
applied  
sciences

Article

Gait Classification Using Mahalanobis–Taguchi
System for Health Monitoring Systems Following
Anterior Cruciate Ligament Reconstruction

Hamzah Sakeran 1,2 , Noor Azuan Abu Osman 2,3,* and Mohd Shukry Abdul Majid 1,*
1 School of Mechatronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus,

Arau 02600, Perlis, Malaysia
2 Centre for Applied Biomechanics, Department of Biomedical Engineering, Faculty of Engineering,

University of Malaya, Kuala Lumpur 50603, Malaysia
3 The Chancellery, University of Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
* Correspondence: azuan@um.edu.my (N.A.A.O.); shukry@unimap.edu.my (M.S.A.M.);

Tel.: +60-19-628785 (N.A.A.O.); +60-12-736-7500 (M.S.A.M.)

Received: 22 July 2019; Accepted: 8 August 2019; Published: 12 August 2019
����������
�������

Featured Application: This novel method can be implemented by orthopaedic doctors or
physiotherapists to provide a clinical assessment of their Anterior Cruciate Ligament Reconstruction
patients with more objective, efficient and effective way.

Abstract: In this paper, a gait patterns classification system is proposed, which is based on
Mahalanobis–Taguchi System (MTS). The classification of gait patterns is necessary in order to
ascertain the rehab outcome among anterior cruciate ligament reconstruction (ACLR) patients.
(1) Background: One of the most critical discussion about when ACLR patients should return to work
(RTW). The objective was to use Mahalanobis distance (MD) to classify between the gait patterns of
the control and ACLR groups, while the Taguchi Method (TM) was employed to choose the useful
features. Moreover, MD was also utilised to ascertain whether the ACLR group approaching RTW.
The combination of these two methods is called as Mahalanobis-Taguchi System (MTS). (2) Methods:
This study compared the gait of 15 control subjects to a group of 10 subjects with laboratory. Later,
the data were analysed using MTS. The analysis was based on 11 spatiotemporal parameters.
(3) Results: The results showed that gait deviations can be identified successfully, while the ACLR
can be classified with higher precision by MTS. The MDs of the healthy group ranged from 0.560 to
1.180, while the MDs of the ACLR group ranged from 2.308 to 1509.811. Out of the 11 spatiotemporal
parameters analysed, only eight parameters were considered as useful features. (4) Conclusions:
These results indicate that MTS can effectively detect the ACLR recovery progress with reduced
number of useful features. MTS enabled doctors or physiotherapists to provide a clinical assessment
of their patients with more objective way.

Keywords: Mahalanobis–Taguchi system; ACLR; return to work; spatiotemporal; gait classification

1. Introduction

The most frequently executed orthopaedic surgery is anterior cruciate ligament reconstruction
(ACLR) [1,2]. Modern ACLR techniques allow steady ligament reconstruction in nearly all cases;
however, the outcome of ACLR rehabilitation is not uniformly excellent [3]. At present, one of the most
significant discussions regarding ACLR is the actual degree of recovery. According to Groot, Jonkers,
Kievit, Kuijer, and Hoozemans, (2017) the purpose of ACLR and rehabilitation is to allow return to
work. Recent studies provide comprehensive information about the predictive factors for return to
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work involving different activities [4–8]. The patient’s ability to return to physical activity following
ACLR is dependent on various factors such as the patient’s characteristics (e.g., gender or age) [9–11],
results of the operation (e.g., damage quality or joint flexibility) [6,11], knee function prior to the ACLR
(e.g., muscle power or flexibility) [5,12,13], exercise level before ACLR (e.g., physical activity or level of
Tegner activity) [14,15], and emotional aspects (e.g., self-confidence or inspiration) [16,17].

In our review, we found no significant exiting research that focussed on patients’ return to work
(RTW) after ACLR using an analytical strategy. Taguchi [18] demonstrated that the Mahalanobis
distance (MD) can be used to distinguish the pattern of a specific group, which is similar to the
procedure used by healthcare providers to determine if a person has a specific sort of disorder [19–21].
The MD is a space measurement based on correlations between variables (attributes) where distinct
patterns can be realised and analysed in regard to a reference evaluation. Mahalanobis Distance
(MD) is a statistical tool, which is widely used to differentiate pattern of a certain group from other
groups [19,21–23].

This study aims to method of ACLR analysis that can predict RTW according to spatiotemporal data.
Our proposed method uses the MD to differentiate the routine of ACLR; based on signal-to-noise ratios
(S/N ratios) and orthogonal arrays (OAs), useful features can be identified [19,21,22,24]. Associated
studies, such as MD, are explained in Section 2. In Section 3, the suggested strategy presented and
a case study utilising the suggested strategy demonstrated in Section 4. Some discussion is provided
in Sections 5 and 6, followed by our conclusions in Section 7.

2. Related Study

2.1. ACLR

Anterior cruciate ligament (ACL) injury is one of the most frequent injuries in sport traumatology
and ligament instability [25]. In the United States, approximately 90% of accidental ACL injuries are
handled by ligament reconstruction clinical procedures. Even though the medium- and long-term
results are not as good as anticipated by the orthopaedic community, it is thought to be the best
option available [26,27]. Almost people with anterior cruciate ligament damage will experience
pain, functional constraints, and radiographic signs of osteoarthritis from the wounded knee within
12–20 years of the injury [28–30].

In a group evaluation, Paterno et al. reported that the incidence of knee sprains in the first year
after ACL injury is 15 times larger than it was before [31]. They also indicate that after ACL injury and
reconstruction, the prevalence of accidental injuries at the contralateral knee is higher than expected
for uninjured recreational sportspersons [31]. The fact that defects are not restored by the rehabilitation
process can be explained by the high prevalence of recurring sprains after ACLR [32,33]. Biomechanical
studies have demonstrated that after two years of rehabilitation injured people tend to adapt their
lower limb motion routine for many tasks [26,27]. However, we were unable to find a consensus in the
literature regarding the time required before sports activities are permitted. A methodical review by
Barber-Westin and Noyes found that return to sports should be based on practice parameters such as
ligament laxity on examination, muscle healing compared to the contralateral limb, and a few particular
operational assessments [34]. Nevertheless, these conditions are subjective and do not include the
identification of possible dangers such as potential comorbidities or re-injuries; therefore, methods that
quantify residual deficits are likely to be preferable [34].

Even after ACLR and recovery, changes in gait patterns can be recognised [35]. It has been proven
that ACLR subjects have an inclination to pose altered knee angles during gait, even 12 months after
the operation [36]. With no changes in the sagittal plane, the major altered variables were connected to
increased adduction and rotation of the knee. These factors alter the angle of the frontal and transverse
planes of the knee during gait and have been related to premature knee osteoarthritis [37]. For clinical
training, the assessment of complex motions is frequently limited by the large expense of instruments.
However, spatiotemporal gait parameters are gait performance indicators that require relatively
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low-cost equipment [2]. Therefore, we aim to develop a predictive technique for ACLR diagnosis based
on the spatiotemporal parameters of ACLR groups and to classify the status of normality [19,22,24,38].
The recommended strategy utilises the MD to identify significant features and to identify patterns
related to ACLR that can be used for the return to work assessments [23,39].

2.2. Mahalanobis–Taguchi System (MTS)

2.2.1. Four Steps in MTS

The data were analysed using the Mahalanobis–Taguchi System (MTS) [40], a combinations of
MD and Taguchi strategies. MD is a generalised distance that is useful for identifying similarities
between healthy and unhealthy sample sets and a scalar value is used to represent a multivariate
system [39]. Taguchi strategies are statistical approaches used to enhance the engineered quality and
to make the system more powerful [24,41,42]. There are four steps in a MTS [40]:

Step 0: Identification of assessment criteria and collection of patients’ spatiotemporal data

Step I: Mahalanobis space (MS) creation

Data from the healthy subjects are collected to create the standard data set; their MDs constitute
a reference space that is called MS. Their MDs are approximately equal to one. In this study, a feature
data set consisting of spatiotemporal data from healthy subjects was used to create the MS. The healthy
data set is denoted as H; hi j is the ith observation on the jth feature, where i = 1, 2, . . . , m, and
j = 1, 2, . . . , n. Then, H j and S j are the mean and standard deviation of the jth feature

(
H j

)
, respectively,

where j = 1, 2, . . . , n. Each individual feature of each data vector (H j) is normalised by the mean (H j)
and the standard deviation (S j). Hence, the normalised values are as follows:

zi j =
hi j −H j

S j
, i = 1, 2, . . . , m, j = 1, 2, . . . , n (1)

where

H j =
1
m

m∑
i=1

hi j (2)

and

S j =

√∑m
i=1

(
hi j −H j

)2

m− 1
(3)

The MDs of the healthy dataset are calculated with the following formula:

MDi =
1
n

ziC−1zT
i (4)

where z = [zi1, zi2 . . . , zin], zT
i is the transpose vector and ziand C−1 is the inverse of the covariance

coefficient matrix C. We compute C as:

C =
1

m− 1

m∑
i=1

zT
i zi (5)

Multicollinearity (strong correlations among features) is one issue confronted by MD.
Multicollinearities will have a problematic impact within a singular covariance coefficient matrix,
resulting in an imprecise inverse of the covariance coefficient matrix, and subsequently an inaccurate
MD [43]. MDA may be utilised to address this issue; MDA is MD corresponding to the adjoint matrix
of the covariance coefficient matrix,

MDAI =
1
n

ziCadjzT
i (6)
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where Cadj is the adjoint matrix of the covariance coefficient matrix C. Since C−1 = Cadj/|C|,
the relationship between MD and MDA is given by,

MDi =
1
|C|

MDAi (7)

Step II: Validation of MS

Trials of ACLR subjects are selected [19]. The abnormal data set is symbolised as P; pi j is the ith
observation of the jth feature, where i = 1, 2, . . . , m, and j = 1, 2, . . . , n. It is normalised by applying
the mean and standard deviation of the healthy data set while the MDs are estimated using the feature
information and the data’s coefficient matrix. MDs corresponding to ACLRs will be outside of the MS
if the MS is appropriately constructed. In other words, the MDs associated with abnormal conditions
will have higher values [20,21].

Step III: Identification of useful features

By utilising the OAs and S/N ratios, useful features are selected. In MTS, OAs are used to recognise
significant features by decreasing the number feature combinations established initially. The number
of features determines the true number of columns in the OA. Two levels of factors are used: Level-1
means that the feature is included, while Level-2 means that the feature is not included. To measure
the accuracy of the MS predictions, S/N ratios are used; these are calculated using only the ACLR
conditions. The equation for determining the S/N ratio (ηi) corresponding to the ith run of the OA is 1

ηi = −10 log

1
t

t∑
j=1

1
MD j

 (8)

where it is the number of ACLR conditions and MD j is the MD of the jth ACLR condition. By evaluating
the ‘gain’ in the S/N ratios, the useful features are identified. Therefore, by using Equation (9) the gain
of each feature is computed. Features with positive gain are considered useful.

Gain = S/NratioLevel−1 − S/NratioLevel−2 (9)

Step IV: Future diagnosis

The MS is rebuilt using the attributes recorded in Step III and the MDs of the monitored products
are calculated. The subjects are healthy if the MDs are inside the MS. If the MDs are outside the MS,
then the subjects reveal abnormal (ACLR) behaviours. A greater MD indicates a greater deviation
between the healthy and ACLR patients [19].

2.2.2. Determine MD Ranges

MD is a distance metric with values ranging from zero to infinity. Greater MD values are of
concern from the perspective of ACLR. The primary problem is to find a suitable threshold T that can
distinguish between ACLR and healthy patients for medical diagnosis. If MD ≤ T, the patient is
healthy. The patient is injured if MD > T. Therefore, sensitivity and specificity analysis are employed
to determine the MD ranges corresponding to the difference between the ACLR and healthy patients.

3. Proposed Approach

We propose using the MTS to enhance ACLR diagnosis and analysis. This approach can be split
into two phases; the first phase uses the MD to distinguish the routine of ACLR and uses OAs and S/N
ratios to select important features [19]. The second phase demonstrates how to use the model created
in the initial phase. A flow chart describing this strategy is shown in Figure 1. A broader description is
given below.
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Figure 1. Flow chart of the approach proposed in this study.

3.1. Modelling Stage

There are three steps to developing the model. The first step is to define the issue; this is where
we find the spatiotemporal gait parameters. Next, we gather the essential data. We select a ‘normal’ or
‘healthy’ group to construct the MS. Then, we use the information from the healthy group and the
spatiotemporal gait parameters to get the Mahalanobis distance MS1, and data from the ACLR group
and chosen attributes to get the Mahalanobis distance MS2. Next, we find an appropriate threshold to
efficiently distinguish the healthy and ACLR groups. The threshold value is set according to MS1 and
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MS2 and an effective threshold can improve clinicians’ analytical and forecasting abilities. The final
step is attribute selection, where the most vital features are chosen.

3.2. Application Stage

The developed model can be used to forecast ACLR rehabilitation patterns by entering the ACLR
data together with the chosen features.

4. Case Study

4.1. Participants

To assess the efficiency of our method, ACLR patients from the Rehab and Physiotherapy Unit
of Hospital Tuanku Fauziah at Kangar, Perlis, were considered for this study. Ten patients with
a unilateral primary ACLR were chosen for the ACLR group (PG). This group was composed of
10 males. All patients go through similar rehabilitation procedures, beginning passive and active
mobilization after the operation. Meanwhile, 15 healthy subjects (HG) were selected for the healthy
group with the condition that they had no previous history of lower extremity injuries, surgeries, or
neuropathy. The HG consisted of 15 males. The height, age, and weight distribution of the two groups
were not significantly (p > 0.05) (Table 1). Ethical approval was granted by the University of Malaysia
Perlis, and the participants provided written informed consent.

Table 1. Anthropometric data of the subjects and p-value of relationship between the healthy group
(HG) and ACLR group (PG). Values stated as mean ± standard deviation.

Parameter HG PG p-Value

Age (years) 27.73 ± 0.80 25.8 ± 5.41 0.1365

Body mass (kg) 60.22 ± 6.04 71.6 ± 9.66 0.608

Height (cm) 167 ± 5.0 172.0 ± 6.0 0.837

4.2. Procedures

Subjects were instructed to walk seven times on an 8 m walkway. The first two laps were not
measured to allow for familiarization with the task and instrumentation. The last five laps were
assessed to catch four gait cycles, employing the right limb from the HG and the injured limb from the
PG. We compared the ACLR to the right limbs only because most individuals are right leg dominant
and we wanted to compare those limbs to a right control limb that is more likely to exhibit ideal and
stable knee biomechanics [44,45].

A number of previous studies have compared differences in ACLR limbs to control limbs and the
fact that both the right and left control limbs provided similar results and that we observed significant
differences between the ACLR and right limbs indicates that we were able to find these differences by
concentrating on these limbs [45–47].

The trial was conducted in the Motion Lab at the University of Malaysia Perlis. Motion data
were collected using five Oqus cameras of a motion capture system (Oqus, Qualisys AB, Gothenburg,
Sweden). 36 reflective markers were placed on the joint landmarks and segments of the lower limb as
denoted in Figure 2. The cameras were mounted on tripods to capture the static trial of the subject in
2 s at 120 Hz, followed by the walking motion of the subjects. The dynamic trials were captured in 8 s
at 480 Hz.

Two force plates were reset for the next trial. The vertical ground reaction force was detected
by two force plates with dimensions of 400 × 600 mm (Bertec, Worthington, Ohio, OH, USA) while
the subject performed several walks at his own pace. At least five success trials were collected
and interpreted.
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At least five success trials were captured and post-processed using Qualisys Track Manager with
a sampling rate of 60 Hz. The 11 spatiotemporal parameters (Table 2) of the trial were generated in
Visual 3D Pro v6. This includes variations in the step width, stride speed, swing time, stance time,
stride time, step time, step width, stride length and step length.

4.3. Results

Step I: Construction of MS

After collecting the information (Table 3), we calculated the MD using the formulas given in
Section 2.2.1. To compute MD1, we utilised the healthy group data and the 11 features of selection.
The 15 healthy subjects were used as the benchmark (healthy) group. The average and standard
deviation of every characteristic from the HG were computed (Table 4) and the information from Table 5
was normalised using Equation (1). This normalised information was used to build the correlation
matrix and its inverse (see Table 6). Next, the Mahalanobis distances were computed using Equation
(4), as presented in Table 7. Likewise, using the inverse correlation matrix (Table 6) generated from the
HG data, we computed the Mahalanobis distance for the 10 sets of PG data. The MDs of the HG were
approximately equal to one, as shown in Figure 3.
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Table 2. Operational definitions of gait parameters and variables.

Variables Operational Definition

Step Length (cm) X1 Anterior-posterior distance from the heel of one footprint to the heel of
the opposite footprint.

Stride Length (cm) X2

Anterior-posterior distance between the heels of two consecutive
footprints of the same foot (left to left, right to right); two steps
(e.g., a right step followed by a left step) comprise one stride or one
gait cycle.

Step Width (cm) X3 Lateral distance from the heel centre of one footprint to the line of
progression formed by two consecutive footprints of the opposite foot.

Stance Time (s) X4

The stance phase is the weight bearing portion of each gait cycle
beginning at heel contact and ending at toe off of the same foot; stance
time is the time elapsed between the initial contact last contact of
a single footfall.

Swing Time (s) X5
The swing begins with toe off and ends with initial contact of the same
foot; swing time is the time elapsed between the last contact of the
current footfall to the initial contact of the next footfall of the same foot.

Single Support
Time (s) X6

Single support occurs when only one foot is in contact with the ground;
single support time is the time elapsed between the last contact of the
opposite footfall to the initial contact of the next footfall of the same foot.

Double Support
Time (s) X7

Double support occurs when both feet are in contact with the ground
simultaneously; double support time is the sum of the time elapsed
during two periods of double support in the gait cycle.

Stance Time (%GC) X8 Stance time normalised to stride time.

Double Support
Time (%GC) X9 Double support time normalised to stride time.

Gait Speed (m/s) X10 Calculated by dividing the distance walked by the ambulation time.

Stride Speed (m/s) X11 Calculated by dividing stride length by the stride time.

Note = %GC = % gait cycle.

Table 3. Mean and standard deviation (SD) of healthy group (HG) and ACLR group (PG) for all variables.

Parameter Unit
HG PG

Mean SD Mean SD

Step Length (m) 0.584 0.043 0.562 0.030
Stride Length (m) 1.161 0.077 1.079 0.197

Step Width (m) 0.156 0.049 0.153 0.060
Stance Time (s) 0.864 0.157 0.961 0.172
Swing Time (s) 0.566 0.116 0.604 0.076

Single Support Time (s) 1.100 0.176 1.023 0.284
Double Support Time (s) 0.312 0.087 0.390 0.094

Stance Time (%GC) 60.502 3.409 61.186 3.381
Double Support Time (%GC) 21.918 2.946 28.584 8.888

Gait Speed (m/s) 0.507 0.088 0.425 0.085
Stride Speed (m/s) 42.974 6.198 39.09 5.762
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Table 4. Average and standard deviation of the data of the healthy group (HG).

HG
Variables

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

H1 0.66 1.314 0.171 0.75 0.47 0.943 0.277 61.48 22.7 0.641 49.18
H2 0.59 1.156 0.171 0.76 0.485 0.958 0.287 61.04 23.05 0.551 48.193
H3 0.634 1.278 0.182 0.975 0.61 1.262 0.323 61.51 20.38 0.462 37.855

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .
H15 0.582 1.055 0.1 1.265 0.79 1.445 0.538 61.56 27.13 0.313 29.197
Avg 0.583 1.160 0.158 0.864 0.565 1.099 0.311 60.502 21.918 0.5066 42.97413
Std 0.043 0.077 0.048 0.156 0.115 0.175 0.086 3.408 2.945 0.088 6.197

Table 5. Normalised data of the healthy group (HG).

HG
Features

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

H1 1.759 1.981 0.258 –0.728 –0.826 –0.892 –0.403 0.286 0.265 1.526 1.001
H2 0.146 –0.060 0.258 –0.665 –0.696 –0.806 –0.287 0.157 0.384 0.504 0.842
H3 1.160 1.515 0.485 0.707 0.381 0.922 0.127 0.295 –0.522 –0.506 –0.825

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .
H15 –0.04 –1.365 –1.205 2.557 1.933 1.963 2.608 0.310 1.769 –2.199 –2.222

Table 6. Inverse of the correlation matrix of the healthy group (HG).

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

X1 39.710 –29.82 –0.916 –465.5 344.03 –109.5 257.98 295.39 –166.3 8.0218 –111.6
X2 –29.82 29.687 –0.845 326.07 –222.4 60.940 –183.9 –198.6 113.93 –22.88 89.114
X3 –0.916 –0.845 3.583 7.4016 –14.51 11.902 –1.389 –10.96 6.307 1.8092 5.0282
X4 –465.5 326.07 7.4016 6775.9 –4939 1719.0 –3901 –4264 2469.7 –79.17 1670.9
X5 344.03 –222.4 –14.51 –4939 4319.6 –1229 2356.9 3450.8 –1605 –30.03 –858.5
X6 –109.5 60.940 11.902 1719.0 –1229 625.48 –1168 –1090. 762.71 6.988 496.32
X7 257.98 –183.9 –1.389 –3901 2356.9 –1168 2795.0 2235.5 –1704 104.55 –1228
X8 295.39 –198.6 –10.96 –4264 3450 –1090 2235.5 2852.2 –1474 11.885 –895.8
X9 –166.3 113.93 6.307 2469.7 –1605 762.71 –1704 –1474 1065.2 –48.74 737.86
X10 8.021 –22.88 1.809 –79.17 –30.03 6.988 104.5 11.88 –48.74 58.130 –71.991
X11 –111 89.11 5.028 1670.9 –858.5 496.321 –1228 –895.8 737.8 –71.99 648.083

Table 7. MD of the healthy group (HG) data sets.

HG X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 MD

H1 0.66 1.314 0.171 0.75 0.47 0.943 0.277 61.48 22.7 0.641 49.18 0.923
H2 0.59 1.156 0.171 0.76 0.485 0.958 0.287 61.04 23.05 0.551 48.193 1.084
H3 0.634 1.278 0.182 0.975 0.61 1.262 0.323 61.51 20.38 0.462 37.855 1.017
H4 0.594 1.206 0.251 0.895 0.53 1.118 0.307 62.81 21.54 0.507 42.105 1.082
H5 0.632 1.249 0.222 0.72 0.745 0.962 0.258 49.15 21.15 0.602 40.956 1.166
H6 0.546 1.143 0.166 0.75 0.51 1.045 0.215 59.52 17.06 0.531 47.619 1.058
H7 0.599 1.127 0.138 0.78 0.535 1.025 0.29 59.32 22.05 0.51 45.627 0.867
H8 0.524 1.085 0.18 0.825 0.485 1.033 0.277 62.98 21.15 0.504 45.802 0.617
H9 0.61 1.165 0.163 0.76 0.46 0.938 0.282 62.3 23.11 0.565 49.18 0.916

H10 0.514 1.056 0.119 0.8 0.509 1.091 0.274 61.12 20.07 0.496 45.837 0.674
H11 0.55 1.145 0.211 0.883 0.6 1.25 0.233 59.54 15.71 0.489 40.459 1.084
H12 0.528 1.095 0.077 1.155 0.785 1.465 0.483 59.54 24.79 0.331 30.928 1.150
H13 0.606 1.205 0.115 0.815 0.49 0.985 0.308 62.45 23.82 0.572 45.977 0.622
H14 0.586 1.131 0.111 0.83 0.483 0.978 0.327 63.21 25.06 0.525 45.697 0.560
H15 0.582 1.055 0.1 1.265 0.79 1.445 0.538 61.56 27.13 0.313 29.197 1.180

Average 0.933
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Step II: Validation of MS

In Step II of the MTS, the ACLR data were utilised to confirm the MS dimension scale. Using
the averages and standard deviations of the HG data, the PG data were normalised. The MDs of
the ACLR group were computed using the covariance coefficient matrix of the HG data. From this
study, they were clearly outside of this MS. Therefore, the MS is valid. A wide range of MD values
were observed for the PG; on the other hand, the HG was absolutely uniform, as shown in Figure 3.
For clinical diagnosis, the main challenge is to obtain a threshold T which differentiates between
healthy and ACLR patients. Its distribution is displayed in the graph in Figure 3. As shown in Table 8
the threshold was set at 0.5–3.0 in order to calculate the g-means. After considering sensitivity and
specificity, we discovered the best threshold value was 1.5, which provided 100% sensitivity and
specificity. The 10 ACLR spatiotemporal data, along with the calculated MDs, are functioned and
displayed in Table 9.

Table 8. Sensitivity analysis of the threshold.

Threshold ACLR
(Abnormal)

Healthy
(Normal)

Sensitivity
(%)

Specificity
(%)

G-Means
(%)

0.5 Positive 10 0 100 0.00 0.00
Negative 15 0

1.0 Positive 10 0 100 53.33 73
Negative 7 8

1.5 Positive 10 0 100 100 100
Negative 0 15

2.0 Positive 10 0 100 100 100
Negative 0 15

Step III: Identification of useful features.

In Step III of the MTS, OAs and S/N ratios were used to examine the effects of every feature. Since
11 attributes were assembled, an L12 (211) OA was used. As revealed in Tables 10 and 11, X1, X2, and X8
did not have a significant effect on the MD. Hence, the number of attributes was decreased from 11
to 8. The PG could be clearly distinguished from the HG group as their MDs deviated significantly in
the MS (PG: 2.308–1509.811, HG: 0.560–1.190). In Step III of the MTS, OAs and S/N ratios were used to
examine the effects of every feature. Since 11 attributes were assembled, an L12 (211) OA was used.

Table 9. MD for ACLR group (PG) data.

PG X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 MD

P1 0.52 1.05 0.202 0.96 0.55 1.15 0.46 63.7 28.8 0.38 39.55 15.77
P2 0.55 1.05 0.189 0.84 0.54 1.01 0.34 61.0 25.2 0.48 43.25 2.308
P3 0.51 1.08 0.232 1.08 0.55 1.14 0.47 66.3 29.3 0.39 36.74 26.035
P4 0.58 1.12 0.172 1.03 0.62 1.16 0.46 62.3 28.6 0.38 36.18 5.721
P5 0.57 1.11 0.217 0.98 0.73 1.34 0.42 57.2 24.0 0.36 34.95 17.78
P6 0.60 1.26 0.051 0.68 0.55 1.02 0.20 55.0 16.8 0.59 48.58 9.979
P7 0.56 1.14 0.149 1.08 0.66 1.29 0.43 62.1 24.9 0.38 34.38 4.404
P8 0.59 1.20 0.086 0.75 0.53 1.05 0.27 58.3 20.4 0.51 46.69 3.133
P9 0.54 0.55 0.136 1.26 0.72 0.57 0.46 63.7 44.9 0.29 30.22 1287.16

P10 0.55 1.18 0.102 0.92 0.56 0.48 0.35 61.8 42.5 0.44 40.32 1509.81

Average 288.21
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Table 10. L12 (211) OA for the ACLR conditions.

Run
Features S/N

RatioX1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

1 1 1 1 1 1 1 1 1 1 1 1 8.49550614
2 1 1 1 1 1 2 2 2 2 2 2 1.31702001
3 1 1 2 2 2 1 1 1 2 2 2 −1.4245509
4 1 2 1 2 2 1 2 2 1 1 2 5.12522506
5 1 2 2 1 2 2 1 2 1 2 1 3.6517743
6 1 2 2 2 1 2 2 1 2 1 1 0.67514098
7 2 1 2 2 1 1 2 2 1 2 1 2.99885419
8 2 1 2 1 2 2 2 1 1 1 2 3.19462065
9 2 1 1 2 2 2 1 2 2 1 1 3.29197259

10 2 2 2 1 1 1 1 2 2 1 2 2.85909121
11 2 2 1 2 1 2 1 1 1 2 2 3.71676119
12 2 2 1 1 2 1 2 1 2 2 1 2.65860164

Table 11. Average S/N ratios and gain for each feature.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

Level-1 2.9733 2.978 4.1 3.696 3.343 3.4521 3.501 2.886 4.5304 3.94 3.628
Level-2 3.1199 3.1144 1.9924 2.397 2.75 2.641 2.662 3.207 1.563 2.153 2.464

Gain −0.1466 −0.1364 2.1076 1.299 0.593 0.8111 0.839 -0.321 2.9674 1.787 1.164

Step IV: Future diagnosis

The MTS can be applied to achieve two major objectives: diagnosis and forecasting. As shown in
Figure 3, the MDs of the 10 ACLR participants are outside of the MS [21]. Therefore, the suggested
approach could be used to diagnose ACLR patients. The role of these MDs is to assess the patient,
monitor their progress, and to give advice and provide education on the progress of their rehabilitation.
The specific exercises provided are extremely important as they are designed to help patients regain
a full range of movement and to strengthen the muscles around their knee. Consequently, smaller MDs
may be used as the top analytical index to find out if patients are able to fully RTW following ACLR.

5. ACLR Classification

In conventional strategies, such as discrimination and classification strategies (and sometimes
in multiple regression), the objective is to classify observations into different groups (populations).
In contrast, the main goal of the technique proposed in this research is to supply measurements and to
measure the degree of abnormalities on a continuous scale. This can help to determine the correct
actions to take predicated by the degree of abnormality [42].

However, in the MTS methods, there are simply no populations [19,24,38,48,49]. It simply requires
several observations, called a ‘healthy’ group, to acquire a correlation structure and to define the
reference indication for the measurement scale MS. Selection of this healthy group is completely at the
discretion of clinicians. In MTS strategies, every irregular condition (ACLR individuals) is considered
exclusively, since the occurrence of such conditions differ. The degree of abnormality can be measured
in reference to the healthy group [40,43,50,51].To produce the referenced area, MS feature data units
from the HG were utilised. The MDs of HG range from 0.560 to 1.180, calculated from the methods
introduced in Table 7. The 10 ACLR subjects were used for MS validation [19,24].

The PG data were normalised using the mean and standard deviation of the HG. Their MDs,
which were calculated with the covariance coefficient matrix of the HG, range between 2.308 and
1509.811; these are outside of the MS. Therefore, the MS is certainly validated. Hence, Taguchi strategies
were used to study the impact of every feature [43,52,53]. The ‘Gain’ of every feature was computed
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between these two conditions. As shown in DF, X2, and X8 were found to have an insignificant effect
on the MD. Hence, the number of features decreased from 11 to 8.

6. ACLR Diagnosis and RTW

6.1. ACLR Diagnosis

Gait variability, defined as the fluctuation in gait features from one step to the next, is an important
indicator of impaired mobility in ACLR patients [36,54,55]. In this study, eight important features,
including step width, swing time (s), stance time (s), double support time (s), single support time (s),
double support time (%GC), gait speed (m/s), and stride speed, were selected by utilising OAs and S/N
ratios. These essential features will be discussed in detail.

The human body’s degree of stability can be predicted from step width [56]. In many studies,
the step width is often associated with local and orbital stability [54,57]. Stability is defined as the
capability of a body to respond to perturbations [58]. During human walking, increasing the step width
changes both the anterior-posterior and mediolateral stability along with stability variability [59].

Stance time was identified as a significant variable in clinical gait analysis. According to Kuo
and Donelan, modifications in stance time may result in increased mechanical function and, therefore,
greater energy consumption during walking [58]. For example, a decline in a single limb’s stance time
may result in a heightened contralateral limb swing speed, which will decrease the effect produced by
initial contact [2]. Hence, this strategy raises energy expenditure [2]. Therefore, the analysis of stance
time is essential as an indicator of subjects’ energy expenditure.

The time from toe-off to the next heel strike, indicating as a passive movement with little metabolic
cost, is known as swing time [60]. Current estimates for leg swing costs are equivocal, covering a range
of between 10% and 33% of the net cost of walking [60]. Most of the changes were observed during
the longer swing period of ACLR patients. As this speed rises, there is a general increase in activity
that leads to an increase in muscle strength generation and ground reaction force [31]. Additionally,
the increase in speed will decrease stance time, limiting the amount of time that the body needs to
explore the various ranges of movement required to accomplish a task [61].

Gait speed has been recognised as a significant factor in normal health condition [62]. Under
normal conditions, a comfortable gait speed relates to the speed where the energy cost per unit of
distance is minimised [63]. Achieving energy efficiency is dependent on joint mobility and muscle
activity [64]. ACLR leads to increased energy use, which is usually accompanied by a compensatory
drop in the gait speed. In addition, the motions may cause the centre of gravity to shift, which increases
energy expenditure [65].

Stride speed is another important indicator of knee joint health, as well as overall health [56,66].
Slower stride speeds have been associated with poorer results on psychomotor tests, verbal fluency
tests, and decreased cardiovascular health [67]. Stride speed has been used as a measure to predict
survival rates in an elderly community [68,69]. Stride speed is a good measure of energy, motor control,
endurance, muscle function, and health status.

The ACLR knees demonstrated prolonged double support phases and reduced single support
phases in comparison to the healthy knees. This reflects the increased time that the ACLR knees tended
to remain in flexion prior maximum extension in order to achieve a less sudden weight change. This
adaptation mechanism has been also shown by an electromyography experiment, which demonstrated
that ACLR patients had prolonged firing of biceps, femoris, and vastus medialis during the stance
phase in comparison to the HG [70].

6.2. Return to Work

To date, RTW analysis has concentrated on the knee-demanding workload and the number of
weeks walking using crutches. The information is controversial, and there is no general agreement to
quantify knee extension and knee function. Previously, the most powerful factor determining RTW
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after ACLR was the level of knee-demanding work, which is assessed using the work rehabilitation
questionnaire (WORQ). Kievit et al. highlight that the time required to completely RTW following
ACLR is less than that following a complete knee arthroplasty; with 71% of ACL patients taking more
than three months to RTW compared to 50% of total knee arthroplasty patients. However, there no
other research describing RTW after knee-related medical procedures was available.

Another factor that has been connected to RTW is the number of weeks the patient requires
crutches to walk after the operation [4]. The substantial index, with an odds ratios (OR) of 1.54, suggests
that for every week the individual walks using crutches, the danger of a protracted RTW increases by
a factor of 1.54 [4]. This suggests that after four months, the OR climbs to 4.57. However, the weakness
of this research is that working with the support of crutches actually increases the chance of RTW [4].

Considering the arguments mentioned previously, the MTS ought to be regarded as the most
effective program for predicting RTW. This system allows the clinician to identify the principal factors
preventing patients from returning to work after the first couple of weeks, and to understand the
elements that guarantee RTW. The spatiotemporal information of walking after ACLR has not been
analysed previously, so far as we understand. In addition, this method could be implemented to
evaluate whether an individual can begin functioning.

Furthermore, specific recommendations for therapy and RTW following knee operations can be
provided. The MD may be utilised to determine when patients can fully RTW. It should be observed
that the average value of the MD for ACLR individuals, given in Table 9 (typical MD = 288.211),
is higher than that of the healthy individuals, given in Table 7 (average MD = 0.933), for the all of the
11 attributes. According to these MD values, the patients could possibly be rated in an ascending
sequence. It is obvious that for lower MD values, the deviation from healthy participants is likely be
less and the patients will have an excellent likelihood of RTW [31]. From the results, subjects 2, 7, and 8
have an MD close to that of the healthy participants. For individuals with greater MD values, constant
rehabilitation should continue until the MD [23].

7. Application

Since one of the goals of restoration of anterior cruciate ligament (ACL) is to return patients to
their level of pre-injury activity, it is critical to understand factors that induce. Current guidelines for
evaluating an ACLR patient’s results are primarily based on clinicians’ decisions and experience. These
guidelines usually consist of qualitative assessment of early intervention plans that emphasizes restoring
flexibility, muscular strength, and ligament stability by using closed kinetic chain exercises [71–73].
However, a major problem with this kind of qualitative assessment is the clinician’s capacity to provide
safe, high-quality care can be reliant on their ability to reason, think, and judge, which can be restricted
by absence of experience [74,75]. This is definitely accompanied by several exams to verify the medical
diagnosis. For that reason, diagnosing without acquiring assistance from the help of intelligence
systems is time consuming.

Therefore, study on medical apps in computerized intelligence systems with MTS is essential.
In addition, the implementation of computerized health-related decision support scheme of MTS turns
out to be a viable alternative for a quick plus precise patient medical diagnosis. Medical information
therefore needs classification approaches with a mixed decision support scheme to guarantee that
digital access to health care information will be much simpler for medical officers.

In fact, the system is capable of eliminating any unnecessary items in the information system, as
well as offering useful data to the medical officer to assist in making decisions during diagnosis of
disease. In addition, MTS is not only capable of performing classification duties, it also has the capacity
to recognise the significant multivariate system variables. Furthermore, MTS is not only efficient in
performing classification employment, it also provides the ability to determine the key multivariate
system parameters. Mahalanobis Space (MS) is developed mainly on the basis of healthy people in the
medical diagnosis.
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By combining this presented method with the development of sensing technologies, embedded
systems, wireless communication technologies, nano-technologies, and miniaturization, smart systems
can be developed to monitor human actions on an ongoing basis. Mobile and wearable sensor
technology is a rapidly growing sector with a strong potential for health care and scientific study
transformation [76–78].

Wearable body-sensor network technology is currently moving into routine clinical work,
complementing sophisticated motion evaluation with stationary and complicated kinematographic
analysis [79,80].These wearable motion sensor systems are suitable for everyday gait assessment,
providing a means of delivering individualized gait objectively [81–83]. Video-based motion capture
systems or instrumented walkway systems are regarded the gold standard for capturing gait parameters,
but are expensive and involve dedicated movement labs [78,84].

By implementing MTS and adapting equipment such as wearable sensor-based gait analysis to
capture disease status, it can fulfill the requirements of both the doctor, patient and caregiver.

8. Conclusions

In this study, the MTS system was suggested as a way to estimate the health of ACLR patients before
they return to work. By building feature data, ACLR diagnosis and classification were achieved using
MDs corresponding to different health conditions. The MDs were improved by Taguchi techniques to
recognise the attributes that had the greatest impact. ACLR patients are considered ready to RTW when
the MDs are small and within the MS. When the MDs are larger, and outside the MS, this suggests that
there are problems affecting the individual. In particular, as gait deviation increases, the MD increases.
The results demonstrated that the MDs corresponding to the ACLR group deviated from the ones that
were healthy. In addition, the size of the MD reflected the degree of abnormality. Hence, MDs can
indicate the seriousness of an abnormality. In the future, this MTS method can help physiotherapists
to decide comprehensive treatment plans. Further research is essential to optimally target deficits
in neuromuscular control, neuromotor status, and psychological readiness in order to best prepare
individuals for RTW following ACLR.
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