental Results.

4.1. Settings and Experimental Environment

In our experiment, the welding equipment used to produce welds images includes
ABB-IRB2600industrial robot, Kemppi-SYN welding machines, kemppi-DT400 wire feeder and
welding torch. The welding parameters are set as follows: wire feed rate is 4 m/min, welding speed is
50 cm/min, weld shield gas is CO2, gas flow rate is 20 L/min, the adjustment range of the arc voltage
is 16–25 V. All weld images are produced with same equipment and constant parameters. 400 weld
surface defects images are collected which include normal, overlap, spatter and pore four categories.
Each type of property contained 100 weld defects with different appearances and different postures
with a resolution of 120 × 80. Image preprocessing is given in Section 4.2. A database is established
using pre-processed weld surface defects images.

In order to verify the effectiveness and practicality of the proposed method for the weld surface
defects identification, a comparison experiment with other methods is carried out, which is given in
Sections 4.3 and 4.4. The experimental environment is a 64-bit Windows 10 system with i5 CPU, 8
GB memory, and 2.30 GHz basic frequency. The software programming environment is python. The
implementation is based on the framework in Keras, and the backend of Keras are TensorFlow and
Theano. The weld surface defects images used for model training were randomly selected for each
category of 80 images, and the remaining 80 were used for model validation.

4.2. Image Preprocessing

The actual welding process is often affected by a complex welding environment, weld parameters,
and human factors. The acquired images of weld surface defects usually contain a mass of redundant
information. In order to effectively extract the weld defect feature information for the CNN, the images
need to be pre-processed.

Figure 3 shows partially examples of pre-processed results for weld surface defects images.
All weld surface defects images that are collected in Section 4.1 are preprocessed through filtering,
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enhancement, and segmentation. First, the median filter is used to dispose the collected images of
weld surface to eliminate the noise of the original images. Secondly, in order to enhance the gradation
value of the weld area, the images are enhanced by gradation processing. Next, the OTSU algorithm is
chosen to isolate the weld defect area from the other elements in the original images, which segmented
an appropriate area of the weld surface defects to facilitate subsequent feature extraction.

Figure 3. Partial examples of pre-processed results for weld surface defects images including normal,
overlap, spatter, and pore. All weld surface defects images have a resolution of 120 × 80.

4.3. Evaluation of Feature Extraction Module

In the feature extraction module, stochastic gradient descent (SGD) is selected as optimizer of the
CNN. The learning rate is set as an adaptive value, which it trains the model with a predetermined
value (0.001) and decays with a constant value 1 × 10−8. The value of momentum is 0.9. The CNN
is trained using the pre-processed weld surface defects database. The training process is shown in
Figure 4. Figure 4a shows the trend for accuracy of the training and validation accuracy as the number
of iterations increases. After fifteen epochs, the CNN can achieve a maximum training accuracy of
94.69. Figure 4b gives the trend for the objective function loss value of the training and validation as
the number of iterations increases. The loss value of objective function gradually becomes smoother to
prove that the CNN is convergent.

Figure 4. (a) The accuracy of the training and validation. (b) The objective function loss value of the
training and validation.
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In Reference [6], texture and geometrical features need to be artificially described. In
References [11,12], all images need to be vectorized in advance, and the covariance matrix dimension
after the vector is too large, which affects the feature extraction speed. In our feature extraction
module, the CNN automatically learns high-level features from the images. In order to evaluate the
effectiveness of our feature extraction module, we compared the feature extraction method in our
paper with traditional image process methods. As is given in Figure 5, our method extracted the
high-level features, which can better represent the semantic information of the image and facilitate
the classification algorithm to identify. However, the texture or geometric features segmented by the
traditional method are not obvious enough, which can cause feature confusion and affect the accuracy
of classification. Furthermore, the feature extraction module in our paper can avoid supererogatory
human consumption and simplify process.

Figure 5. Comparison of feature extraction module with traditional method.

4.4. Comparison to Other Methods

In order to evaluate the effectiveness of the classification module, a comparative experiment is
carried out. In this section, two machine learning-based classifiers are applied to compare with our
classification module for defects recognition and they are SVM and softmax. The high-level features
that are extracted in Section 2.2 are used as training data. Then, the train random forest, SVM and
softmax are trained with the input of extracted high-level features. The classification accuracy results
in terms of the high-level features can be obtained as follows and are listed in Table 2.

Table 2. Accuracy results of different classification methods.

Method Accuracy

CNN + Random Forest 0.9875
CNN + SVM 0.95

CNN + Softmax 0.9469

It can be seen from Table 2 that the accuracy of the method combined with CNN and random
forest can reach 0.9875. Moreover, it shows a better performance than other classifiers. It indicates
that the random forest has better generalization ability and robustness. Simultaneously, it also can
demonstrate the method is effective and practical. In addition, the SVM and softmax classifiers show
high classification accuracies, which can reach to 0.95 and 0.9469, respectively. It can testify that the
CNN for feature extraction is effective.
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5. Conclusions

This paper proposes a method based on deep learning to identify weld defects. The high-level
feature of the weld surface defects images are extracted by the CNN, which fully exploits the ability
of the CNN to extract image features and simplifies the feature extraction process. The classification
identification is realized by random forest classification algorithm with stronger generalization ability
and robustness. Experiments were carried out based on the weld surface defects database. The results
show that the maximum accuracy of the proposed method is 0.9875, which can meet the requirements
of classification of weld surface defects in actual production. The effectiveness and practicability of the
proposed method are verified.

The image feature extraction and recognition process of weld surface defects achieved in this
paper are all carried out offline, which is difficult to meet the real-time application in actual industrial
production. Secondly, there are intermittent steps in the method proposed in this paper, which affects
the recognition efficiency to some extent. Therefore, defect identification and optimized integration of
algorithms for real-time extracted weld surface images will be the focus of the next phase.
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