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Abstract: Code reuse is widespread in software development as well as internet of things (IoT)
devices. However, code reuse introduces many problems, e.g., software plagiarism and known
vulnerabilities. Solving these problems requires extensive manual reverse analysis. Fortunately,
binary clone detection can help analysts mitigate manual work by matching reusable code
and known parts. However, many binary clone detection methods are not robust to various
compiler optimization options and different architectures. While some clone detection methods
can be applied across different architectures, they rely on manual features based on human prior
knowledge to generate feature vectors for assembly functions and fail to consider the internal
associations between features from a semantic perspective. To address this problem, we propose
and implement a prototype GeneDiff, a semantic-based representation binary clone detection
approach for cross-architectures. GeneDiff utilizes a representation model based on natural language
processing (NLP) to generate high-dimensional numeric vectors for each function based on the
Valgrind intermediate representation (VEX) representation. This is the first work that translates
assembly instructions into an intermediate representation and uses a semantic representation model to
implement clone detection for cross-architectures. GeneDiff is robust to various compiler optimization
options and different architectures. Compared to approaches using symbolic execution, GeneDiff is
significantly more efficient and accurate. The area under the curve (AUC) of the receiver operating
characteristic (ROC) of GeneDiff reaches 92.35%, which is considerably higher than the approaches
that use symbolic execution. Extensive experiments indicate that GeneDiff can detect similarity
with high accuracy even when the code has been compiled with different optimization options and
targeted to different architectures. We also use real-world IoT firmware across different architectures
as targets, therein proving the practicality of GeneDiff in being able to detect known vulnerabilities.

Keywords: binary clone detection; Semantic representation; cross-architectures; IoT devices;
real-world vulnerabilities

1. Introduction

Most software development does not start from scratch; instead, to accelerate innovation and
reduce development costs, software developers introduce large amounts of reusable code into their
software. Synopsys, after auditing more than 1100 commercial software packages, reported that more
than 96% of audited software uses open-source code [1]. More than half of these software files include
more than one reusable open-source software package [2].

Code reuse has gradually become an uncontrollable issue. Some developers opportunistically
plagiarize other software code [3], possibly causing GNU General Public License (GPL) infringements.
In addition, code reuse has exacerbated security issues. These issues also exist in the internet
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of things (IoT) devices [4]. The reusable code in IoT devices, as in any traditional application,
may contain vulnerabilities or programming bugs. Code containing vulnerabilities is widely used,
which accelerates the spread of vulnerabilities and aggravates the hazards presented by these
vulnerabilities. For example, Heartbleed (common vulnerabilities and exposures (CVE)-2014-0160) is
a vulnerability in OpenSSL, and many IoT device source projects reuse the OpenSSL code, thereby
introducing the Heartbleed vulnerability [5,6] into their IoT devices. Statistical studies have shown
that 26.66 billion IoT devices will be deployed by 2019 [7], causing the issue of reusable code
introducing known vulnerabilities into IoT devices to become a grim concern. More seriously, some
IoT device developers, for convenience, may directly copy and paste code from Google searches.
Such copied code may come from code snippets shared from various GitHub authors’ projects and
technical blogs, and this copied code is not maintained. This increases security threats to the software
development ecosystem.

To address these issues, researchers need to analyze suspicious software code. However, it is
difficult to obtain the source code from IoT devices and commercial software. Therefore, solving these
problems usually requires substantial reverse-engineering work. However, reversing software is
substantially more difficult than programming software. To address this problem, software clone
detection methods can significantly reduce the burden of manual analysis during reverse engineering.

There are many clone detection methods for mono-architecture [3,8–12]. However, many software
programs, especially IoT firmware applications, are compiled into binaries for different instruction set
architectures (ISAs) depending on the intended runtime environment, which makes mono-architecture
clone detection ineffective. Some cross-architecture clone detection methods utilize symbolic execution
and theorem provers to evaluate the similarity of binaries [13,14]; however, such methods are
too expensive to be applied to large codebases. Other clone detection methods use statistical
features [4,15,16], such as the number of specific instructions and the number of basic blocks, to detect
the similarity between two binaries. These approaches generally fail to consider the relationships
between features. For example, fopen and fclose functions often appear in pairs.

After disassembly, a binary can be represented in some assembly language. Natural language
processing (NLP) has been used to help with various language text analysis tasks, such as semantics
analysis [17]. Paragraph vector-distributed memory approach (PV-DM) neural network [17] can learn
vector representations for each word and each paragraph, and map words a similar meaning to a
similar position in the vector space. Inspired by the PV-DM model in NLP, we found that assembly code
analysis and NLP actually share numerous commonalities, including semantic extraction, classification,
and similarity comparisons, which are common to both code and articles. The amount of data in
NLP is usually very large, indicating high scalability. Therefore, we propose to use a semantic
representation model inspired by PV-DM neural network to solve binary clone detection problems.
Under this approach, instructions correspond to words, basic blocks correspond to sentences, functions
correspond to paragraphs, and binary files correspond to articles.

In this paper, we propose GeneDiff, a semantic-based representation binary clone detection
approach for cross-architectures. To address the differences caused by different architectures,
GeneDiff converts binaries from different ISAs into a Valgrind intermediate representation (VEX)
implementation representation to mitigate the differences. GeneDiff utilizes a novel semantic-based
representation learning model for binaries without any prior knowledge. Inspired by the PV-DM
model in NLP, GeneDiff uses a large number of binary files to train a semantic representation learning
model. Then, GeneDiff utilizes the representation model to map assembly functions from different
ISAs into high-dimensional numeric vectors. To match similar functions, GeneDiff uses cosine
distance to evaluate the similarity between high-dimensional vectors of the functions, which makes
the clone detection approach scalable. In particular, GeneDiff’s matching efficiency is much higher
than approaches that use symbolic execution (see Section 5.3).

The contributions of this paper are as follows:
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• We propose and implement GeneDiff, a semantic-based representation binary clone detection
approach for cross-architectures. This is the first work that converts the assembly instructions
into a VEX intermediate representation and uses a semantic representation model to implement
clone detection for cross-architectures.

• We use real-world IoT firmware across different architectures as targets, therein proving the
practicality of GeneDiff in being able to detect known vulnerabilities for IoT devices. In addition,
GeneDiff can reduce the burden of manual analysis during reverse engineering, which can be
used in many applications, such as detecting code plagiarism or malware.

• The results of our experiments show that it is feasible to analyze the intermediate representation
to achieve cross-architecture clone detection using NLP techniques. In addition, many prior
systems that use assembly code as a feature for binary clone detection [14–16,18], could benefit
from GeneDiff, which uses the intermediate representation to mitigate the differences between
different architectures.

The remainder of this paper is organized as follows. In Section 2, we review the related literature.
In Section 3, we formally define the problem of this study. In Section 4, we thoroughly describe the
design of GeneDiff. Section 5 presents our experiments. Section 6 reports the results of detecting
known vulnerabilities using real-world IoT firmware. In Section 7, we discuss why GeneDiff performs
well and its limitations. Finally, Section 8 concludes the paper.

2. Related Work

Clone detection, or plagiarism detection, in software has long been a focus of software engineering
and security research. Researchers have proposed a variety of solutions; these can generally be divided
into mono-architecture detection and cross-architecture detection.

Mono-architecture Detection. Mono-architecture detection methods can be subdivided according
to features. CCFinder [19] and CP-Miner [20] find equal suffix chains based on code tokens, which
indicate potential code plagiarism. Jiang et al. [21] proposed Deckard to convert abstract syntax trees
into numerical vectors for clone detection. However, these solutions require source code support and
cannot be applied to closed-source software binaries.

For binaries, BinHunt [9] and its successor iBinHunt [10] relied on symbolic execution and a
theorem prover to check the semantic equivalence between basic blocks. CoP [3] also used a theorem
prover to detect the parts of cloned code. However, these methods require expensive computation and
are not practical for large binary projects.

BinDiff [12] is a commonly used commercial clone detection application supported by IDA
Pro that works on multiple architectures. BinDiff can achieve a many-to-many comparison of
functions in binaries. However, BinDiff requires manually selected features, and it loses the
instruction semantics and dependency information. Tracelet [8] decomposes assembly functions
into continuous traces and uses the editing distance between two traces to measure their similarity.
Other approaches use birthmarks to facilitate detection. Myles et al. [22] proposed an approach based
on opcode-level k-grams as birthmarks. Jhi et al. [11] proposed a method that used value-based
program characterization to address software plagiarism. Wang et al. [23] introduced system call-based
birthmarks, which can detect similarities in programs that invoke sufficient numbers of system calls.

Cross-architecture detection. As the popularity of IoT device has increased, researchers have
proposed clone detection methods applicable to cross-architecture binaries. BinGo [24] used randomly
sampled values to compare I/O values. Pewny et al. [13] proposed a method for detecting similarity at
the function level across different architectures. Their method translates binary code into the VEX [25]
and uses fuzzing basic blocks to match similar parts; however, their method is too expensive to be
scalable to large codebases. Although Esh [14] utilizes statistical pre-filtering to boost the theorem
prover and has a significant effect, the method is still too computationally expensive.

DiscovRE [4] utilizes pre-filtering to boost the control flow graph (CFG) matching of binary
functions. Genius [15] is an advanced bug search tool that uses machine learning to convert the CFGs
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of functions into vectors for similarity comparison. Gemini [16] also uses deep learning to convert
CFGs and other descriptive statistical features into numeric vectors for comparison.

However, the above methods based on symbolic execution are too time-consuming to be useful
on large codebases, while the state-of-the-art static approaches fail to consider the relationships
between features. They measure similarity based on statistical features such as the number of
specific instructions, the number of basic blocks, CFGs and other features based on prior human
knowledge. These approaches assume that each feature is independent and may not consider the
associations between features. For example, the memcpy libc function is similar to the strcpy function.
Asm2Vec [26] does not require prior knowledge; it uses an NLP model to produce numeric vectors for
assembly functions in mono-architecture scenarios. Zuo et al. [18] learned using neural machine
translation and proposed a solution based on a siamese network for cross-architecture binaries.
Compared with Asm2Vec [26] and reference [18], GeneDiff converts assembly functions of different
ISAs into VEX functions and utilizes a semantic representation model to generate representation vectors
for all the functions. Another difference is that GeneDiff treats a combination of VEX instructions as a
word. The VEX intermediate representation converts an individual assembly instruction into multiple
VEX instructions, and generating a semantic representation for each VEX instruction is similar to
interpreting the semantics of each letter in “apple”, so GeneDiff regards the combinations of VEX
instructions as words in NLP.

3. Problem Definition

We focus on binary-oriented clones at the function level. Two assembly functions are similar,
if they share similar functional logic in their source code, even though they may be slightly different in
terms of syntax.

In order to apply to IoT devices from different architectures, it requires detection approaches to
detect similar parts across different architectures. Our research focuses on high-power IoT devices
(including their software), which are compiled for 32-bit architectures (i.e., X86, ARM, and MIPS) and
64-bit architectures (i.e., AMD64, AArch64, and MIPS64). These IoT devices usually play essential roles
in the IoT, such as routers in industrial IoT and wireless routers in Smart Home. They can provide
data communication and management control for other wireless sensors and actuators in the IoT. It is
worth noting that low-power IoT devices are not included in our research.

Given an assembly function, our goal is to search for its semantic similar functions from the
function representation repository. We formally define the detection problem as follows:

Definition 1. Given a target binary from one of the architectures in {X86, ARM, MIPS, AMD64, AArch64,
MIPS64}, the problem is to match the top-k semantic similar functions from the repository for each assembly
function of the binary.

4. The Design of GeneDiff

4.1. Overview

GeneDiff is a novel binary-oriented clone detection approach based on semantic similarity for
cross-architectures. Figure 1 provides a flowchart. GeneDiff includes two operating modes: a training
mode and a query mode. In Figure 1, the grey line indicates the flow of the training mode, which is
utilized to generate the function representation repository, while the orange line indicates the flow
of the query mode, which is used to detect the target binaries. GeneDiff’s architecture is shown
in Figure 2. GeneDiff has three components: a preprocessor, a semantic representation model and a
detection model.
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Figure 1. The flowchart of GeneDiff.
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Figure 2. Architecture of GeneDiff. GeneDiff is composed of a preprocessor, a semantic representation
model and a detection model.

In GeneDiff’s preprocessor, GeneDiff uses a binary extractor to extract data from binaries,
including architecture types, compilers, call graphs (callers and callees), function information,
basic blocks and assembly code. Then, the assembly code is converted into a VEX intermediate
representation by a PyVEX translator at the function level. To address the out-of-vocabulary
(OOV) issue, GeneDiff also abstracts some low-frequency (possibly single-occurrence) words in
the preprocessor.

In GeneDiff, the semantic representation model is used to build a representation learning model for
intermediate representation functions. Before training, GeneDiff used a callee expansion to expand the
CFG of functions, and utilized a multi-path generation to generate multiple paths as training sequences.
In the training mode, the semantic representation model utilizes the provided training data to update
the values of the word matrix without prior knowledge. For each function, the model generates a
semantic-based high-dimensional vector representation that is stored in the function representation
repository. In the query mode, the model does not update the word matrix; instead, it uses the
word matrix constructed by the training model to generate a high-dimensional representation of each
function in the target binaries.
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After generating vector representations of the target functions, the detection model compares
them with the vectors in the function representation repository by using cosine similarity and outputs
the top-k results.

4.2. Intermediate Representation

Intermediate representation (IR) is a type of abstract code designed to provide an unambiguous
representation of the binary. IR can convert binaries from different ISAs into the same abstract
representation, which makes it easier to analyze cross-architecture binary code. Our work uses
PyVEX [27] as an intermediate representation.

PyVEX exposes the VEX module from Valgrind [25], which provides a series of python application
programming interface (API) interfaces. It is a side-effect-free representation of different ISAs (such
as MIPS, ARM, and AMD). To solve the problem of the differences between different architectures,
VEX possesses the following features:

Consistent registers. Although the quantity and names of registers vary according to the
architecture, each type of architecture contains several general-purpose registers. VEX provides
a consistent abstraction interface with memory integer offset for the registers of different architectures.

Memory operation. Different architectures also access memory differently. Some architectures
support memory segmentation using special segment registers. VEX abstracts these differences as well.

Side-effects representation. Many instructions have side effects. For example, on the AMD64
architecture, an add instruction may update the condition flags (OF or CF). For instruction side effects,
VEX updates only certain operations, such as the stack pointer. Other side effects, such as condition
flags are not tracked.

VEX possesses four main abstract object classes: (i) expressions represent a calculated or constant
value, (ii) operations describe a modification of VEX expressions, (iii) statements describe model changes
in the state of the target architectures, and (iv) temporary variables are used to store the temporary
results of expressions. Figure 3 shows a snippet that was compiled into AArch64 assembly and AMD64
assembly. The different ISAs and different registers show differences between the two snippets of
assembly code. These differences increase the difficulty of binary similarity comparisons. After being
converted into VEX code, the snippets have the same format and similar content. In Figure 3, the similar
parts are highlighted by same-colour boxes. This converts the problem of binary similarity comparison
on different architectures into a similar comparison problem of the same IR, which effectively reduces
the analysis difficulty.

put = Buf_size - s->bi_valid;

MOV W22, #0x10
LDR W4, [X20,#0x1734]
SUB W19, W22, W4

mov ebx, 10h
mov edi, [r15+1734h]
mov r12d, ebx
sub r12d, edi

------ IMark ------
PUT(x22) = 0x0000000000000010
------ IMark ------
t40 = GET:I64(x20)
t39 = Add64(t40,0x0000000000001734)
t42 = LDle:I32(t39)
t125 = 32Uto64(t42)

PUT(x4) = t125
------ IMark ------
t45 = GET:I64(x22)
t127 = 64to32(t45)
t44 = t127
t55 = 64to32(t125)
t11 = Sub32(t44,t55)
t129 = 32Uto64(t11)
t53 = t129

------ IMark ------
PUT(rbx) = 0x0000000000000010
------ IMark ------
t40 = GET:I64(r15)
t39 = Add64(t40,0x0000000000001734)
t42 = LDle:I32(t39)
t125 = 32Uto64(t42)
------ IMark ------
t45 = GET:I64(rbx)
t127 = 64to32(t45)
t44 = t127
------ IMark ------
t55 = 64to32(t125)
t11 = Sub32(t44,t55)
t129 = 32Uto64(t11)
t53 = t129

Source code

X86-64 assembly

AArch64 assembly

Vex code converted from AArch64

Vex code converted from X86-64

Figure 3. C source of a snippet from deflate.c in zlib and the assembly code for two architectures.
Except for the registers, the others are almost identical.
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4.3. Word and Paragraph Embedding

Word and paragraph embedding algorithms have been used to help with various text analysis
tasks such as semantics analysis [17] and document classification [28].

The PV-DM model [17] is an extension of the original word2vec model and is designed for
paragraph vectors and word vectors. A trained PV-DM model can generate paragraph semantic
vectors for each paragraph according to the words in the paragraph. These paragraph semantic
vectors can be used for semantic analysis and similarity analysis at the paragraph level. In binary
semantic analysis inspired by NLP, instructions correspond to words, basic blocks correspond to
sentences, functions correspond to paragraphs. GeneDiff is a clone detection approach at the function
level, which means that GeneDiff has similar application scenarios with PV-DM model. Besides,
PV-DM model is a popular NLP technique for generating paragraph vectors, so we learn from PV-DM
model to build a representation learning model for intermediate representation functions.

For example, given a text paragraph that contains many sentences, reference [17] utilized PV-DM
to predict a center word from the context words and a paragraph id. Figure 4 details the method.
As shown in Figure 4, given a paragraph p from a document D and given a sentence s, with the words
“A cat slept on the sofa”, the model utilizes a sliding window to address the words in the sentence.
The sliding window, with a size of k, starts from the beginning of the sentence and slides forward the
end. The sliding window in Figure 4 contains “a”, “cat”, “slept”, “on” and “the”. The model would
learn to predict the target word “slept”, which is in the middle of the sliding window.

Average/Concatenate

Paragraph id Word Vector Word Vector

A cat slept on the sofa.

Word Vector Word Vector

a cat on the

Word Vector slept

Figure 4. The model of the word and paragraph embedding.

First, the current paragraph is mapped into a high-dimensional vector based on the index of
the paragraph id, and the context words are mapped to vectors with the same dimensions. Second,
the model averages the above vectors to calculate the vector of the target word. Third, the model
utilizes the backpropagation algorithm to update the above vectors. Its purpose is to maximize the
following expression:

D
∑
p

p

∑
s

|s|−k

∑
t=k

log(P(wt|p, wt−k, . . . , wt+k)), (1)

where |s| is the length of sentence s. Finally, the model obtains the appropriate vector representations
of the words. However, because assembly code and intermediate representations have more complex
associations than plain text, such as control flow and richer syntax, the NLP models cannot be applied
directly to binary analysis. One aspect of our work is to propose a representation model that can be
applied to the intermediate representation.

4.4. Preprocessor

To find the similarity between different binaries of different architectures and various IoT devices,
GeneDiff utilizes the preprocessor to extract data from the binaries. First, the preprocessor utilizes
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a Python script via IDA Pro [29] as a binary extractor to extract metadata about the binaries such as
their architecture type, imagebase, import tables, hash value, endians and compilers. This metadata
effectively helps the preprocessor to select a reasonable solution to further analyze the binaries.
For example, architecture type, imagebase and endians can be used as parameters to generate
intermediate representations. After confirming the metadata about the binaries, the preprocessor
extracts the name, callers, callees, basic blocks, bytecode and assembly code for each function in the
binaries. Table 1 shows the details of the extracted information.

Table 1. List of extracted information.

Level Class Type

Binary level

Architecture Types MIPS/ARM/AArch64/X86/X86_64

Imagebase Integer

Import Table List

Hash value Hex

Endian Little-Endian/Big-Endian

Compiler GNU C++/Visual C++

Function level

Function name String

Caller List

Callee List

Basic blocks Graph

Bytecode Bytes

Assembly List

After extracting the metadata required to analyze the binaries, the preprocessor converts the
bytecode into VEX via a PyVEX translator. A large number of low-frequency words are imported
during this phase. For example, large numbers of numeric constants (e.g., a number in the range
[−232, 232]) and strings would make the word corpus too large, while these words may appear less
frequently; in addition, it is difficult to accurately obtain their semantic word vectors. When a word that
never appeared during training is present in the target binaries, it is called an OOV word. An attempt
to generate a vector for such words will fail. Considering the OOV issue, our Python script abstracts
some of the low-frequency words into tags during the conversion. The details of these abstraction
rules are listed in Table 2.

Table 2. List of abstract rules.

Tag Name Representation

<Num_Tag> Number Constants
<Func_Tag> Function Names
<Str_Tag> Strings

<Other_Tag> Others

Note that the abstraction rules are applied in both the training and query modes. This approach
significantly reduces the size of the word corpus and makes the trained model more practical for
further research. Some architectures and some IoT devices have their unique instructions, which may
impact the clone detection accuracy. For the unique instructions of different architectures and various
IoT devices, GeneDiff removes their unimportant instructions and unifies the necessary instructions
(e.g., registers), which can reduce the number of differences and keep the high clone detection accuracy.
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4.5. Semantic Representation Model

Inspired by the PV-DM model, we proposed a novel semantic-based representation learning
model for binaries. In this semantic representation model, every VEX instruction is treated as a letter,
and combinations of VEX instructions are regarded as words in the NLP models, basic blocks are
regarded as sentences, and functions are regarded as paragraphs. Therefore, the model for the semantic
representation vector of functions can learn from the model of paragraph vectors, although they have
certain differences. Compared with the extraction of paragraph vectors, the extraction of the function
vector differs primarily in the following ways: (i) the calling relationships between functions are
complex, (ii) the execution flows of the functions have multiple paths, and (iii) each expression consists
of multiple parts. To address these differences, GeneDiff utilizes the following scheme.

Callee expansion. In software code, a function often calls another function (the callee) to
achieve some goals. When compiling source code into binary files, the compiler may apply compiler
optimization techniques to these functions. Function inlining is one such compiler optimization
technique. This technique can extend callees in callers to eliminate the call overhead and improve the
performance of the binaries. In binary similarity comparisons, however, such techniques may produce
obstacles because they substantially modify the control flow graph of the caller function.

Figure 5 shows three examples of calling a function. Figure 5a,b perform the same function using
a normal call and function inlining, respectively. When using function inlining, the CFG of the function
of Figure 5b is significantly different from the CFG of the original function in Figure 5a. To perform a
similarity comparison in this case, if callee expansion of the original function is not performed, the two
functions may be considered as different. If we use callee expansion for all callees without distinction,
then the situation in Figure 5c will be questionable. In Figure 5c, the length of the callee is much greater
than the length of the original function. Thus, callee expansion of the callee (sub_400526) in the original
function may cause the expanded original function to be similar to the callee.

push    rbp
mov     rbp, rsp
sub       rsp, 8
mov     [rbp+var_4], edi
mov     [rbp+var_8], esi
mov     edx, [rbp+var_8]
mov     eax, [rbp+var_4]
mov     esi, edx
mov     edi, eax
call       sub_400526
add      eax, eax
leave
retn

push    rbp
mov     rbp, rsp
mov     [rbp+var_4], edi
mov     [rbp+var_8], esi
mov     eax, [rbp+var_4]
cmp eax, [rbp+var_8]
jle short loc_40053D

mov     eax, [rbp+var_4]
jmp short loc_400540

loc_40053D:
mov     eax, [rbp+var_8]

loc_400540:
pop      rbp
retn

(a)

push    rbp
mov     rbp, rsp
mov     [rbp+var_14], edi
mov     [rbp+var_18], esi
mov     eax, [rbp+var_14]
mov     [rbp+var_8], eax
mov     eax, [rbp+var_18]
mov     [rbp+var_4], eax
mov     eax, [rbp+var_8]
cmp eax, [rbp+var_4]
jle short loc_400549

mov     eax, [rbp+var_8]
jmp short loc_40054C

loc_400549:
mov     eax, [rbp+var_4]

loc_40054C:
add     eax, eax
pop     rbp
retn

(b)

push    rbp
mov     rbp, rsp
sub       rsp, 8
mov     [rbp+var_4], edi
mov     [rbp+var_8], esi
mov     edx, [rbp+var_8]
mov     eax, [rbp+var_4]
mov     esi, edx
mov     edi, eax
call       sub_400526
add      eax, eax
leave
retn

……

More than 100 instructions, 
and the control flow graph 
is complicated.

……

(c)

Figure 5. Examples of calling a function. (a) An example of calling a function normally; (b) an example
of calling a function using inlining; (c) an example of calling a function that possesses more than
100 instructions and whose control flow graph is complicated.

Considering the above cases, the callee expansion approach used by GeneDiff is shown in
Algorithm 1. We use f to represent the original function, fc to represent a callee function, and ‖ f ‖ to
indicate the instruction length of f . GeneDiff does not expand callees when they satisfy the following
two conditions: (i) callees are not in the list of the data repository (Algorithm 1, Line 3), (ii) the ratio
of ‖ fc‖ to ‖ f ‖ is greater than a threshold, and ‖ fc‖ is greater than numIns. In this study, numIns and
threshold are set to 10 and 0.5 respectively.

Multi-path generation. In assembly functions, instructions are usually not executed in order,
and there are usually multiple execution paths. Given a function f , we obtain a CFG G f from the data
repository of GeneDiff. Then, we randomly pick edges from G f and expand them into sequences seq
until all the basic blocks in G f are fully covered. The pseudocode of this multi-path generation process
is given in Algorithm 2.
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Algorithm 1: Callee expansion
Input: A given function f .

1 calleeList← getCallees( f );
2 for each fc in calleeList do
3 if fc not in DataRepository.allFunctions() then
4 continue;

5 if ‖ fc‖
‖ f ‖ > threshold && ‖ fc‖ > numIns then

6 continue;
7 Expand( f , fc)
8 return Paths;

Algorithm 2: Generating multiple paths
Input: A given function f .
Output: A collection of multiple paths Paths.

1 G f ← DataRepository.getCFG( f );
2 Paths← ∅;
3 blks← ∅;
4 for each edg in shuffle( G f ) do
5 if edg in blks then
6 continue;
7 seq← ∅;
8 node← edg;
9 while prev( node ) do

10 if prev( node ) \ blks then
11 node← rand( prev( node ) \ blks );
12 seq ∪ node;
13 continue;
14 node← rand( prev( node ));
15 seq ∪ node;
16 node← edg;
17 while next( node ) do
18 if next( node ) \ blks then
19 node← rand( next( node ) \ blks );
20 seq ∪ node;
21 else
22 node← rand( next( node ));
23 seq ∪ node;

24 Paths← Paths ∪ {seq};
25 blks← blks ∪ seq;
26 return Paths;

This method ensures that all the blocks of f are fully covered. Lines 7–23 of Algorithm 2 are used
to expand an edg into a sequence, where prev( node ) \blks means {x|x ∈ prev( node ) and x /∈ blks}.
To avoid too many blocks being repeated in Paths, unselected blocks are selected first when expanding
edg (Algorithm 2, lines 10–13 and lines 18–20). Finally, we add all the expanded sequences to Paths
and return it. In Paths, every sequence represents a potential execution trace.

Training model. After generating the multiple paths of functions, we take each path as an input,
train a representation learning model based on semantics, and map instructions and functions into
high-dimensional vectors. Figure 6 shows the structure of the model.

For functions in the data repository, we map each function fc into a numeric vector
−→
δ fc ∈ Rd. Each

dimension of
−→
δ fc is initialized to a small random value near zero. Similarly, we map each token of the

data repository into a vector −→v ∈ Rd. Unlike references [18,26], each token in GeneDiff consists of
several VEX instructions from the same assembly instruction. For example, t1 in Figure 6 consists of
three VEX instructions (after deletion). These VEX instructions come from the same IMark(0x4, 3, 0),
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where an IMark represents an assembly instruction. The initialization method of −→v is the same as that
of
−→
δ fc .

······
------ IMark(0x1, 3, 0) ------
PUT(rbp) = t13
PUT(rip) = 0x0000000000000004
------ IMark(0x4, 3, 0) ------
t16 = Add64(t13,0xffffffffffffffec)
t19 = GET:I64(rdi)
t57 = 64to32(t19)
t18 = t57
STle(t16) = t18
PUT(rip) = 0x0000000000000007
------ IMark(0x7, 3, 0) ------
t20 = Add64(t13,0xffffffffffffffe8)
t23 = GET:I64(rsi)
t58 = 64to32(t23)
t22 = t58
STle(t20) = t22
PUT(rip) = 0x000000000000000a
------ IMark(0xa, 3, 0) ------
t24 = Add64(t13,0xffffffffffffffec)
t27 = LDle:I32(t24)
t59 = 32Uto64(t27)
t26 = t59
PUT(rip) = 0x000000000000000d
------ IMark(0xd, 3, 0) ------
t28 = Add64(t13,0xfffffffffffffff8)
t60 = 64to32(t26)
t30 = t60
STle(t28) = t30
PUT(rip) = 0x0000000000000010
······

Add64(tmp, <NUM_TAG>)
GET:I64(rdi)
STle(tmp) = tmp

Add64(tmp, <NUM_TAG>)
LDle:I32(tmp)

𝒇c՜𝜹𝒇c
Vector

Vector

Vector

Average
Add64(tmp,<NUM_TAG>)
GET:I64(rsi)
STle(tmp) = tmp

Vector

𝒕𝟏՜𝒗𝟏

𝒕𝟐՜𝒗𝟐

Figure 6. The structure of the proposed model.

Given a function fc from the data repository, where paths fc represents the multiple paths of
fc, for each path pi in paths fc , the model walks through the basic blocks from their beginning.
When traversing VEX instructions in a basic block, we treat an IMark as a token. When we calculate
−→v of the current token ti, the first k tokens and the last k tokens are treated as the context C.
Simultaneously, we look up the vector representation

−→
δ fc in the previously built dictionary. We use

φ(ti, fc) to represent the average of the neighbour tokens and
−→
δ fc . This can be formulated as follows:

φ(ti, fc) =
1

|Cti |+ 1
(
−→
δ fc +

Cti

∑
−→v

−→v ). (2)

The proposed model attempts to maximize the following log probability:

D
∑
fc

paths fc

∑
pi

pi

∑
tj

log(P(tj| fc, tj−k, . . . , tj+k)). (3)

The prediction task is typically performed via a softmax algorithm, which is a multi-class classifier:

P(tj| fc, tj−k, . . . , tj+k) =
eytj

∑D
d eytd

, (4)

where D denotes all the tokens constructed in the data repository. Each ytd is an un-normalized log
probability for each output token td, computed as follows:

y = b + Uh(tj−k, . . . , tj+k;−→v ) (5)

where U and b are the softmax parameters. According to Equations (2), Equations (3) and (5) can be
rewritten as

y−→vj
= b + Uh(φ(tj, fc)

T ×−→vj ) (6)
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Equation(3) =
D
∑
fc

paths fc

∑
pi

pi

∑
tj

log(P(tj|φ(ti, fc)))

=
D
∑
fc

paths fc

∑
pi

pi

∑
tj

log(
eytj

∑D
d eytd

).

(7)

However, it would be computationally extremely expensive to traverse D for each calculation
because the |D| is too large for the softmax classification. To minimize the computational cost, we use
a k negative sampling model [30] to approximate log(P(tj|φ(ti, fc))).

Then, we calculate the gradients by taking the derivatives of
−→
δ fc and−→vtj in Equation (7). In training

mode, we use back-propagation to update
−→
δ fc and all the involved −→v values based on the gradients.

In query mode, we update only the
−−−→
δ ftarget of the target function.

4.6. Detection Model

In query mode, after generating the vector
−−−→
δ ftarget for a target function, we will detect the

similarity between it and other functions in the function representation repository. Under continuous
development, the function representation repository may eventually possess millions of functions.
Considering search scalability, the detection model uses a cosine distance calculator to calculate the
similarity. The objects of the search are function vectors with fixed dimensions; thus, we utilize
pair-wise similarity to search the top-k vectors closest to

−−−→
δ ftarget .

5. Experiments

In this section, experimental results and analyses are presented to demonstrate the accuracy,
efficiency, and sensitivity of GeneDiff. In our experiments, we utilized the GCC compiler (version
5.4.0) to generate binaries that target different ISAs for the benchmarks. As training and test data,
the benchmarks contained some open-source software packages commonly used by IoT devices. All the
experiments were performed on a computer running an Ubuntu 16.04 operating system and equipped
with a 64-bit Intel(R) Xeon(R) E5-2650 2.00 GHz CPU, 64 GB of RAM, and no GPUs. The experimental
results answered the following questions:

Q. 1 Can the similarity of the instruction vectors generated by GeneDiff indicate the semantic similarity
of assembly instructions?

Q. 2 What is the true positive rate and area under the curve (AUC) of the receiver operating
characteristic (ROC) of GeneDiff in detecting the similarity of functions from different
architectures?

Q. 3 How efficient is GeneDiff at detecting function similarity?
Q. 4 How do the parameters impact GeneDiff’s performance?

Section 5.1 answers Q. 1; it indicates that the similarity of the instruction vectors generated by
GeneDiff can represent the relevance of two instructions from different ISAs. Section 5.2 answers
Q. 2, therein proving that GeneDiff can detect similarity with high AUC-ROC with different compiler
optimization options and targeted different architectures, being higher than the approach using
symbolic execution. Section 5.3 answers Q. 3. This section verifies that GeneDiff is more efficient than
the approach using symbolic execution. Section 5.4 answers Q. 4, revealing the impacts of different
parameters on GeneDiff and confirming the reasonable parameter values for GeneDiff.

5.1. Analysis of Instruction Vectors

In this subsection, we show the relevance of instructions from different ISAs, AMD64 and AArch64
using GeneDiff. First, we use the training dataset to train the representation model; the dimension
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of the instruction vector d is 100, and the number of iterations (iteration) is 50. Then, we extract the
numeric vectors of the combinations of VEX instructions from the trained model and establish a map
M: assembly instructions→ combinations of VEX instructions→ vectors. After obtaining the numeric
vectors for each assembly instruction via the map M, we utilize T-SNE [31] for visualization. T-SNE can
map high-dimensional vector spaces into two dimensions via nearest neighbour approximation,
where a smaller geometric distance indicates a higher lexical semantic similarity. Figure 7 shows
the relationship between assembly instruction vectors mapped onto a two-dimensional space. From
Zoom 1 in Figure 7, the numeric vectors of the mov family instructions from different ISAs are mapped
together in two-dimensional space. In zoom 2, the numeric vectors of the add family instructions from
different ISAs are also grouped together in two-dimensional space.

To better illustrate the similarity in the semantic vectors of instructions of the same family from
different ISAs, we obtain the cosine similarity of the instructions in Zoom 2 from Figure 7. Table 3
shows the results of calculating the cosine similarity of some add family instructions. The cosine
similarity is approximately 1, which indicates that the two instructions are highly similar. It can be
found that two instructions processed in the same bit registers have higher similarity; ADDS X0, X21,
#1 and ADD EAX,1 have lower similarity because they process registers of different bits, and the ADDS
instruction updates the condition flag.

Table 3. The similarity of the add family instructions.

Similarity ADD RAX, 1 ADD EAX, 1 ADD RBX, [RAX+0x10] ADD RBX, [RSP+0x158]

ADD X20, X20, #0x18 0.9992 0.9631 0.9925 0.9925

ADD X1, X1, #1 0.9992 0.9631 0.9925 0.9925

ADD X0, X0, #0x21 0.9992 0.9631 0.9925 0.9925

ADDS X0, X21, #1 0.9540 0.9271 0.9528 0.9528

ADD W19, W19, #1 0.9631 0.9992 0.9416 0.9416

ADD X2, X29, #0x60 0.9992 0.9631 0.9925 0.9925

.. 
.
.

.

.

.

.
ADD   X20, X20, #0x18

ADD  X2, X29, #0x60

ADD  W19, W19, #1

ADD  RBX, [RSP+0x158]

ADD  EAX,  1ADD  RBX, [RAX+0x10]

ADDS  X0, X21, #1

ADD  RAX, 1
ADD  X1,X1,#1
ADD  X0,X0,#0x21

.

.

.

.

.

.

.

.

.

.

.

MOVSXD  RDX, EDX

MOV   X2, #0x100

MOV  W0, #0x457F

MOV   X2, #0x100

MOVK X29, SP

MOV   RDI, R13

MOV   RCX, R13

MOV   RSI, R13

MOV   [RBP+0x30], RAX
MOV  [RBP+0x10], RAX

MOV  W3, #0xFFFFFF80

Zoom 1

Zoom 2

. .

Figure 7. A visualization of assembly instructions from different instruction set architectures.

5.2. Binary Clone Detection

In this experiment, we evaluate whether GeneDiff can detect the similarity of assembly functions.
First, we compare GeneDiff with some popular mono-architecture detection methods (i.e., BinDiff [12],
Graphlet [32], n-gram and LSH-S [33]) on binaries targeted to the same ISA but with different compiler
optimization options. Then, we evaluate GeneDiff in cross-ISAs with different compiler optimization
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options (O0-O3) and compare it with the symbolic execution approach, which is widely used by other
binary clone detection approaches [9,10,13].

In our experiments, the dataset included binaries that were compiled from OpenSSL-1.0.1f,
curl-7.52.1, zlib-1.2.11, libpng-1.6.33, binutils-2.32 and coreutils-8.30, all of which are commonly used
by high-power IoT devices. We divided the dataset into two parts: 80% of the binaries were used
for training, and the remaining 20% were used for testing. In training mode, we used the binaries
in the database to train the representation model to generate numerical vectors for every instruction.
In testing, GeneDiff used these instruction vectors to generate semantic vectors for assembly functions
and detects the similarity. The control group, which utilized the symbolic execution approach, converts
test functions into VEX and uses randomly sampled values to compare I/O values for the functions,
where the sampling bound is 2000.

Table 4 shows the experimental results from the same ISA. The results indicate that the average
AUC-ROC of GeneDiff is higher than those of the mono-architecture detection methods.

In addition, GeneDiff can also detect binary clones in cross-ISAs. Figure 8 shows the experimental
results, where the red line is GeneDiff. Figure 8a shows the ROC curve of the function similarity
detection in the same ISA with different compiler optimization options. The two ROC curves are
close to the top-left border, which means that GeneDiff and BinDiff achieve good accuracy when
comparing binaries targeted to the same ISA. The ROC curve of GeneDiff is closer to the top-left border.
Figure 8b–e shows the ROC curves of similarity detection for functions in different ISAs with the
same compiler optimization options (O0–O3). Note that the ROC curve of GeneDiff in Figure 8b is
very similar to the ROC curve of Figure 8a, but the curve of BinDiff is far from the top-left border;
it indicates that the differences between the different ISAs have little effect on GeneDiff’s similarity
detection performance, but that of BinDiff is seriously affected. Figure 8f shows the ROC curves for
detecting the similarities of functions from different ISAs and with different compiler optimization
options: the red line is GeneDiff, the green line is BinDiff, and the orange line is the control group.
The ROC curve of GeneDiff is significantly closer to the top-left border than the control group, and the
AUC (=92.35%) of GeneDiff is greater than that of the control group’s AUC (=74.47%) and BinDiff’s
AUC (=68.71%), which means that GeneDiff is better than the control group and BinDiff at detecting
function clones across ISAs and across compiler optimization options. Due to the different compiler
optimization options and different ISAs, which change some semantic information of the functions,
the AUC of GeneDiff in Figure 8f is slightly lower than the other AUCs.

Table 4. The area under the curve (AUC) of the ROCs of different clone detection approaches for
different compiler optimization options in the same ISA.

Baselines BinDiff [12] Graphlet [32] n-gram LSH-S [33] GeneDiff

libpng 0.967 0.718 0.845 0.897 0.961
OpenSSL 0.926 0.683 0.819 0.886 0.957
zlib 0.935 0.687 0.786 0.755 0.971
curl 0.924 0.692 0.873 0.904 0.982

Avg. 0.938 0.695 0.831 0.860 0.968
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(a) (b) (c)

(d) (e) (f)

Figure 8. The receiver operating characteristic (ROC) evaluation results based on the test datasets,
where the x-axis is the true positive rate and the y-axis is the false positive rate. (a) Same instruction set
architecture (ISA), cross opts; (b) cross ISAs, O0; (c) cross ISAs, O1; (d) cross ISAs, O2; (e) cross ISAs,
O3; (f) cross ISAs, cross opts.

5.3. Efficiency Test

An efficient binary clone detection tool can help analysts accelerate the process of binary similarity
analysis. In this experiment, we compared GeneDiff with the control group (see Section 5.2) in terms
of detection efficiency.

We compiled binutils-2.32 and OpenSSL-1.0.1f into binaries of different ISAs (i.e., AMD64, AArch64,
and MIPS64). Then, these binaries were divided into several file pairs according to their file names.
We used GeneDiff and the control group to detect file pairs and logged the time taken to detect each
function pair. We found that GeneDiff generally completed the task in much less time than did the
control group. Figure 9 shows the experimental results of two approaches for detecting the sysinfo
file in binutils-2.32 and the libssl file in OpenSSL-1.0.1f; the red line denotes GeneDiff. There are
a total of 137 function pairs in the sysinfo file. GeneDiff successfully found 129 of them in 33.02 s,
whereas the control group found 93 pairs in 177.69 s. Since the two approaches preprocess the target
binaries via IDA Pro [29], the function pairs are not found in either of the approaches in Figure 9
during the initial time period. However, GeneDiff’s preprocessing time was shorter than that of the
control group, and its detection efficiency was much higher than that of the control group. This is
because GeneDiff only converts bytecode into VEX instructions and trims out redundant data during
preprocessing, which makes the implementation faster. GeneDiff leverages the lexical semantics
based on the intermediate representation rather than on symbolic execution: the former is more
scalable and less vulnerable to adverse effects from the differences in architectures and compiler
optimization options.
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(a) (b)

Figure 9. Two examples of detection efficiency: sysinfo in binutils-2.32, libssl in OpenSSL-1.0.1f.
(a) sysinfo; (b) libssl.

5.4. Sensitivity Test

In this experiment, we measured the sensitivity of GeneDiff to the parameters. In particular,
we considered the number of training epochs and the dimensions of the vectors. We also measured the
impact of the abstraction rules on clone detection. By default, GeneDiff utilizes the abstraction rules,
its representation vector dimension is 100, and the number of training epochs is 50.

To better illustrate the impacts of each parameter on clone detection, we used the control variable
method in the experiment. Figure 10a shows the impacts of the dimensions of the representation
vectors on the AUC-ROC, the average training time per function, and the average search time per
function. We note that the AUC-ROC of GeneDiff seriously degrades when the representation vector
dimension is low. The distinctions between instructions are not sufficiently obvious when the vector
dimension is too low. When the vector dimension is increased, the AUC-ROC increase slightly.
However, the average training time per function and the average search time per function increase
sharply. After comprehensive testing, we believe that a reasonable dimension for the representation
vectors is 100.

Figure 10b shows the impacts of the training epoch on the AUC-ROC, the average training time
per function, and the average search time per function. As the number of training epochs increases,
the average training time per function increases linearly, while the average search time per function
shows almost no fluctuations. When the number of training epochs is less than 50, the AUC-ROC
increases rapidly as the number of training epochs increase; when the training epoch number exceeds
50, the AUC-ROC tends to remain stable.

We also evaluated the impacts of the abstraction rules on clone detection. The abstraction
rules can mitigate the binary differences of different ISAs, which makes GeneDiff more resilient to
cross-architecture differences. As shown in Table 5, using the abstraction rules significantly increases
the AUC-ROC and reduces both the training and search time. Using the abstraction rules also reduces
the size of the vocabulary and mitigates OOV issues in query mode. Due to a lack of sufficient
context, the semantics of words that occur at very low frequencies are difficult to represent accurately,
which may increase the convergence time.

Through the sensitivity test, we can confirm the reasonable parameters of GeneDiff, which are a
representation vector dimension of 100 and 50 training epochs.



Appl. Sci. 2019, 9, 3283 17 of 21

(a) (b)

Figure 10. The impacts of dimensions and number of epochs on detection performance. From top to
bottom, the Y-axes are the area under the curve (AUC) of the ROC score, search time and indexing time.
(a) Dimensions; (b) Epoches.

Table 5. The impacts of the abstraction rules on the clone detection performance.

Abstract Rules AUC-ROC Search Time Index Time

Has Abstract Rules 0.9491 0.253 0.831
No Abstract Rules 0.6575 0.576 1.944

6. Real-World Detection

The above experiments evaluated GeneDiff’s overall performance on clone detection for different
ISAs. In this section, we apply GeneDiff in real-world situations to evaluate its detection performance
for known IoT vulnerabilities. This evaluation searched for the Heartbleed (CVE-2014-0160)
vulnerability in OpenSSL binaries from the following sources:

(1) Self-compiled OpenSSL 1.0.1f binaries for different ISAs (i.e., AMD64, AArch64 and MIPS64
(OpenSSL 1.0.1f. Available at https://github.com/openssl/openssl/releases/tag/OpenSSL_1_0_1f));

(2) The OpenWrt r39853 firmware compiled for MIPS, ARM and AArch64 (OpenWrt. Available at
https://github.com/openwrt/openwrt/commit/c2bbaf439c);

(3) The DD-WRT r21888 firmware compiled for MIPS, ARM and AArch64 (DD-WRT. Available at
https://svn.dd-wrt.com/changeset/21888);

OpenWrt and DD-WRT are two open source projects for routers, and some industrial IoT routers
and smart home routers are modified from them. We used the trained representation model to
generate representation vectors for functions in binaries. Then, we treat the vulnerability functions
(dtls1_process_heartbeat and tls1_process_heartbeat) as the target functions and utilize the query mode
of GeneDiff to detect vulnerabilities in binaries from different ISAs. Because the two vulnerability
functions are actually identical, when either of them is matched indicates that the vulnerability exists
in the binaries. Table 6 shows the results of the Heartbleed vulnerability detection of IoT firmware
by GeneDiff on the real-world dataset. These results indicate that using GeneDiff to detect known
vulnerabilities in IoT devices is feasible.

https://github.com/openssl/openssl/releases/tag/OpenSSL_1_0_1f
https://github.com/openwrt/openwrt/commit/c2bbaf439c
https://svn.dd-wrt.com/changeset/21888
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Table 6. Detecting the Heartbleed vulnerabilities in real-world internet of things (IoT) firmware.

Binary Name Target Functions

ARM AArch64 MIPS

OpenSSL 1.0.1f

AArch64 X X X

AMD64 X X X

MIPS64 X X X

OpenWrt
MIPS X X X

ARM X X X

AArch64 X X X

DD-WRT
MIPS X X X

ARM X X X

AArch64 X X X

7. Discussion

The results of the extensive experiments show GeneDiff can detect similarity with high accuracy
across different compiler optimization options and different targeted architectures. In this section,
we discuss why GeneDiff performs well, as well as its limitations.

Unlike existing clone detection methods for cross-ISAs [4,13–16,24], GeneDiff converts assembly
functions from different architectures into the same intermediate representation and generates semantic
vectors for the functions via a representation model inspired by NLP. To address the unique instructions
of different architectures, GeneDiff drops their unimportant instructions and unifies the necessary
instructions (e.g., registers), which reduces the number of differences caused by different architectures
and improves its clone detection accuracy.

In addition, GeneDiff treats each VEX instruction as a letter instead of a word. An assembly
instruction is converted into multiple VEX instructions. Generating a semantic representation for each
VEX instruction is similar to interpreting the semantics of each letter in the word “apple”. Therefore,
in GeneDiff, each VEX instruction is treated as a letter, and the combinations of VEX instructions
are regarded as words. This reduces the number of tokens and increases the diversity of the tokens,
which enriches the semantics of the words.

GeneDiff also suffers from certain limitations. GeneDiff uses VEX as an intermediate
representation. However, VEX is not explicit. For example, VEX uses variables (cc_op, cc_dep1,
cc_dep2, and cc_ndep) to store abstract information about the machine status instead of storing the
status flags directly, which may introduce some deviations. Besides, GeneDiff is designed for 32-bit
architectures (i.e., X86, ARM, and MIPS) and 64-bit architectures (i.e., AMD64, Arch64, and MIPS64).
At this stage, it is not directly applicable for semantic clones for eight-bit or 16-bit IoT devices,
even though its clone search engine is architecture-agnostic. In the future, we will optimize an
intermediate representation to share tokens with low-power IoT devices.

8. Conclusions

Reverse engineering the software of IoT devices targeted to different architectures involves
intensive manual analysis. Fortunately, binary clone detection approaches can reduce the burden of
manual analysis during reverse engineering. In this paper, we propose and implement a prototype
GeneDiff, a semantic-based representation binary clone detection approach for cross-architectures.
GeneDiff utilizes a semantic representation model to generate high-dimensional numeric vectors for
each assembly function based on an intermediate representation, and uses cosine distance to evaluate
function similarity. Compared to the approaches that use symbolic execution, GeneDiff is significantly
more efficient and accurate. The extensive experiments indicate that GeneDiff can detect similarity
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with high accuracy even when the code has been compiled with different optimization options and
targeted to different architectures. We also use real-world IoT firmware across architectures as targets,
thereby demonstrating GeneDiff’s practicality for detecting known vulnerabilities.
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