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Abstract: Thermal comfort and sensation are important aspects of building design and indoor climate
control, as modern man spends most of the day indoors. Conventional indoor climate design and
control approaches are based on static thermal comfort/sensation models that view the building
occupants as passive recipients of their thermal environment. To overcome the disadvantages
of static models, adaptive thermal comfort models aim to provide opportunity for personalized
climate control and thermal comfort enhancement. Recent advances in wearable technologies
contributed to new possibilities in controlling and monitoring health conditions and human wellbeing
in daily life. The generated streaming data generated from wearable sensors are providing a unique
opportunity to develop a real-time monitor of an individual’s thermal state. The main goal of this
work is to introduce a personalized adaptive model to predict individual’s thermal sensation based
on non-intrusive and easily measured variables, which could be obtained from already available
wearable sensors. In this paper, a personalized classification model for individual thermal sensation
with a reduced-dimension input-space, including 12 features extracted from easily measured variables,
which are obtained from wearable sensors, was developed using least-squares support vector machine
algorithm. The developed classification model predicted the individual’s thermal sensation with
an overall average accuracy of 86%. Additionally, we introduced the main framework of streaming
algorithm for personalized classification model to predict an individual’s thermal sensation based on
streaming data obtained from wearable sensors.

Keywords: thermal sensation; adaptive model; personalized model; machine leaning;
support-vector-machine; adaptive control; streaming algorithm

1. Introduction

Thermal comfort (TC) is an ergonomic aspect determining satisfaction with the surrounding
environment and is defined as ‘that condition of mind which expresses satisfaction with the thermal
environment and is assessed by subjective evaluation’ [1]. The effect of thermal environments on
occupants might also be assessed in terms of thermal sensation (TS), which can be defined as ‘a
conscious feeling commonly graded into the categories cold, cool, slightly cool, neutral, slightly warm,
warm, and hot’ [1]. Thermal sensation and thermal comfort are both subjective judgements, however,
thermal sensation is related to the perception of one’s thermal state, and thermal comfort is related to
the evaluation of this perception [2]. In other words, TS expresses the perception of the occupants,
while TC assesses this perception, taking into account physiological and psychological factors [3].
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The assessment of thermal sensation has been regarded as more reliable and as such is often used to
estimate thermal comfort [4].

Thermal sensation is the result of the body “psycho-physical reaction” to certain thermal stimuli
related to indoor conditions [5]. Human thermal sensation mainly depends on the human body
temperature (core body temperature), which is a function of sets of comfort factors [5,6]. These comfort
factors include indoor environmental factors, such as mean air temperature around the body, relative
air velocity around the body, humidity, and mean radiant temperature of the environment to the
body [6]. Additionally, some personal (individual-related) factors, namely metabolic rate or internal
heat production in the body, which vary with the activity level and clothing thermo-physical properties
(such as clothing insulation and vapor clothing resistance), are included. It should be mentioned
that the individual thermal perception is deepening, as well, on psychological factors, expectations
and short/long-term experience, which directly affect individuals’ perceptions, time of exposure,
perceived control, and environmental stimulation [7]. The most considered way to have an accurate
assessment of TS is to ask the individuals directly about their thermal sensation perception [5,6].
The thermal-sensation-vote (TSV) is one of the most used concepts to address the opinion of individuals
concerning TS. That is, individuals express their vote to rate their TS when they are exposed to given
thermal conditions, by using a scale from cold to hot, with a predefined number of points.

Thermal sensation mathematical models are developed in order to overcome the difficulties
of direct enquiry of subjects. The development of such models is mostly dependent on statistical
approaches by correlating experimental conditions (i.e., environmental and personal variables) data
to thermal sensation votes obtained from human subjects [4,6]. The recent intensive review work of
Enescu (2019), explored the most important contributions to model and predict thermal sensation
(TS) under both steady-state and transient conditions. It is shown that the most used models to
assess TS of the human body with respect to the environment have been developed starting from
Fanger’s predicted-mean-vote (PMV) empirical model [3] for steady-state conditions and from the
Gagge model [8] for transient conditions. Since then, numurus models are developed to assess and
predict TS (e.g., [9–16]). Most of the aforementioned models (e.g., PMV) are static in the sense that they
predict the average vote of a large group of people based on the seven-point thermal sensation scale,
instead of individual thermal comfort, they only describe the overall thermal sensation of multiple
occupants in a shared thermal environment. To overcome the disadvantages of static models, adaptive
thermal comfort models aim to provide insights in increasing opportunities for personal and responsive
control, thermal comfort enhancement, energy consumption reduction and climatically responsive
and environmentally responsible building design [17,18]. The idea behind adaptive models is that
occupants and individuals are no longer regarded as passive recipients of the thermal environment
but rather, play an active role in creating their own thermal preferences [18]. Many adaptive thermal
comfort models are developed based on regression analysis (e.g., [18–20]).

Besides regression analysis, thermal sensation prediction can also be seen as a classification
problem where various classification algorithms can be implemented [17]. In their work [21], Lee et al.,
proposed a method for learning personalized thermal preference profiles by formulating a combined
classification and inference problem with 5-cluster models. Moreover, the thermal preference of a new
user is inferred by a mixture of sub-models for each cluster, where clusters are used to group occupants
with similar thermal preferences.

Recently, a number of research works (e.g., [22–26] have demonstrated the possibility of using
machine learning techniques, such as support vector machine (SVM), to assess and predict human
thermal sensation. It can be concluded, based on the published work (see the recent literature
review [17] by Lu et al.), that classification-based models have performed as well as regression models.

Different related works investigated the problem of thermal sensation and comfort prediction
via machine learning algorithms. Ghahramani et al. [27] applied the hidden Markov model (HMM)
technique to the thermal comfort prediction problem with three levels of thermal comfort. There is a
main issue in the used dataset in this study is the class imbalance, which is not tackled by the proposed
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methodology. In their study, Ghahramani et al. did not discuss the problem of streaming analytics and
model personalisation.

In order to develop personalized models, Jiang et al. [28] applied support vector machines
classifiers to the personal data of each subject to predict the thermal sensation level for the same subject.
The obtained results are promising, however, their approach requires a sufficient number of data-points
to obtain an acceptable performance, which is not applicable to our dataset (9 data-points per subject).

The very recent study of Lu et al. [17] proposed a personalized model, however, the study strictly
investigated two subjects and developed a dedicated model for each subject.

In comparison with many relevant studies, our study is tackling several challenges at the same
time. These issues are feature reduction, streaming, and online modeling compatibility and model
personalization. The latter issue is tackled in a novel way by considering both personal and nonpersonal
data relying on the similarity either inter or intra subjects. In general, it can be stated that it is a real
modeling challenge to correlate the physiological variables with information concerning global and
local sensation [5].

Recent advances in mobile technologies in healthcare, in particular, wearable technologies
(m-health) and smart clothing, have positively contributed to new possibilities in controlling and
monitoring health conditions and human wellbeing in daily life applications. The wearable sensing
technologies and their generated streaming data are providing a unique opportunity to understand
the user’s behaviour and to predict future needs [29]. The generated streaming data is unique due to
the personal nature of the wearable devices. However, the generated streaming data forms a challenge
related to the need for personalized adaptive models that can handle newly arrived personal data.

The main goal of this work is to introduce a personalized adaptive modeling algorithm to predict
an individual’s thermal sensation based on non-intrusive and easily measured variables, which could
be obtained from already available wearable sensors.

2. Methods

2.1. Data Processing and Classification

Thermal sensation prediction based on wearable sensors can be considered as a classification
machine learning problem, the input of which is the set of extracted features from the measured
variables and the output is the subjects’ feedback with the standard thermal sensation labels. Several
machine learning techniques can be used for such a problem. Support vector machines (SVMs) is one
of the efficient classification techniques used in different relevant studies [21–23,25,26]. In this study,
the least squares support vector machine (LS-SVM) is proposed to be used for general models as it is as
powerful as standard SVMs, but, it has less computational cost [30]. Most, if not all, relevant studies
of thermal sensation prediction rely on global general models. Global models are models that are
trained using the whole available training dataset with a uniform weight (i.e., all training points are
equally contributing to the training process). However, global models are not that efficient for online
classification and streaming analytics applications in which a stream of new data is collected from
subjects via wearable technology, especially when aiming at personalized models. Hence, for this
purpose, we suggest a localized version of LS-SVM, namely K-Nearest Neighbours (KNN)-LS-SVM [31]
to be compatible with the wearable sensors for online and streaming analytics.

The classification problem of thermal sensation is a multiclass classification problem, the input
variables of this problem from which features are extracted are: aural temperature Ter, average skin
temperature Tsk =

1
3

[
Tscap + Tch + Tarm

]
, ambient temperature Ta, chest skin temperature Tch, heart rate

Hr, average heat flux from the skin qsk, temperature gradient between core and skin ∆Tsk = Ter − Tsk,
age, gender, body mass index BMI, metabolic rate Mr. As some variables are time measurements of
the different parameters, the process of feature extraction is applied to a specified time window from
the recordings, namely the last five minutes preceding the sensation labeling by the test subjects. The
extracted features from time-variant variables are: minimum (min), maximum (max), variance (var),
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energy, time-derivate ( d
dt ), root mean square (rms). Target labels are the seven classes of the standard

thermal comfort sensation scores: Cold (-3), Cool (-2), Slightly Cool (-1), Neutral (0), Slightly Warm (1),
Warm (2), and Hot (3).

2.1.1. Support Vector Machines (SVMs)

SVMs are originally presented as binary classifiers, that assign each data instance X ∈ Rd to one of
two classes described by a class label y ∈ {−1, 1} based on the decision boundary that maximizes the
margin 2/||w||2 between the two classes. Generally, a feature map φ : Rd

⇒ Rp is used to transform

the geometric boundary between the two classes to a linear boundary L : wTϕ(x) + b = 0 in feature
space, for some weight vector w ∈ Rp×1 and b ∈ R. The class of each instance can then be found by
y = sign

(
wTϕ(x) + b

)
, where sign refers to the sign function [30].

The estimation of the boundary L is performed based on a set of training examples xi (1 ≤ i ≤ N)

with corresponding class labels yi ∈ {−1, 1}. An optimal boundary is found by maximizing the margin
that is defined as the smallest distances between L and any of the training instances. In particular, one
is interested in constants w and b that minimize a loss-function:

min
w, b; ξ

1
2

wTw + C
N∑
i=1

ξi (1)

and are subject to:

yi
(
wTϕ(xi) + b

)
≥ 1 − ξi and ξi ≥ 0, i = 1, 2, ..., N. (2)

The constant C denotes the penalty term that is used to penalize misclassification through the
slack variables ξi in the optimization process.

The so-called kernel-trick avoids the explicit introduction of a feature map φ and implicitly
allows for the use of feature spaces of infinite dimensionality. A commonly used kernel is given by the
Gaussian kernel:

k
(
xi , x j

)
= exp


∣∣∣∣∣∣xi − x j

∣∣∣∣∣∣2
2σ2

 (3)

where σ denotes the kernel bandwidth. Both σ and C can be optimized as hyper-parameters in a
cross-validation experiment.

2.1.2. Least Squares Support Vector Machine (LS-SVM)

LS-SVMs are obtained by using a least-squares error loss function [30]:

min
w, b; e

1
2

wTw + γ
N∑
i=1

e2
i (4)

such that
yi
(
wTϕ(xi) + b

)
≥ 1 − ei and ei ≥ 0, i = 1, 2, ..., N. (5)

This optimization procedure introduces errors ei such that 1−ei is proportional to the signed
distance of xi from the decision boundary and γ represents the regularization constant. In fact, the
non-negative slack variable constraint is removed and the solution of the optimization problem can be
obtained by a set of linear equations, reducing computational effort [30].

2.1.3. KNN-LS-SVM

While global SVMs consider the same weight for all training instances in the optimization process,
local learning approaches allow for training samples near a test point to be more influential than
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others. Localized approaches of SVMs [31] are based on weighting functions λ(xs, xi) that express the
similarity between the features vectors of the ith data point xi and the test instance xs. For an LS-SVM,
this leads to the following cost function:

min
w, b; e

1
2

wTw + γ
N∑
i=1

λ(xs, xi)e2
i (6)

such that
yi
(
wTϕ(xi) + b

)
≥ 1 − ei and ei ≥ 0, i = 1, 2, ..., N. (7)

For KNN-LS-SVM a binary valued similarity criterion:

λ(xs, xi) =

 1 if
∣∣∣∣∣∣ϕ(xs) − ϕ(xi)

∣∣∣∣∣∣2 ≤ rs

0 otherwise
(8)

where rs is the Kth smallest distance among {|| ϕ(xs) − ϕ(xi)||; 1 ≤ j ≤ N}. This formulation leads to the
hybrid KNN-LS-SVM method [31]. In practice, implementing the hybrid classifier of KNN-LS-SVM, as
shown in Figure 1, starts with receiving an unlabelled new test point xs and finding the nearest K points
from the training set in the feature space. Based on the nearest K points, an LS-SVM model is trained
only with the new subset, hence, for each test point a dedicated model is trained. The advantage of this
localized approach is that it can enhance the classification performance in case of class imbalance, in
addition to the computational and temporal efficiency especially for online modelling and streaming
analytics. For more detail concerning localized learning, reference [31] includes a detailed explanation
of the algorithms.

1 

 

 Figure 1. A flow chart illustrating the algorithm of K-Nearest Neighbours Least Squares Support Vector
Machines (KNN-LS-SVM) classifier.
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2.2. Experiments and Experimental Setup

2.2.1. Test Subjects

In total 25 healthy participants (6 females and 19 males), between the age of 25 and 35 (average age
26 ± 4.2) years, with average weight and height of 70.90 (± 12.70) kg and 1.74 (± 0.10) m, respectively,
volunteered to perform the aforementioned experimental protocol. Detailed physical information
about the test subjects is shown in Table 1.

Table 1. General physical information of the participants (test subjects).

Subject Gender Height (cm) Weight (kg) Age (year)

P1 M 1.69 59 23
P2 M 1.77 75 20
P3 M 1.82 73 29
P4 F 1.61 53 31
P5 M 1.86 88 21
P6 F 1.57 50 22
P7 M 1.73 86 33
P8 M 1.81 67 21
P9 M 1.86 92 36

P10 M 1.65 62 31
P11 F 1.7 61 23
P12 M 1.86 80 23
P13 M 1.82 86 27
P14 F 1.6 51 22
P15 M 1.7 58 29
P16 M 1.75 74 26
P17 F 1.68 76 26
P18 M 1.8 74 29
P19 M 1.78 79 29
P20 M 1.83 81 22
P21 M 1.78 78 28
P22 M 1.81 69 22
P23 F 1.57 49 26
P24 M 1.75 68 24
P25 M 1.78 83 28

2.2.2. Climate Chambers

During the course of this study, three (Rooms A, B and C) climate-controlled chambers designed
and built to investigate the dynamic mental and physiological responses of humans to specific indoor
climate conditions were used. Figure 2 shows a photographic picture of the three climate rooms,
namely, A, B and C. The Body and Mind Rooms are experimental facilities at the M3-BIORES laboratory
(Division of Animal and Human Health Engineering, KU Leuven). The three rooms are dimensionally
identical; however, each room is designed to provide different ranges of climate conditions as shown
in Table 2.

Table 2. Different temperature and relative humidity ranges that can be provided by the different Body
and Mind (A, B and C).

Room Air Temperature Range (◦C) Relative Humidity Range (%)

A +23–+37 50–80
B +10–+25 50–80
C −5–+10 40–60

The three rooms are equipped with axial fans to simulate wind velocities between 2.5 and 50 km h−1.
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Figure 2. Photographic picture of the three climate-controlled rooms (from right to left, A–C).

2.2.3. Measurements and Gold Standards

During the course of the experiments, participants’ heart rate HR, metabolic rate Mr, average
skin temperature Tsk, heat flux qsk between the skin and the ambient air, core body temperature Tc

represented by the aural temperatureTerwere measured continuously. The heart rate of each participants
was monitored with a sampling rate of 128 Hz using the Polar H7 ECG strap that is placed under the
chest. The metabolic rate as metabolic equivalent tasks (METs) of each participant was calculated based
on indirect calorimetry using MetaMAX 3B spiroergometer sensor. The average skin temperature was
calculated based on measurements from three body-places, namely, scapula Tscap, chest Tch and arm
Tarm (Figure 3). The skin temperature measurements were performed using one Shimmer temperature
sensor and two gSKIN® bodyTEMP patches. Two heat flux gSKIN® patches were placed on both the
chest and the left arm (Figure 3). The skin temperatures and heat flux measurements were acquired
at sampling frequency of 1 Hz. Core body temperature was estimated based on aural temperature
measure measurements, which was performed using in-ear wireless (Bluetooth) temperature sensors
(Cosinuss One) with a sampling rate if 1 Hz. At the end of each applied temperature level during the
course of both experimental phases, a thermal sensation questionnaire, based on ASHRAE 7-poins
thermal scale, was performed for each test subject.
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Figure 3. Sensor placement. (A) Ear channel for aural temperature measurement via the Cosinuss
One, (B) upper arm where skin temperature and heat flux are measured with the gSKIN patch, (C)
middle upper chest where skin temperature and heat flux are measured with the gSKIN patch, (D)
lower chest where heart rate is measured with the Polar H7, (E) Scapula where skin temperature is
measured with the shimmer, (F) mouth and nose where metabolic rate is measured via the MetaMAX-3B
spiroergometer sensor.
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2.2.4. Experimental Protocol

The experimental protocol used in the present study was designed in such way to investigate
the subjects’ thermal and physiological responses to three different temperature (low, normal and high)
under two levels of physical activities (low and high).

The three predefined temperatures (low = 5 ◦C, normal = 24 ◦C and high = 37 ◦C) were chosen based
on the thermal-comfort-chart of the ASHRAE-55 [32] and the effects on health according to the Wind
Chill Chart for cold exposure (National Weather Service of the US) and for hot temperatures exposure
according to [33]. The conducted experiments were consisted of two phases (Figure 4, upper graph),
namely, low activity and high activity phases. During the first experimental phase, low activity phase,
the test subjects (while being seated = low activity) were exposed, during 55 minutes, to three levels of
temperatures in the following order: normal, low, high and normal again (Figure 4). During the high
activity phase, the test subjects was exposed to a 15 minutes of light physical stress (80W of cycling on
a fastened racing bicycle). During the course (75 minutes) of the active phase, each test subject was
exposed to the predefined three temperature levels (Figure 4, lower graph). During each temperature
level, starting from the normal level (24 °C), the test subjects are performed 15 minutes of cycling (with
80 W power) and followed 4 minutes of resting (seated). During the course of conducted experiments,
the clothing insulation factor (Col) was kept constant at Col = 0.34, which accounted for a cotton short
and t-shirt as a standard clothing for all test subjects. The experimental protocol was approved by
the SMEC (Sociaal-Maatschappelijke Ethische Comissie), on the 16 January 2019 with number G-2018
12 1464.
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Figure 4. Plots showing the climate chambers’ set-point temperatures programmed during the 55 min
low activity phase (upper graph) and the 75 min high activity phase (lower graph).

3. Results and Discussions

3.1. General Classification Models

In this section, classification models are developed ‘globally’, in other words the classification
models are trained using all available training dataset with the same weight (i.e., all training data-points
are contributing equally to the training process). The whole dataset (N-subjects) are divided, based on
leave-one-subject-out approach (LOSO), into N − 1 subjects for training and 1 subject for testing.
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3.1.1. Developing General Model Using All Extracted Features for 7-Classes Problem (Model I)

Initially, in this stage of developing a general classification model to predict thermal sensation,
in total 54 features have been used to form the input space of the classification model for the 7-classes
classification problem. The extracted features are meant to be simple and basic features that are
not computationally expensive and represent the basic characteristics of segmented time windows.
A feature space includes the mean value of the measured input variables, namely, Ter, HR, qsk, ∆T and
Mr. Additionally, other features are extracted by computing the variance, min, max, root mean squares
(RMS), energy (E = 1

N
∑N

n=1 x2(n), where N is the number of samples of variable x) and first derivative
( dx

dt ) of the aforementioned measured variables as shown in Table 3. The age, gender, body-mass-index
(BMI) and ambient temperature (T∞) are also included in the feature spaces.

The output confusion matrix is computed for each subject based on LOSO testing approach.
The averaged normalized confusion matrix over all test subjects is shown in Table 4 where the value
of each cell (i, j) represents the number of times (as percentage ‘%’) that class j is classified as class
i. Given that the optimal situation is 100% for i = j. From the resulted confusion matrix (Table 4)
the overall accuracy of the developed classifier (Model I) is calculated to be 51%. In Table 4, there is
the prediction result noted as ‘Else’, which represents the case that the classifier could not assign the
test point to any of the presented classes. The error performance of the developed general model is
depicted in Figure 5.

Table 3. Overview of the 54 extracted features (× = selected).

Variance Mean Min Max RMS E d
dt

Ter × × × × × - ×

HR × × × × × - ×

qsk × × × × × × ×

Tsk × × × × × - ×

∆T × × × × × - ×

Mr × × × × × × ×

Tarm × × × × × - ×

Tscap × × × × × - ×

Table 4. The normalized confusion matrix of Model I.

Actual Label (j)

Cold % Cool % Slightly Cool % Neutral % Slightly Warm % Warm % Hot %

Pr
ed

ic
ti

on
la

be
l(

i)

Else 0 0 3.30 2.80 4.20 8.00 6.70

Cold 0 0 0 0 0 0 0

Cool 33.3 52.3 23.4 1.40 0 0 0

Slightly cool 66.7 42.9 40.0 12.7 2.10 0 0

Neutral 0 4.80 33.3 60.6 27.1 0 0

Slightly Warm 0 0 0 19.7 56.3 32.0 13.3

Warm 0 0 0 1.40 10.4 44.0 40.0

Hot 0 0 0 1.40 0 16.0 40.0
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3.1.2. Developing a General Model for 7-Classes Classification Problem with Dimension Reduction
(Model II)

As shown in Table 3, the input space of Model I included all extracted features (54 features)
that were obtained from the measured variables. However, for the sake of the main objective of
the present work, the computational cost of the developed algorithm should be low enough to be
compatible with wearable technology and online modeling. Hence, a feature selection procedure
was employed to obtain the most reduced-dimension input space for the classification model yet
with the best error performance. Feature selection here is based on evaluating all possible feature
combinations and selecting the combination with best error performance. The used feature selection
procedure resulted in a reduced input space of only 12 features with optimal feature combination.

The selected features comprise: gender, age, HR , Ter , Tsk , ∆T , qsk, rms (Hr , Tc , Tsk ,
.
q), and d

.
qsk
dt

(time-derivative of average heat flux). The feature selection step reduced the input space from
54 features to only 12, which effectively reduced the computational costs of the classification algorithm
during online implementation.

The reduced dimension input space, including the selected 12 features, was used to develop a
general classification model for the 7-classes classification problem to predict the thermal sensation of
all test subjects. The resulted classification confusion matrix for the developed general model using the
reduced-dimension input space is shown in Table 5. The results showed an overall accuracy of the
developed classification model of 57% with an improvement of 6% compared to the results of model I.
The overall error performance (sensitively, precision and F1-score) results are shown in Figure 6.
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Table 5. The normalized confusion matrix of Model II.

Actual Label (i)

Cold % Cool % Slightly Cool % Neutral % Slightly Warm% Warm % Hot %

Pr
ed

ic
ti

on
la

be
l(

j)

Else 0 4.79 6.65 0 10.40 16.03 0

Cold 0 0 0 0 0 0 0

Cool 33.20 33.33 0 0 0 0 0

Slightly cool 66.80 57.08 66.69 8.45 2.10 0 0

Neutral 0 4.79 26.66 71.81 22.90 4.03 0

Slightly Warm 0 0 0 18.32 56.25 31.96 6.71

Warm 0 0 0 1.42 8.35 35.99 46.65

Hot 0 0 0 0 0 12.00 46.65

3.2. Class Reduction

From the confusion matrix in Table 5, it can be seen that the confusion is mostly observed between
the adjacent classes. The main reason of such interclass confusion is that the features are not able to
discriminate completely between these adjacent classes. For instance, the actual neutral class (0) is
confused with 8.45% and 18.32% with slightly cool (−1) and slightly warm (1) classes, respectively.
Hence, it is more convenient to reduce the seven thermal sensation classes into three classes representing
thermal comfort (comfortable, uncomfortably cool, and uncomfortably warm). The class reduction is
done based on three criteria, namely, maximum confusion, acceptable class imbalance, and avoiding
overlap between classes. As mentioned earlier, the maximum confusion is observed between the
adjacent classes (see Table 5). However, it is not possible to merge all adjacent confused classes due to
the overlap. For example, the Slightly-Warm class is confused with the Neutral class by 22.9%, on the
other hand, the Warm class is confused with the Slightly-warm by 31.96%. Hence, in order to merge
the Slightly-warm class with the Neutral it should not be merged with Warm and vice versa. Therefore,
merging must avoid any overlap between different classes. Another criterion is the class imbalance, as
shown in Figure 7a and Table 5, where Cold is not recognized by the classifier due to the relatively
very low number of instances labeled as Cold compared to the other classes. For an acceptable class
imbalance, it is meant to consider the already existing class imbalance between the whole states that the
frequency of a state occurrence is reducing by moving far from the Neutral state, as shown in Figure 7a.
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Finally, it is necessary to avoid any overlap between the reduced classes by assigning each state
to only one class. As there are different possibilities to obtain the new three classes, it is found that
three configurations are the closest to the thermal comfort levels, considering the earlier mentioned
criteria. Based on these criteria the seven classes were reduced into three classes with three different
configurations as follows:

• Configuration 1 Merging the states of Cold (−3) and Cool (−2) into ‘Class 1’ (27 instances), merging
Slightly cool (−1), Neutral (0), and Slightly warm (1) into ‘Class 2’ (149 instances), and merging
Warm (2) and Hot (3) into ‘Class 3’ (40 instances) (Figure 7b).

• Configuration 2 Merging the states of Cold, Cool and Slightly-cool into ‘Class 1’ (57 instances),
Neutral as ‘Class 2’ (71), and merging Slightly-warm, warm and Hot into ‘Class 3’ (88 instances)
(Figure 7c).

• Configuration 3 Merging the states of Cold, Cool and Slightly-cool into ‘Class 1’ (57 instances),
merging Neutral, and Slightly-warm into ‘Class 2’ (119 instances), and merging warm and Hot
into ‘Class 3’ (40 instances) (Figure 7d).

As shown in Figure 7, each configuration has a different class distribution (i.e., number of instances
per class).
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Figure 7. (a) A histogram of 7-class thermal sensation scale of ASHRAE system. (b) A histogram
of 3-class thermal sensation of Configuration 1. (c) A histogram of 3-class thermal sensation of
Configuration 2. (d) A histogram of 3-class of Configuration 3.

Developing General Models with the Selected Features for 3-Classes Problem with Different Class
Configurations (Model III)

The error performance results of the developed classification model (Model III), based on the
12 selected features, for the three labelling configurations (Conf. 1, Conf. 2 and Conf. 3) are shown in
Table 6. Comparing the three configurations is not consistent, as for each configuration, the number of
data-pointdata-points change, which influences the performance especially for such small size dataset.
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Table 6. The error performance (precision, sensitivity, F1-score, and accuracy) of general Least Squares
Support Vector Machine (LS-SVM) model for the three different 3-class configurations.

Configurations Classes Precision Sensitivity F1-Score Accuracy

Conf. 1

Class 1 0.53 0.37 0.44

0.81Class 2 0.83 0.89 0.86

Class 3 0.79 0.75 0.77

Conf. 2

Class 1 0.88 0.88 0.88

0.81Class 2 0.75 0.66 0.70

Class 3 0.82 0.89 0.86

Conf. 3

Class 1 0.88 0.88 0.88

0.85Class 2 0.88 0.91 0.89

Class 3 0.88 0.78 0.83

3.3. Personalized Classification Models

In order to develop online-personalized models, it is necessary to consider two main challenges,
first the developed model should be able to handle the new, personal, data in the training set.
Additionally, the developed model should be adapted to the new personal data without any bias to the
majority of the old (non-personal) data. Different approaches are used to handle these challenges such
as incremental learning methods [34], which work on adapting and retuning the parameters of the
general model based on the newly collected data. Another approach is the localized learning, which
is based on developing a local model for each test point or subset of the test set [35]. In the present
paper, the KNN-LS-SVM localized learning approach is used because of its simplicity and efficiency.
Two techniques were used to test the localized models, the first based on LOSO testing approach, and
the second approach was based on leave-one-out (LOO) testing approach.

3.3.1. Developing Personalized Models Using the Selected 12 Features and Different
Class-Configurations Based on LOSO Testing Approach

As explained earlier, to develop a personalized classification model the new personal data were
not considered in the training set to compare the performance with the global model. In other words,
the new subject (the subject data that left out of the training set) is completely unknown to the model,
which simulates the case when the model is dealing with an unknown test subject. The used localized
learning approach of KNN-LS-SVM searches for the most similar (based on the similarity criterion, see
(3)) training points to the new test point (from the new subject) in the input space by which a local
model is developed to classify this test point. The resulted error performance (precision, sensitivity,
F1-score, and accuracy) of the KNN-LS-SVM classifier based on LOSO testing approach and K = 5 is
presented in Table 7.
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Table 7. The error performance (precision, sensitivity, F1-score, and accuracy) of the localized model
KNN-LS-SVM model for the three different 3-class configurations based on leave-one-subject-out
(LOSO) testing approach.

Configurations Classes Precision Sensitivity F1-Score Accuracy

Conf. 1

Class 1 0.47 0.36 0.41

0.83Class 2 0.84 0.90 0.87

Class 3 0.83 0.71 0.77

Conf. 2

Class 1 0.84 0.95 0.89

0.81Class 2 0.74 0.68 0.70

Class 3 0.84 0.83 0.83

Conf. 3

Class 1 0.87 0.94 0.90

0.85Class 2 0.88 0.89 0.88

Class 3 0.86 0.74 0.79

3.3.2. Developing Personalized Models Using the Selected 12 Features and Different
Class-Configurations Based on Leave-One-Out (LOO) Approach

In contrast with the first approach, for each subject one data-point is tested and the rest of the
same subject data-pointdata-points are integrated with the training data. This approach mimics online
personalized streaming modelling, since the new streaming personal data is considered in the training
dataset and a dedicated classifier is developed online for each new test data-point. The obtained error
performance of the KNN-LS-SVM classifier based on LOO testing approach and K = 5 is depicted in
Table 8.

Table 8. The error performance (precision, sensitivity, F1-score, and accuracy) of the localized model
KNN-LS-SVM model for the three different 3-class configurations based on leave-one-out (LOO)
testing approach.

Configurations Classes Precision Sensitivity F1-Score Accuracy

Conf. 1

Class 1 0.75 0.56 0.64

0.86Class 2 0.87 0.93 * 0.90 *

Class 3 0.86 0.78 0.82

Conf. 2

Class 1 0.84 * 0.95 * 0.89 *

0.79Class 2 0.71 0.62 0.66

Class 3 0.81 0.83 * 0.82

Conf. 3

Class 1 0.84 * 0.91 0.87

0.87 *Class 2 0.89 * 0.88 0.88

Class 3 0.89 * 0.80 0.84 *

* indicates the highest error performance value for each class in the different configurations.

For the proposed personalized models, the first approach of LOSO is mimicking the case that the
model is applied to an unknown subject to predict individual’s thermal sensation level based on the
measured variables. The localized model is searching for the most similar (nearest) training points to
each test point, of this subject, that to train the classification model for each test point. This approach
could be useful in case of having a large amount of data with a diversity of subjects especially in the
absence of streaming data from new subjects. The second approach of LOO mimics the case of having
a prior knowledge about the test subject through personally labelled data. The localized model in this
approach is also searching for the most similar training points, which may include this subject personal
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data. This approach can be efficient in the presence of streaming personal data that is labelled by the
test subject.

3.4. Streaming Algorithm Approach for Personalized Thermal Sensation Monitoring

In this paper, we introduce the main framework of streaming algorithm for personalized
classification model to predict individual’s thermal sensation based on streaming data obtained
from wearable sensors. The main framework of the proposed streaming algorithm approach is depicted
in Figure 8.
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thermal sensation monitoring.

The main components of the proposed algorithm (Figure 8) are explained in the following:

- Streaming data

The availability of the real-time sensors data, from the wearable technologies, has given the
possibility of streaming data, which processed via the proposed online streaming algorithm to adapt
and personalize the classifier model. The streaming data includes:

I. Wearable sensor data, which consists of the continuously measured variables, namely, individual’s
heart rate, skin heat flux, skin temperature, ambient temperature and aural temperature.

II. Data obtained from the interactive mobile App., which consists of personal data, namely, age
and gender. Additionally, the individual’s thermal sensation vote is to be obtained via mobile
application-based questioner.

The workflow procedures of streaming data acquisition and labelling are depicted by the flowchart
shown in Figure 9.

- Feature extraction

As shown earlier, the selected 12 features are extracted from the continuously measured variables,

namely, HR , Ter , Tsk , ∆T , qsk, the rms of (Hr , Tc , Tsk ,
.
q), and d

.
qsk
dt . Other personal futures, namely,

age and gender are to be obtained via the interactive mobile App. from individual users.

- Labelled data

All training data must be labelled, either the old training data or the new personal data. Personal
data is labelled manually via the questionnaire provided by the mobile App.
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- Unlabelled data

Unlabelled data is the new data points to be labelled by the classifier, these unlabelled data points
include the extracted features from the measured variables.

- Localized Learning Algorithm

The localized learning algorithm (i.e., KNN-LS-SVM) is the classifier that receives the unlabelled
data points and train a dedicated model with the K nearest training points in order to label the
unlabelled ones. The output of this process is a predicted label of personal thermal sensation (T̂S).Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 19 
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4. Discussion

The main advantage of the proposed classification model in the present work, in comparison with
other proposed models in recent studies (e.g., [17,22,25,28]), is its capability to handle the requirements
for adaptive personalization and online streaming modelling. Moreover, the proposed model is
reduced-dimension, with the minimum possible number of features, which makes it computationally
suitable for smart wearable technologies.

The main results and findings of the present study is compared with recent studies
that treat the prediction of the thermal sensation/comfort as a classification problem using
machine-learning techniques.

In their study [27], Ghahramani et al. used HMM classification technique, in which three classes
of thermal comfort, namely, comfortable, uncomfortably cool and uncomfortably warm are used.
An important point to be considered in the work of Ghahramani et al. [27] is the class imbalance in
their used experimental data between the positive class (comfortable), which represents 81% of the
data and the negative class (uncomfortable), which represents only 19% of the data. Therefore, using
the classification accuracy (reported 82.8 %) is considered misleading in this case. Hence, it is much
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more suitable in their case to compare the precision and sensitivity of this model and our general
model (Model III Conf. 3). The reported results [27] of Ghahramani et al. showed a precision of 93.3%
and sensitivity of 56.22% without clarifying the precision and sensitivity of the uncomfortable states
of warm and cool. On the other hand, our results of (Model III Conf. 3), which is the closest to the
compared approach, show a precision of 88% for all classes and sensitivity of 88%, 91%, and 78% for
Class 1, Class 2, and Class 3, respectively. These results show more balance between precision and
sensitivity for each class. Moreover, personalization and streaming algorithm compatibility is missing
in their study.

Another relevant study [28], by Jiang et al., attempted to develop a personalized classification
model, as for each subject, a classification model is trained with 50% of that subject data and tested
with the rest. The reported result of this study [28] showed an average accuracy over all subjects
of 89.82%. However, there is no clarification of the class distribution; hence, it is not clear whether
the accuracy is efficient enough for evaluation. Moreover, it is not consistent to compare our final
personalized model with that model as the latter is learned with seven classes; however, the former is
learned with three classes.

In another comparable study [25] to our present work, Farhan et al., predicted individual thermal
comfort using machine learning classifier. In their study Farhan et al., used publicly available dataset
from which a balanced number of each class is chosen to train and test the classification model.
Their developed classification model is trained with three classes that represent the three thermal
comfort states of uncomfortably cool, neutral and uncomfortably warm divided based on predefined
comfort thresholds. In contrast to our proposed classification model, the proposed classifiers in [25]
do not consider model personalization or streaming online modelling. The best-obtained results
amongst their developed models are of the SVM classifier as follows: precisions of (76.92, 62.8, and
94.2%) and sensitivities of (67.5, 89.8, and 75.7%) for classes −1, 0, and 1 respectively. On the other
hand, our obtained results of (Model III conf. 3) are precisions of (88, 88, and 88%) and sensitivities
of (88, 91, and 78%) of classes 1, 2, and 3 respectively. It is observed that the precisions of our
developed classification model are more consistent for all classes, and the sensitivities are higher
in total. Ultimately, their approach [25] does not consider personalizing the model or streaming
online modelling.

In another recent study [17], a personal model is discussed; however, it is strictly applied to
two subjects (male and female), unlike the case in the present study where we test the model on
25 test subjects.

After comparing our methodology and results with number of relevant and comparable studies,
it is obvious that the presented study tackled number of classification and modeling challenges unlike
many of the aforementioned relevant works. These challenges included the feature selection and
dimension reduction, considering new streaming personal data into the training set with keeping the
model complexity, rigidness against the problem of class imbalance, and ultimately personalizing the
classification model using easily measured variable obtained from wearable sensors.

5. Conclusions

In this present paper, 25 participants are subjected to three different environmental temperatures,
namely 5 ◦C (cold), 20 ◦C (moderate) and 37 ◦C (hot) at two different activity levels, namely, at low level
(rest) and high level (cycling at 80 W power). Metabolic rate, heart rate, average skin temperature (from
three different body locations), heat flux and aural temperature are measured continuously during the
course of the experiments. The thermal sensation votes are collected from each test subject based on
ASHRAE 7-points questioner. A general classification model based on LS-SVM technique is developed
to predict the individual’s thermal sensation. A localized learning algorithm based on KNN-LS-SVM
approach is used to develop a personalized classification model to predict the individual’s thermal
sensation for 3-classes classification model. The developed classification model has the advantage
of using a reduced-dimension input-space, which is suitable for wearable applications and online
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streaming algorithm. The developed personalized model showed an overall accuracy result of 86%.
Additionally, we introduced the main framework of streaming algorithm based on the developed
personalized classification model to predict individual’s thermal sensation based on streaming data
obtained from wearable sensors. In the present work, we believe that it is the first time to utilize the
localized learning approach in the thermal state classification problem. One of the main advantages of
the proposed approach, in this paper, that it is suitable for streaming algorithm and online modelling as
the computational cost is not influenced by increasing the number of data-points. However, the newly
obtained data-points is to be considered to develop the online model, which is the main advantage
of the KNN-LSSVM. Furthermore, the localized learning approach enables personalization of the
classification model by considering either the personally labelled data-points or the most similar
data-points of other persons. On the other hand, number of limitations, concerning the developed
model, should be acknowledged here. One important limitation to the developed classification model
is regarding to the data size, as the number of data-points per person and in total are generally limited.
Moreover, the 7-classes labeling is unbalanced, which made the class reduction is necessary to enhance
the overall prediction performance during the course of this study. Otherwise, this study would
be extended to be applied to a 7-classes classification problem. The data balance and data size can
be enhanced by asking for more frequent votes during the experiment and considering more than
three environment temperature levels. Finally, another limitation regards the proposed KNN-LSSVM
modeling approach, in which an extra hyperparameter (i.e., K) is to be optimized, which adds an extra
computational cost to the overall streaming algorithm.
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