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Featured Application: With their excellent mechanical properties, carbon nanotubes
(CNTs)/carbon fiber (CF)/epoxy resin (EP) composites can be considered for application as the
flame retardant matrix of CF/EP composites, which are currently used as the advanced composites
in the aerospace field. Also, it can be used as a plugging material in mechanical maintenance.

Abstract: In order to study the effect of carbon nanotubes (CNTs) on the flame retardancy of
carbon fiber (CF)/epoxy resin (EP) composites, CF/EP and CNTs/CF/EP composites were prepared
by solution blending. The flame retardancy and thermal stability were studied by cone calorimetry
and thermogravimetric analysis. It was found that CNTs and CF had a certain synergistic effect on
improving flame retardancy and thermal stability of EP. The peak heat release rate of F7N7, which
represents the EP composites with 0.7 wt % CF and 0.7 wt % CNTs, was minimal. The total smoke
production of F5N5 which represents the EP composites with 0.5 wt % CF and 0.5 wt % CNTs was the
smallest, which was decreased by 43.04% more than the EP. The initial decomposition temperature of
F7N7 was about 14 ◦C higher than that of F7, and the mass loss at Tmax was greatly reduced. The
apparent activation energy of F7N7 is 2.7 kJ·mol−1 more than EP. Finally, the tensile and flexural
strength of the composites were also improved, so it could be applied to a high-performance matrix
of CF/EP composites, which are usually used as the advanced composites in the aerospace field.
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1. Introduction

Carbon fiber (CF) reinforced epoxy resin (EP) composites are widely used in aerospace, automotive,
and electronic fields with its high specific strength, high specific modulus, high temperature, corrosion
resistance, fatigue resistance, and a series of excellent performance [1–3]. However, it will cause varying
degrees of damage to CF due to surface treatment. On the one hand, the impact resistance of composites
will be decreased significantly. The interlaminar shear strength and toughness of composites will
also be less improved. When EP is cured, its texture is brittle, causing the deterioration of its impact
resistance and heat resistance [4,5]. Carbon nanotubes (CNTs) have excellent mechanical properties
and thermal stability because of their unique hollow tubular structure and nanoscale size, which are
ideal for reinforcing materials of composites and can greatly improve the strength and toughness of
polymer matrix composites [6].

Based on the fact that CF and CNTs can effectively improve the overall performance of EP, many
performances of CNTs/CF/EP have been greatly improved when compared with CF/EP composite.
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Kostopoulos et al. prepared carbon nanotube-modified CF/EP composite and found that the mechanical
properties of the composite were improved in terms of rigidity and strength compared to the two-phase
system [7]. Naveed et al. studied the effect of CNTs on the matrix cracks of the three-phase system, and
found that the addition of CNTs significantly delayed the fracture of the matrix, resulting in the fracture
toughness of the composites was increased by 40%, and the heat resistance was reduced, resulting in
a delay in crack deformation of the matrix structure [8]. Ana et al. prepared CNTs modified CF/EP
composites, and the results showed that the flexural strength, Tg and heat distortion temperature of
the three-phase system with 0.3 wt % CNTs were improved [9]. Dong Liu-Bing prepared CNTs/CF/EP
composites by the freeze-drying process, and it was found that the freeze-drying method improved
the dispersion effect of CNTs, which significantly improved the conductivity and flexural strength
of composites as a result [10]. Li et al. found that the hierarchical glass fiber/epoxy resin composites
with 0.5 wt % CNTs-AL2O3 hybrid loading were observed to exhibit an improvement of 19% and
11% in flexural modulus and interlaminar shear strength, respectively. Moreover, the glass transition
temperature was increased by 15 ◦C and the storage modulus at 50 ◦C was enhanced by 20% [11].
Saba et al. prepared the electrodeposition of nanometer size polypyrrole layers on carbon fibers
coated with multi-wall carbon nanotubes and found that the conductivity decreases with increasing
polypyrrole thickness, but all the carbon nanotube-carbon fiber hybrids remain more conductive
than pristine carbon fibers having a sizing coating [12]. Bekyarova prepared carbon nanotube/carbon
fabric/epoxy composites by VARTM, and found that the composites increased by approximately 30% of
the interlaminar shear strength as compared to that of carbon fiber/epoxy composites without carbon
nanotubes and demonstrated significantly improved out-of-plane electrical conductivity [13].

Moreover, there are some researchers investigating the flame retardant and thermal properties
of some additions of reinforced CFRP (Carbn Fiber Reinforced Polymer) composites. Xiao-Hui et
al. fabricated flame-retardant carbon fibers decorated by bio-based polyelectrolyte complexes (PEC)
consisting of chitosan (CH) and ammonium polyphosphate (APP), and its corresponding fire-retarded
epoxy resin composites (EP/(PEC@CF)) were prepared. The resulting composites exhibited excellent
flame retardancy as the limiting oxygen index (LOI) increased from 31.0% of EP/CF to 40.5% and UL-94
V-0 rating was achieved with only 8.1 wt % PEC [14]. Although the traditional flame-retardants are
obvious in the flame retardant effect on CF/EP composites, it is a fact that the mechanical properties
would be weakened which are not exhibited in the research. To solve this, some nano-flame-retardants
were incorporated in the CFRP system which was expected to improve both of the flame retardancy
and mechanical properties. Dongxian Zhuo et al. prepared MWCNT/GNP membranes reinforced
CFRP composites and the results showed that the incorporation of the hierarchical MWCNT/GNP
membrane with 7.5 wt % of GNP displayed a 35% reduction in the peak heat release rate (PHRR) for
a CFRP composite plate with the epoxy as matrix and an 11% reduction in PHRR [15]. Muhammad
et al. found composites containing 0.4 wt % MWCNTs showed a 9.6% increase in erosion resistance
compared with the carbon fiber epoxy matrix composites, and thermal conductivity increased 52% with
the addition of 0.4 wt % MWCNTs [16]. Hesami et al. prepared MMT and APP modified GF/EP/CNTs
composites to enhance its flame retardant properties, and the results showed that the combination of 0.5
wt % CNTs with 5 wt % MMT can increase the initial thermal decomposition temperature up to 62 ◦C;
the addition of APP and CNTs together could increase LOI about 8% [17]. Qiang et al. incorporated
CNT buckypaper and CNF paper to CFRP, and the results showed that MWCNT buckypaper acted
as an effective flame-retardant shield, reducing the peak heat release rate by more than 60% and
reducing smoke generation by 50% during combustion [18]. Biswas et al. prepared different flame
retardants reinforcing the CFRP and results showed that with selective flame retardants (FRs), the
FR chemicals decreased the flammability of composites up to 50% without affecting their mechanical
properties [19]. Singh et al. prepared the fabrication of an epoxy adhesive system incorporated with an
aligned MWCNT and VGCF and found that a remarkable 370% increase in Tc was observed for the
combined effect of 3 wt % of the aligned MWCNT with a VGCF filled epoxy adhesive system [20].
Fawad et al. found glass transition temperature and CTE (Coefficient of thermal expansion) of the
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CFRP was reduced by the addition of MWCNTs, whereas MWCNT-CFRP was found thermally stable
up to 350 ◦C [21]. Xiaohui Shi et al. constructed the flame retardant coating rapidly on the surface of
the carbon fiber, which was used as the reinforcement to modify EP, and the results showed that when
the content is 4.5 wt %, the oxygen index of the composite is 39% and can pass the vertical combustion
V-0 level [22].

At present, the research on the three-phase composites mainly focuses on the preparation method,
mechanical properties, thermal properties, and electrical properties. However, the fire performance
of the polymer composites is essential to ensure the intrinsic safety to widen its use in more fields.
There are some studies to investigate the flame-retardant properties of the traditional and nano
flame-retardants to modify the CFRP composites as described above. However, what we did in this
paper was to investigate the flame retardant properties of the multi-walled CNTs-OH reinforced
short-CF/EP composites. In addition, there are not enough studies to report this issue and it deserves
to be systematically investigated in order to understand the nature of the composites. In this paper,
CF/EP composites and CNTs/CF/EP composites were prepared by solution blending respectively. The
flame retardancy and thermal stability were studied by cone calorimetric test and thermogravimetric
analysis respectively. The influence of the reinforcement on its mechanical properties was studied by
tensile and flexural tests.

2. Experiments

2.1. Materials

AralditeLY1564SP epoxy resin and Hardener XB3486 from Huntsman Corporation of America
are the basis of the resin system. The mixing mass ratio of them is 100:34; the viscosity at 23 ◦C
is 200–300 mPas and the gel time is 560–620 min; the glass transition temperature (Tg) is 80–84 ◦C.
Hydroxylated multi-walled CNTs are from Chengdu Organic Chemistry Co., Ltd. of China. It is an
odorless black powder; the outer diameter is about 10–30 nm; the hydroxyl content is about 2.48%; the
length is about 30 µm; the purity is more than 90 wt %; the ash is less than 8 wt %. PAN-based CF
(T300) with a diameter of 6.91µm and a length of 1–3 mm is from Toray Corporation of Japan. It has a
tensile modulus of 230 GPa, an elongation of 1.5%, a mass per unit length of 800 g 10−3 m−1, and a
density of 1.76 g cm −3. The need for analytical analysis includes sodium dodecyl benzenesulfonate
(C18H29NaSO3), concentrated nitric acid (65%), silane coupling agent (KH-550, C9H23NO3Si), ethyl
acetate, and absolute ethanol which are all from Sinopharm Chemical Reagent Co., Ltd. of China.

2.2. Preparation of the Samples

2.2.1. Preparation of CF/EP Composites

The original CF has a small specific surface area, and its surface is liquid-repellent so that it has
poor adhesion with the resin matrix. It is subjected to liquid-phase oxidation treatment on its surface
to introduce functional groups such as -OH to increase the surface polar groups thereof, thereby
improving the liquid repellency of CF and enhancing the interfacial adhesion with EP. The method
comprises of putting the cleaned CF into the concentrated nitric acid and being treated with a water
bath at constant temperature (80 ◦C) for 4–6 h. The treated CF was then rinsed with distilled water to
bring the pH to neutral. Finally, it was placed in a vacuum oven and then bagged for use after drying
and cooling.

A certain amount of oxidized CF, silane coupling agent (KH-550), dispersant (sodium dodecyl
benzene sulfonate) and ethyl acetate were weighed. The contents of the silane coupling agent and
dispersant are 0.01% and 0.06% of the carbon fiber respectively. The solvent is about 120–150 mL. They
were then poured into a beaker and ultrasonically dispersed for 30 min. A quantity of EP, which was
added to the mixture, was stirred uniformly and then dispersed by ultrasonic for 30 min. The mixed
solution was placed in a hot water bath at 90 degrees and boiled until the ethyl acetate was completely
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removed. The mixture was then checked to see whether there were lots of bubbles in it. If there were air
bubbles, defoaming should be performed to deal with them. The curing agent was weighed based on
which the mass ratio of the EP to the curing agent was 100 to 34, and slowly stirred evenly. Finally, the
mixture was poured into a mold which was with a good stripping wax and preheated, and then was
placed in a blast oven at 80 degrees which was dried for 5 h. The mass fraction of CF was 0.5%, 0.7%,
1.0%, and 1.5% respectively. For the convenience of description, the composite materials containing
the above formulation are described in Table 1.

Table 1. Definition of different samples with different compositions.

Content/wt %

Name

EP F5 F7 F10 F15 F5N5 F7N7 F5N10 F10N5

EP 100 99.5 99.3 99 98.5 99 98.6 98.5 98.5
CF 0 0.5 0.7 1 1.5 0.5 0.7 0.5 1

CNTs 0 0 0 0 0 0.5 0.7 1 0.5

2.2.2. Preparation of CNTs/CF/EP Composites

The treated CF, silane coupling agent, dispersant, and ethyl acetate were weighed and poured into
the beaker. Meanwhile, a certain amount of CNTs, dispersant, and anhydrous ethanol were weighed
and poured into another beaker. The content of the silane coupling agent and dispersant is the same as
Section 2.2.1. In addition, the ethyl acetate and anhydrous ethanol are about 80–100 mL respectively
according to the different content of the CF and CNTs. They were stirred uniformly and dispersed by
ultrasonic for 30 min. Then a certain amount of EP was added and put it into the same beaker. It was
stirred well, after 30 min of ultrasonic dispersion. The next process is the same as Section 2.2.1. The
ratios of CF to CNTs are 0.5–0.5%, 0.7–0.7%, 0.5–1.0%, 1.0–0.5% respectively. For the convenience of
description, the three-phase composites containing the above-mentioned compounding are described
in Table 1.

2.3. Characterization

A Cone calorimeter was used to test the combustion characteristics of the sample, the required
sample size of which is 100 mm × 100 mm and the thickness is 3–5 mm. Three samples were required
for each group and the average was taken as the results, which was done according to the standard
of ISO 5660-1 [23]. Thermogravimetric analysis was then used to analyze the thermal stability of the
composites, and the material was treated as a sub-powder with a weight of 3–5 mg. The samples used
were tested under the air-atmosphere in the analysis. The sample required for the tensile test was done
according to the standard of GB/T2567-2008 [24]. Five valid samples were required for each group,
and the average with the standard error was taken as the results. The size of the sample required for
the flexural test was 80 mm × 15 mm × 4 mm. Five valid samples were required for each group, and
the average with the standard error was taken as the results. Scanning electron microscopy from Carl
Zeiss was used to analyze the microstructure of the sample.

3. Results and Discussion

3.1. Cone Calorimetric Analysis

The combustion characteristics of different samples were tested by the thermal radiation intensity
of 35 kW·m−2. The heat release rate (HRR) and the ignition time (TTI) were to evaluate the risk of the
material in the fire. The rate of smoke production (SPR), total smoke production (TSP), and mean yield
of carbon monoxide (mCOY) were to analyze the smoke and toxicity of the material in the fire.
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3.1.1. Heat Release Rate (HRR)

HRR is the most important performance parameter that characterizes fire intensity. The maximum
HRR is the peak heat release rate (pHRR). The greater the HRR or pHRR is, the greater the risk of the
polymer material becomes in the fire [10,25].

Figure 1 shows the heat release rate curves for different samples. Figure 1a–c) are the contrast
analysis curves of the three-phase material, the two-phase material, and the pure EP; Figure 1d
compares the heat release rate of the three-phase composites with different content reinforcement.
From Figure 1a, the peaks of F5 and F5N5 are smaller than that of EP, and F5N5 is lower than F5. From
Figure 1b, the peaks of F7 and F7N7 are also smaller than that of EP. From Table 2, the pHRR of F7N7 is
reduced by 12.12% compared to F7. From Figure 1c, the peaks of F10 and F10N5 are also smaller than
those of EP. From Table 2, the pHRR of F10N5 is 16.49% less than F5. The above shows that certain
CNTs and CF can synergistically inhibit the thermal cracking rate of EP composites and slow the flame
propagation, thus enhancing its flame retardant properties. From Figure 1d, the pHRR of F7N7 is the
lowest, and the peak value is the smallest, which is reduced by 34.65% than the EP, indicating that the
CNTs and CF under the ratio have the best synergistic flame retardant effect.

Figure 1. Heat release rate (HRR) of different samples. (a) HRR of epoxy resin (EP), F5, F5N5, and
F5N10; (b) EP, F7, and F7N7; (c) EP, F10, and F10N5; and (d) EP, F5N5, F5N10, F7N7, and F10N10.

Table 2. Cone calorimeter data of carbon fiber (CF)/EP and carbon nanotubes (CNTs)/CF/EP
composites [26].

Samples a TTI (s) b pHRR (kW·m−2) c THR (MJ·m−2) d TSP (m2) e mCOY (kg·kg−1)

EP 52 971.7 98.8 30.1 0.073
F5 69 792.7 92.5 27.3 0.069
F7 80 722.6 88.2 27.4 0.076

F10 62 840.2 88.9 22.2 0.068
F15 98 793.3 101.7 30.0 0.075

F5N5 73 648.1 75.0 16.8 0.074
F5N10 92 937.0 122.0 27.8 0.064
F7N7 76 635.0 80.3 21.3 0.071

F10N5 80 701.7 99.3 23.4 0.067
a TTI means the time to ignition. b pHRR means the peak heat release rate. c THR means the total heat release.
d TSP means the total smoke product. e mCOY means the mean yield of CO.
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3.1.2. Time to Ignition (TTI)

Ignition time is the time that it takes for the surface of the material is ignited when it is burned.
The longer TTI becomes, the more difficult it is for the polymer material to ignite under this condition,
and thus the better the fire resistance gets of the material. It is one of the important indicators to
evaluate the fire resistance of polymer materials [10,25].

As can be seen from Table 2, the TTI of EP composites with CF was delayed compared to that
of EP. F15 was extended up to 46 s, which was the latest to ignition. This is because CF inhibits the
thermal decomposition of the EP, thus inhibiting the release of combustible gases. It can be seen from
Table 2 that the TTI of the three-phase composites is also improved. The ignition time of F5N5 and
F5N10 are extended to 4 s and 26 s compared to that of F5; the ignition time of F10N5 is 18 s more than
that of F10, while the ignition time of F7N7 was shortened by 4 s. This shows that the three-phase
composites have excellent performance in fire resistance, thereby reducing the flammability of EP.

3.1.3. Rate of Smoke Production (SPR)

SPR is defined as the ratio of extinction area to mass loss rate. The greater the SPR is, the quicker
the smoke is produced when the material is burned, and the greater the risk of the material becomes in
the fire [10,25].

The SPR curves for different samples are shown in Figure 2a–c are the contrast analysis curves of
the three-phase material, the two-phase material, and the pure EP; Figure 2d compares the SPR of the
three-phase composites with different content reinforcement. It can be seen from Figure 2a–c that the
smoke rate of CF/EP is less than that of EP and the time to smoke is delayed. In contrast, the rate of
smoke generated by the three-phase composites has been reduced, but the time to initially produce
smoke has been advanced and the time from the beginning of the production of smoke to the peak has
been significantly shortened. This shows that a certain amount of CNTs and CF can synergistically
form the denser protective char layer of EP as a physical barrier to prevent gas transfer compared to
CF/EP and EP. From Figure 2d, the peak value of F7N7 is the smallest, and the total smoke production
is 29.24% lower than that of EP, while the total smoke production of F5N5 is the smallest, which is
decreased by 43.04% than EP.

Figure 2. Rate of smoke production (SPR) of different samples. (a) SPR of epoxy resin (EP), F5, F5N5,
and F5N10; (b) EP, F7, and F7N7; (c) EP, F10, and F10N5; and (d) EP, F5N5, F5N10, F7N7, and F10N10.
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It can be seen from Table 2 that, mCOY of F10 is minimum which is decreased by 6.85% compared
to EP, while that of F7 and F15 are increased in the two-phase composite. It can be seen from Table 2
that mCOY of the three-phase composite is reduced compared to CF/EP. F5N10 is reduced the most,
which is decreased by 12.33% than the EP. This shows that CNTs and CF can co-prevent the transfer of
CO, thereby weakening the toxicity of flue gas.

3.2. SEM Morphology and Microstructure Analysis of Combustion Products

Figure 3 shows the morphology and microstructure of the combustion products after cone
calorimetric test. As can be seen from Figure 3a, the combustion products of EP are relatively few,
and the combustion products of Figure 3b,c are relatively complete. This is mainly due to a certain
etching that is formed on the surface of the modified CF, and some polar groups are introduced to
the surface of the CF with silane coupling agent making the fiber surface and resin be in full contact.
thereby enhancing its interface bonding strength, so that the structure of the composites is more
complete. CF will bear much heat when the material is in the ablation due to its excellent characteristics
of high-temperature resistance. From Figure 3c, the structure of the combustion products of the
three-phase composite is as compact as the grid, which is mainly due to the better regularity and
higher crystallinity of the CNTs in the combustion process. The formation of a protective layer and the
inter-layer gap with graphite protection can effectively block the heat flow [27]. On the other hand,
CNTs adhere to CF when they are blended with CF. Because CNTs have a large specific surface area, the
adhesion of CF to the matrix is enhanced. Following from this, the effect of the interface is enhanced,
so that the CF can better exhibit heat resistance.

Figure 3. SEM of the combustion products. (a) Morphology of combustion products of EP (b) CF/EP
and (c) CNTs/CF/EP. (d) Microstructure of residual carbon of EP, (e) CF/EP, and (f) CNTs/CF/EP
composites [26].

As can be observed from Figure 3d, the EP forms a honeycomb-like carbon layer structure during
the combustion process, which is capable of isolating the generation and escape of combustible gases
and inhibiting the intervention of oxygen [28,29]. It can be seen from Figure 3e that the residual
carbon atoms of EP are coated on the surface of CF and are relatively complete, indicating that the CF
contributes to the formation of carbon atoms in the EP, thereby reducing the amount of heat and the
thermal conductivity of the combustion material, which is verified in Figure 3b. From Figure 3f, the
residual carbon structure of the three-phase material is more complete. The CF surface is attached to
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a large number of CNTs, which shows that both of them promote the EP into carbon, which plays a
better flame retardant effect.

3.3. Thermal Stability Analysis

3.3.1. Thermogravimetric Analysis

The flame retardant effect of the material has been studied above, while the flame retardant effect
of the material is often related to its pyrolysis process. In order to study the thermal stability of the
material and the effect of the additive on the thermal stability of the material, the samples were heated
from 20 ◦C to 800 ◦C at a rate of 10 ◦C·min−1 by a differential thermogravimetric analyzer. The TG
curves of EP, F5, F5N5, and F5N10 are included in Figure 4a, and the corresponding DTG curves are
shown in Figure 4b. Figure 4c are the TG curves of EP, F7, F7N7, and the corresponding DTG curves
are shown in Figure 4d. Figure 4e shows the TG curves of EP, F10, F10N5, and Figure 4f shows the
corresponding DTG curves. Six partial enlarged views of vague regions are shown in every figure of
Figure 4, which clearly show that there are some differences.

Figure 4. Transition temperature (TG) and DTG curves of CF/EP and CNTs/CF/EP composites. (a) TG
and (b) DTG curves of EP F5 F5N5 F5N10, (c) TG, and (d) DTG curves of EP F7 F7N7, (e) TG and
(f) DTG curves of EP F10 F10N5.
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The figures show that the thermogravimetric curves of the material also decrease stepwise as
temperature increases. From Figure 4a, the TG curves of the four samples are almost coincident. It
can be seen from Table 3 that the initial decomposition temperature of F5N5 and F5N10 are less than
that of EP and F5, but it increases with the increase of CNTs. From Figure 4b, it can be seen that the
temperature of the first peak of the three-phase composite is not changed, but the peak area is relatively
small, and decreases with the increase of the CNTs, indicating that mass loss decreases. This shows that
the addition of CNTs inhibits the pyrolysis of EP composites. It can be observed from Figure 4c, the
mass loss rate of F7N7 is slower than EP and F7 at 20–250 ◦C. From Table 3, it can be seen that the initial
decomposition temperature of F7N7 is higher than that of the other two materials. This shows that
the addition of CNTs improved the initial decomposition temperature of the material. At 250–350 ◦C,
the trend of all the curves in Figure 4c is nearly coincident, indicating that the maximum mass loss
rate is almost the same, which coincides with the temperature of the DTG peak shown in Figure 4d.
The first peak areas of F7N7 and F7 are almost similar but are smaller than that of EP. As can be seen
from Figure 4e, the mass loss rate of EP is smaller than that of F10 and F10N5 at 20–250 ◦C. The initial
decomposition temperatures of F10 and F10N5 from Table 3 are lower than that of EP. From Figure 4f,
it can be seen that the area of the first peak of F10 is smaller than others indicating the mass loss is less.
It is understood from Table 3 that the temperature increased at this time. This shows that the addition
of CNTs and CF under this proportion synergistically inhibits the pyrolysis of EP composites.

Table 3. T5%, Tmax and T95% of different samples [26].

Samples a T5%(◦C) b Tmax(◦C) c T95%(◦C) Samples T5%(◦C) Tmax(◦C) T95%(◦C)

EP 256 290 562 F5N5 251 289 564
F5 257 294 568 F5N10 252 292 562
F7 241 299 562 F7N7 256 291 565

F10 240 289 581 F10N5 246 290 579
F15 253 289 600 — — — —
a T5% means the temperature to lose 5% weight; b Tmax means the temperature to maximum mass loss rate;
c T95%means the temperature to lose 95% weight.

3.3.2. Pyrolysis Kinetics Analysis

The thermal stability of the composites was calculated by Coats–Redfern method. The thermal
stability of the composites was analyzed from the mathematical point of view by the apparent activation
energies. The Coats–Redfern method is a classical integral method for calculating the single heating
rate in pyrolysis kinetics. And when the material consists of one or more irreversible reactions, the
pyrolysis kinetic expression is divided into two types [30].

When n = 1,

ln
[1− (1− α)1−n

T2(1− n)

]
= ln

[AR
βE

(
1−

2RT
E

)]
−

E
RT

. (1)

When n , 1,

ln
[1− (1− α)1−n

T2(1− n)

]
= ln

[AR
βE

(
1−

2RT
E

)]
−

E
RT

, (2)

where α is the decomposition rate, T is the temperature corresponding to the decomposition rate, β is
the heating rate, and R is the gas constant (8.314 J mol−1 K−1), n is the reaction order.

Figure 5 shows the curves obtained by fitting the pyrolysis data by the Coats–Redfern method,
where n = 1 and n = 0, respectively, to determine the effect of the value of n on the results. When n = 1,
ln

[
− ln[1− α]/T2

]
and 1/T are plotted to produce a straight line with a slope of −E/R. When n = 0, the

straight line can be calculated in the same way. The apparent activation energy of different specimens
can be calculated as shown in Table 4. The value of α is based on TG and DTG curve data, followed by
the selected mass loss of 0.05, 0.1, 0.2, 0.3, 0.5, 0.6, 0.7.
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Figure 5. Pyrolysis kinetics fitting curve of different samples.

Table 4. The apparent activation energy of different samples from the way of Coats–Redfern.

E/kJ·mol−1 1st Stage 2nd Stage

EP F5N5 F5N10 F7N7 F10N5 EP F5N5 F5N10 F7N7 F10N5

n = 0 94.8 88.1 88.6 97.3 66.7 1.5 2.3 1.8 1.9 1.8
n = 1 101.0 91.9 94.5 103.7 71.1 8.1 9.4 8.6 8.8 8.6

As shown in Figure 5, the pyrolysis curve of the material exhibits two slopes, indicating that the
pyrolysis process should include two stages. The first stage is mainly pyrolysis of EP. The main chain of
the EP group is decomposed into a volatile gas at a relatively low temperature, and the main chain with
a high bonding pressure in EP is broken at the higher temperature, resulting in an increase in mass loss,
which corresponds to the first peak of DTG in Figure 4b. The second stage is the residual carbon oxide
decomposition in the air atmosphere, which is consistent with the study of Carmen Branca et al. [30,31].
CF and CNTs do not participate in the reaction due to their excellent high-temperature resistance
characteristics within the temperature range. The apparent activation energy of the pyrolysis of the
material in Table 4 shows that the varying tendency of the apparent activation energy of the material is
consistent regardless of the value of n, except that the activation energy of n = 0 is smaller. This shows
that the value of n does not have much effect on the thermodynamics of the material. When n = 1, the
activation energy of EP in the first stage is 101.0 kJ·mol−1. The apparent activation energy of F7N7
is 2.7 kJ·mol−1 more than EP, while the remaining three-phase composite is reduced. The activation
energy of the three-phase composites in the second stage is all higher than EP. This is mainly due to
that EP is burned out, while CF and CNTs can protect EP from combustion to an extent. In summary, a
certain amount of CNTs and CF can synergistically inhibit the generation of free radicals activated by
EP, thereby reducing its pyrolysis.

3.4. Mechanical Properties Analysis

In order to study the effect of the reinforcements on the mechanical properties of the composites,
the tensile and flexural strength of different samples were tested by tensile and flexural tests. From
Figure 6a, the tensile strength of CF/EP composites decreases first and then increases, and the tensile
strength of F10 is the largest, which is 5.9% larger than that of EP. In the three-phase composites, the
tensile strength of F5N5 is the largest, which was increased by 19.2% more than the matrix. F7N7 and
F10N5 were smaller than the matrix, while it can be found that the tensile strength of the composites
gradually increased with the increase of CNTs. This suggests that the addition of CNTs can improve
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the tensile properties of the material. From Figure 6b, the flexural strength of all materials showed
a tendency to rise first and then decrease. In the two-phase system, when the CF was 0.5 wt %, the
flexural strength reached 89.69 MPa, while F5N5 and F5N10 were decreased. With the increase of
CF, the flexural strength was smaller. The flexural strength of F7 was reduced to 65 MPa, which was
smaller than that of the matrix. The flexural strength of F7N7 was the largest and up to 104 MPa, which
was improved by 50.7% more than that of EP. Flexural strength of F10N5 was also larger than F10.
This indicates that a certain proportion of CNTs and CF can fully exert their mechanical synergistic
effects. The reinforcement is mainly dependent on the bond strength of the interface. According
to the stress transfer theory, when the composite is subjected to stress, the load is applied to the
resin matrix, and then the stress will be transferred to the reinforcement by the matrix through the
interface. The reinforcement played a role in the dispersion of force to a certain extent [32]. From the
chemical bond theory, the functionalized CNTs can react with the modified CF to produce some kind
of bonding through hydroxyl groups and other functional groups. CNTs can react with EP through
their epoxy groups to form a three-dimensional network of solidified materials, resulting in an increase
in the interfacial bonding strength between the substrate and the reinforcement [33]. The unique
nanostructures of CNTs and the high strength of CF are the basis of mechanical enhancement.

Figure 6. Tensile and Flexural strength of samples. (a): Tensile strength (b): Flexural strength.

As shown in Figure 7a,b are the mechanical section of EP and CF/EP; Figure 7c,d are the mechanical
section of CNTs/CF/EP at the magnification of 2.0 KX and 5.0 KX. As seen in Figure 7a, the cross-section
of EP is relatively smooth, and the crack is less and extends in the same direction as the brittle fracture.
It can be seen from Figure 7b that, when CF is 1.0 wt %, the carbon fibers dispersed in the resin are
lessened. Some holes appear on the fracture surface, which is obviously caused by the desorption
of the fiber. It can be seen in Figure 7c that CNTs are dispersed uniformly around the CF and EP
except for some white areas which are not clearly scanned. The crack propagates in the direction of the
force of CF, which is in line with the stress transfer theory. This demonstrates that CF can enhance
the mechanical properties of EP. Since the interface between the fiber and the resin is poor under
some certain conditions, the fiber is pulled out to form a hole in the EP. By zooming in (Figure 7c), the
distribution of CNTs can be seen in Figure 7d. It can be seen that the CNTs are extracted in the crack,
that is, CNTs act as a stress transfer in the process of forming the crack to further dispersing the stress
acting on EP. It is the synergy between micron and nanoscale that further enhances the mechanical
properties of EP.
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Figure 7. Mechanical Section of CNTs/CF/EP composites from SEM. (a) EP (b) CF/EP composites
(c,d) CNTs/CF/EP composites [26].

4. Conclusions

CF/EP and CNTs/CF/EP composites were prepared by solution blending. The flame retardancy
and thermal stability of the composites were measured by cone calorimeter and thermogravimetric
analyzer. The mechanical properties were tested by tensile and flexural tests. The results show that
there is a synergistic effect between CNTs and CF, and the flame retardant enhancement and smoke
suppression for EP composites are more obvious than that of CF/EP. Some findings are as follows:

The heat release rate of F7N7 is the minimum, which is 34.65% less than that of EP and 12.12% less
than that of F7. The peak rate of smoke production of F7N7 is the smallest. The total smoke production
of F5N5 is the smallest which is 43.04% lower than EP. Mean carbon monoxide production of F5N10 is
reduced the most which is decreased by 12.33% than EP.

The initial decomposition temperature of F7N7 is about 14 ◦C higher than that of F7, and its
temperature is not improved effectively compared with EP, but the mass loss at Tmax is obviously
reduced. The apparent activation energy of F7N7 is 2.7 kJ·mol−1 more than EP. Finally, the thermal
stability of EP is associated with the ratio of CNTs to CF.

The mechanical tests show that the mechanical properties are not affected while the flame
retardancy is improved, and the CNTs and CF have a certain synergistic effect on the mechanical
properties of the EP.
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