
applied
sciences

Article

Heuristics for Spreading Alarm throughout a Network

Marek Šimon , Ladislav Huraj * , Iveta Dirgová Luptáková and Jiří Pospíchal

Department of Applied Informatics, Faculty of Natural Sciences, University of SS. Cyril and Methodius in
Trnava, 91701 Trnava, Slovakia
* Correspondence: ladislav.huraj@ucm.sk

Received: 30 July 2019; Accepted: 7 August 2019; Published: 9 August 2019
����������
�������

Featured Application: This study provides heuristics for potential usage in minimizing time steps
for fast spreading an alarm or other critical information, for example via satellite, throughout a
terrestrial network (e.g., spreading a new routing scheme). It is presumed that the satellite can
spread information only sequentially (e.g., by laser beam), but each contacted node (either by
a satellite or by its terrestrial neighbor) spreads the information in parallel via Wi-Fi or cable
connection to its neighbors.

Abstract: This paper provides heuristic methods for obtaining a burning number, which is a graph
parameter measuring the speed of the spread of alarm, information, or contagion. For discrete time
steps, the heuristics determine which nodes (centers, hubs, vertices, users) should be alarmed (in
other words, burned) and in which order, when afterwards each alarmed node alarms its neighbors
in the network at the next time step. The goal is to minimize the number of discrete time steps
(i.e., time) it takes for the alarm to reach the entire network, so that all the nodes in the networks are
alarmed. The burning number is the minimum number of time steps (i.e., number of centers in a
time sequence alarmed “from outside”) the process must take. Since the problem is NP complete,
its solution for larger networks or graphs has to use heuristics. The heuristics proposed here were
tested on a wide range of networks. The complexity of the heuristics ranges in correspondence to the
quality of their solution, but all the proposed methods provided a significantly better solution than
the competing heuristic.

Keywords: burning number; information spreading; centrality measures; complex networks;
optimization heuristics

1. Introduction

Let us imagine that we want to spread a piece of information (e.g., an alarm) throughout a
terrestrial-based network, where the nodes are collected by cables or Wi-Fi and each node can be also
reached by a satellite. The satellite, which we control, can reach one node at a time and each node can
inform in parallel all its neighboring nodes in one time step. This paper provides a solution to the
task, how to spread a piece of information throughout the whole network as fast as possible. In other
words, let us suppose that we can send the information (alarm) to any single node in one time step and
all the informed nodes can send the information to all their neighboring nodes in one time step. The
question therefore is, to which set of nodes we should send the information and in what order, so that
after the final time step, all the nodes have the information. The minimum size of such a set is called a
“burning number”.

The initial inspiration was taken from a simplified model of contagion or the spread of a belief
in a social network, with successful transfer to any neighbor of the already influenced node. The
formal definition of this problem was provided in the framework of graph theory by Anthony Bonato

Appl. Sci. 2019, 9, 3269; doi:10.3390/app9163269 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-9844-5969
https://orcid.org/0000-0002-3469-3170
https://orcid.org/0000-0002-2617-7184
http://www.mdpi.com/2076-3417/9/16/3269?type=check_update&version=1
http://dx.doi.org/10.3390/app9163269
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 3269 2 of 12

et al. [1]. It was proved that computing a “burning number” is NP-complete [2]. The problem was
further studied in papers [3,4], where the bounds for the burning number (i.e., the minimum number
of time steps, equal to the minimum size of the set of nodes, which are informed or alarmed “from the
outside”, not from their neighbor) are analyzed. The papers provided both the lower and the upper
bounds, where the upper bound was accompanied by the actual sequence of the set of nodes to be
informed from the outside. However, since the authors were graph theorists, they were not primarily
concerned about an effective algorithm, how to find a solution close to the optimal one. Bounds for
special types of graphs and special cases are also studied as graph theory problems in [5–8].

A number of different approaches for disseminating information are studied in various areas, like
the k center selection, the telephone model in gossiping, or the broadcasting of control or emergency
packets in computer networks, viral marketing or influence maximization in social networks, or models
of contagion in biology.

In graph theory, the k center selection refers to a related problem, when the message is sent to all
k centers (seeds) at once, so no time scheduled sequence is needed, and the parameter k is given in
advance. Unlike a burning number problem, heuristic solutions for the k center problem have been
studied more extensively [9,10]. Recently the problem has been optimized by stochastic metaheuristics
like tabu search or simulated annealing [11], paying for better results with computational time. Instead
of spreading an alert through seed hubs, this problem can be interpreted as selecting hubs for sending
an alert to a higher level of the network, so that an alert occurring in any node of the network is sent
through the closest hub in the shortest time [12]. The alert routing can be employed e.g., in security [13].

In gossiping [14], each node has a unique item of information. By each connection between two
nodes, both share all their information. How many connections are needed (a schedule determines,
which edges are used in which order; edges may be used repeatedly), until each node has all the pieces
of information? In broadcasting, one node has an item of information to be communicated to the rest
of the nodes, which is closer to the “burning number” problem than gossiping [14]. In the typically
used telephone model of information dissemination [14,15], one node shares or sends information
to one of its neighboring nodes. Unlike in k center or in the “burning number” problem, parallel
distribution of information to all the neighbors of a node in one time step is not considered. Parallel
distribution is allowed in the radio model of information dissemination [14]. However, this model is
most often subject to other limitations, which makes it less relevant as an inspiration for the solution of
the burning number problem.

The burning number problem is also slightly related to the broadcasting of control or emergency
packets to all nodes of a network [16,17]. Such tasks are needed e.g., for route maintenance or critical
alert dissemination. However, even though multiple seeds for cluster centers were studied [18], the
time schedule for broadcasting to a sequence of cluster centers was not considered in this context.
A related problem is also unequal clustering in wireless sensor networks [19].

Related types of problems belong to influence maximization [20–22], where the goal is to exploit
cascade propagators termed seeds, which are selected in such a way and activated in such times
that they maximize the influence spread in a social network. This can be used for viral marketing in
politics, or by companies introducing a new product, which pay a set of influencers (each at selected
time) to obtain maximum promotion of the product or voting for a party. However, the problem
typically differs in the probabilistic nature of the information transfer (the influence probability of each
connection), which in the approach in this paper is set to 100 per cent. Moreover, the influencer nodes
are informed all at the beginning, while burning sequence nodes are burned one at each time step. The
neighborhood of an influencer can be considered as a cluster. A special type of clustering can even be
used in studies of brain activities [23,24].

A firefighter problem in graph theory [25] uses somewhat related “burning” terminology, but its
similarity is superficial. Like in a burning number problem, a node is initially ignited (burned) and
each node burns in each subsequent time steps all its unburned vertices. However, only in the first
time step is a node burned from “outside” and a firefighter in each time step can immunize one of the

Appl. Sci. 2019, 9, 3269 3 of 12

unburned vertices against being burned. The goal is rather different, aiming at prevention of spreading
harmful information through the network.

In the following sections, the competing algorithmic approach for finding the burning number [3]
is described in more detail, followed by the heuristics designed here, which are then tested on a range
of complex networks.

2. Burning Number and Previous Algorithms

In this paper, we only consider finite undirected unweighted simple graphs (aka networks). The
problem was originally defined for graphs and therefore the graph theory terminology is retained in
this section. Let us have a G = (V , E) where V is a vertex set and E is an edge set. For vertices u, v ∈ V ,
the distance distG(u; v) between them in a graph is the number of edges in a shortest path connecting
them. Based on [1], the burning number bn(G) of a graph G is the smallest integer k for which there are
vertices x1, . . . , xk such that for every vertex u of G, there is some i ∈ {1, . . . , k} with distG(u; xi) ≤ k − i.

Sequence x1, . . . , xk of vertices from G from the above definition is called a shortest burning
sequence (there may be several such sequences). A burning sequence and burning number are based
on a metaphor of a fire spreading among the vertices of a graph. At each discrete time step ti starting
at 1 and terminating at k, a fire starts at a vertex xi, if it is not already burning. Then the fire starts at
all neighboring vertices of the vertices which are already burning (except of the neighbors of the just
ignited vertex xi). The condition ∀u ∈ V(G): ∃i ∈ {1, . . . , k}: distG (u; xi) ≤ k − i guarantees, that after k
steps all the vertices of G are burning. An additional condition ∀i,j ∈ V(G) ∈ {1, . . . , k}: distG(xi; xj) ≥ j
− i might be included, which means, that in the sequence x1, . . . , xk, one does not try to start a fire at
a vertex, which is already burning. However, if the burning sequence is the shortest, this condition
is superfluous.

In Figure 1 are presented single time steps (from left to right, top to bottom) of the optimal process
of burning an artificially designed graph. The optimum burning number of this graph is seven, since
it was burned in seven steps and in no step a greater number of nodes could have been burned.
In each time step, one node is painted with a new color, which means, that this node is “burned
from the outside” as a part of the burning sequence. All the neighbors of the already burned nodes,
which are not yet burned, are also burned (in Figure 1 they are painted with the same color as their
painted neighbors). However, the colors only serve to provide an additional piece of information, one
non-white color for all burned nodes would be sufficient. In addition, when two or more different
colored nodes are neighbors of a white (i.e., not yet burned) node, the decision regarding which of
the neighboring colors to choose from would have to be arbitrary. Nevertheless, in Figure 1 such a
situation does not occur. Figure 1 presents more clearly the problem of the selection of the vertices in
the shortest burning sequence, i.e., which vertices should be colored (aka burned) from outside and in
which permutation determining their time schedule.

Until now, the only known approximation algorithm generating a burning sequence for the
general graphs was an algorithm by Bonato and Kamali [3]. This algorithm has an approximation ratio
of 3, which means, that the optimal, i.e., the shortest possible burning sequence is guaranteed not to be
shorter than one third of the burning sequence length provided by the approximation algorithm.

The Bonato algorithm [3] starts with a guess, that the burning number equals 3g − 3. The
“shortened” burning sequence is initially empty. Then, starting from an arbitrary node, a randomly
selected node is added to the “shortened” burning sequence, if all the nodes already in the burning
sequence have a graph distance from the selected node at least 2g − 1. If the resulting sequence has
less than g vertices and all vertices have been tried, then the value of burning number is at most 3g −
3 and the guess was good. (The shortened burning sequence can be in time steps from the range of
g to 3g − 3 appended by any currently unburned vertex at the given step). If the number of nodes
in the prospective “shortened” burning sequence was greater than or equal to g, the guess was bad,
and we had to try a bigger g. By binary search, we found the smallest g providing a good guess. This

Appl. Sci. 2019, 9, 3269 4 of 12

algorithm also provides a lower bound, that the burning number cannot be smaller than g − 1. The
complexity of the algorithm for |V | = n, |E| = m is O(mn + n2 log n).

Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 12

algorithm also provides a lower bound, that the burning number cannot be smaller than g−1. The
complexity of the algorithm for |V| = n, |E| = m is O(mn + n2 log n).

Figure 1. An example of single time steps in process of the burning of a graph (the graph is further
referred to in Table 1 as squaredIdealBurn7).

Figure 1. An example of single time steps in process of the burning of a graph (the graph is further
referred to in Table 1 as squaredIdealBurn7).

Appl. Sci. 2019, 9, 3269 5 of 12

Table 1. Burning number results for tested networks and algorithms.

Burning Number by Tested
Algorithms

Name of
Network Description |V | |E|

m
ax

.d
eg

r.

B
on

at
o

A
lg

or
it

hm
1

A
lg

or
it

hm
2

A
lg

or
it

hm
3

Im
pr

ov
em

en
t

line of 49 nodes artificial example 49 48 2 12 8 7 7 42%
squaredIdealBurn7 artificial example 231 418 4 15 10 7 7 53%

Reed98 Facebook 962 18,812 313 9 4 4 4 56%
polblogs polit. blogosphere 643 2280 165 12 6 7 6 50%
ba-1k-2k generated graphs 1000 1996 69 9 6 6 6 33%
mahindas economic problem 1258 7513 206 9 6 6 6 33%
netscience co-authorship 379 914 34 12 7 7 6 50%
lattice2D 33 × 33 regular lat. 1089 2112 4 24 14 13 13 46%
lattice3D 10 × 10 × 10 reg. lat. 1000 2700 6 15 11 11 10 33%

binary tree regular 1000 999 3 21 10 10 10 52%
ternary tree regular 1000 999 4 15 7 7 7 53%

Geometric random 10 generated nets 1000 3764.4 17.9 21 12.8 11.7 11 48%
Erdős-Rényi 10 generated nets 1000 6013.3 24.2 6 5 5 5 17%

Barabási–Albert 10 generated nets 1000 2994 80.1 9 4.9 4.9 4.9 46%

average improvement achieved by the best Algorithm 3 compared to Bonato: 37%

In the same paper [3], the authors also present an algorithm, which is optimized for trees with an
approximation ratio of 2 and for disjoint paths with an approximation ratio of 1.5. In the results in
Section 4 of this paper, we compare our results only to the results of the approximation algorithm for the
general graphs [3], even though a few of the tested networks are trees. However, this is consistent with
our further described algorithms, which are also intended for general graphs and are not optimized for
trees. Our algorithms provide better results for all the tested networks, with the disadvantage, that no
approximation ratio is guaranteed.

3. The Proposed Algorithms to Obtain the Shortest Burning Sequence

As already mentioned in the introduction, the burning number problem is NP complete, therefore
for larger networks the (likely suboptimum) solution must be obtained by a heuristic. All of the
following heuristics start, similarly to the algorithm in [3] with a guess as to what the burning number
might be, and then try to build a burning sequence of that length. If any nodes are left unburned
afterwards, the guess was bad, and the algorithm must start with a greater burning number. A good
guess with a smallest possible burning number should be found by a binary search.

3.1. Maximum Eigenvector Centrality Heuristic

The simplest approach to a burning number sequence seems to be a greedy algorithm. If the value
of our guess of the burning number is labelled bg (aka burn guess), then we want to select such a node,
which neighborhood up to the graph distance bg − 1 should have the biggest number of nodes (which
we then burn). While we could go through all the nodes and find out the one with the maximum
neighborhood, such an approach seems to be too computationally demanding. One may guess, that
such nodes should be somewhere near the “center” of the network. However, what is the center of
a network? There exist various definitions of centrality. The most popular one is a node v with a
minimum eccentricity, i.e., a node with the shortest of the maximum graph distance between v and
any other node of the network. However, in our pivotal trials we had more success with maximum
eigenvector centrality [26], which we further used.

Therefore, for the number of rounds i from bg to 1 we always selected the node xi with the
maximum eigenvector centrality value. The maximum eigenvector centrality value is always evaluated
for the remaining reduced network with unburned nodes. Only in the case, when for the number

Appl. Sci. 2019, 9, 3269 6 of 12

of rounds i the component of the remaining reduced network with maximum diameter has a radius
smaller or equal to i, the selected node xi is the node with minimum eccentricity from that component.
The neighborhood subgraph of nodes within the graph distance i − 1 from v is however determined
from the original network, which may occasionally burn a few more nodes. Having a series of selected
nodes x1, . . . , xi, together with their (diminishing) neighborhood subgraphs, we remove from the
original network every edge connecting a couple of nodes from these subgraphs, and then continue to
select the next node xi in the next round.

TG in the Algorithm 1 means a temporary graph with the same nodes as graph G, from which
are successively deleted edges between the union of nodes Ve(xi) from the neighborhood of nodes
from the sequence X. The sequence X is successively enlarged. The range of this neighborhood Ve(xi),
is successively diminishing, i.e., in the beginning, the nodes belonging to Ve(xi) are all the nodes
distanced up to bg-1 from the node x1, while the last vertex set Ve(xi) contains only the node xbg.

A component of a graph is a subgraph in which any two nodes are connected by a path, and
to which no additional node can be added. The eccentricity of a node v in a connected graph is the
maximum graph distance between v and any other node u of G. The graph diameter is the maximum
eccentricity. The graph radius is the minimum graph eccentricity. The function eigen_centrality(G)
takes a graph G and returns the eigenvector centralities of positions of vertices v within it. The function
ego (G, order, xi) calculates the vertices Ve(xi) of the neighborhood of the given vertex xi of graph
G within the given graph distance order from xi. For the graph G = (V , E), let Si ⊂ V be a subset
of vertices of G, such that Si = ∪

j=i
j=1Ve

(
x j

)
. Then the induced subgraph G[Si] is the graph whose

vertex set is Si and whose edge set consists of all of the edges in E that have both endpoints in Si. Its
edges are removed from TG. Since for |V | = n and |E| = m the bg is bounded from above by n, the
largest eigenvalue can be found with complexity O(m log n) which likely dominates the finding ego
neighborhood by breath-first search, and the algorithm is called by binary search O(log n) times, the
complexity of Algorithm 1 is less than O(m n log2 n).

Algorithm 1. Maximum eigenvector centrality heuristic for a shortest burning sequence

Input: A network G = (V , E) and a guess value bg of a burning number
Output: A sequence X= x1, . . . , xbg of nodes from G
1: X← ∅; TG← G;
2: for i = 1, . . . , bg do
3: maxDiameterComp ← component of TG with maximum diameter
4: if i ≥ radius of maxDiameterComp
5: then xi ← v ∈ V| min

v∈V(maxDiameterComp)\X
eccentricity(v, maxDiameterComp)]

6: else xi ← v ∈ V| max
v∈V(TG)\X

eigen_centrality(v, TG) ;

7: X← X ∪ xi
8: Ve(xi)← ego(G, bg − i, xi);

9: Si ← ∪
j=i
j=1Ve

(
x j

)
;

10: TG ← G(V, E(TG)\E(G[Si]);
11: if Si ≡ V then return X else return FAILED TO BURN

The greedy approach of Algorithm 1 often fails, because by burning the graph from its center, the
unburned nodes are likely left in too many unconnected components, when each component spends at
least one node in the X sequence to be burned. Algorithm 1 fails to find an optimum even for one of
the simplest graphs, a path. This is shown in Figure 2. Its left-hand side (a), going from top to bottom,
shows an ideal run with burning number 3. The right hand side (b) of Figure 2 shows the result of
Algorithm 1, when, after starting with a central red colored node to be burned, its neighborhood of the
nodes distanced bg − 1 = 2 from the initial node is shown with red nodes in the last line of Figure 2.
If we remove the lines between the red colored nodes, we are left with two components containing
unburned nodes. One component can be burned in two time steps, but the remaining component

Appl. Sci. 2019, 9, 3269 7 of 12

with two unburned nodes cannot be burned in one time step. One node remains unburned after three
rounds. This example shows the necessity of looking for a better algorithm.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 12

largest eigenvalue can be found with complexity O(m log n) which likely dominates the finding ego
neighborhood by breath-first search, and the algorithm is called by binary search O(log n) times, the
complexity of Algorithm 1 is less than O(m n log2 n).

Algorithm 1. Maximum eigenvector centrality heuristic for a shortest burning sequence
Input: A network G = (V, E) and a guess value bg of a burning number
Output: A sequence X= x1, …, xbg of nodes from G
1: X ← ∅; TG ← G;
2: for i = 1, …, bg do
3: maxDiameterComp ← component of 𝑻𝑮 with maximum diameter
4: if i ≥ radius of maxDiameterComp
5: then 𝑥 ← 𝑣 ∈ 𝑽| min∈ ()\ 𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦(𝑣, maxDiameterComp)]

6: else 𝑥 ← 𝑣 ∈ 𝑽| max∈ ()\ 𝑒𝑖𝑔𝑒𝑛_𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦(𝒗, 𝑻𝑮);

7: X ← X ∪ 𝑥
8: Ve(xi) ← ego(G, bg − i, 𝑥);
9: 𝑺𝒊 ← ⋃ 𝑽𝒆 𝑥𝒋 𝒊𝒋 𝟏 ;
10: TG ← 𝑮(𝑽, 𝑬(𝑻𝑮)\𝑬(𝑮 𝑺);
11: if 𝑺𝒊 ≡ V then return X else return FAILED TO BURN

The greedy approach of Algorithm 1 often fails, because by burning the graph from its center,
the unburned nodes are likely left in too many unconnected components, when each component
spends at least one node in the X sequence to be burned. Algorithm 1 fails to find an optimum even
for one of the simplest graphs, a path. This is shown in Figure 2. Its left-hand side (a), going from top
to bottom, shows an ideal run with burning number 3. The right hand side (b) of Figure 2 shows the
result of Algorithm 1, when, after starting with a central red colored node to be burned, its
neighborhood of the nodes distanced bg − 1 = 2 from the initial node is shown with red nodes in the
last line of Figure 2. If we remove the lines between the red colored nodes, we are left with two
components containing unburned nodes. One component can be burned in two time steps, but the
remaining component with two unburned nodes cannot be burned in one time step. One node
remains unburned after three rounds. This example shows the necessity of looking for a better
algorithm.

(a) (b)

Figure 2. Time steps of the burning a path on nine nodes: (a) Ideal case; (b) Result of the Algorithm
1.

3.2. Cutting Corners Heuristic

Firstly, how to characterize a “corner” node? In the path graph in Figure 2, it would be a node
of the degree 1, i.e., one of the end nodes. However, no such node exists, e.g., in a square lattice graph.
We could select the nodes with smallest degree, but in networks corresponding to a tree graph there
may be too many such nodes. Therefore, we chose to select the nodes with the lowest eigenvalues as
the “corner” nodes.

If we want to do a local optimization, we should not choose just one such “corner” node, but
more, so that we would have a larger selection of “central” nodes within the graph distance bg − i
from then. The number was set to ⌈√(|V(G)∖Si|)⌉. This means a ceiling of a square root of the number

Figure 2. Time steps of the burning a path on nine nodes: (a) Ideal case; (b) Result of the Algorithm 1.

3.2. Cutting Corners Heuristic

Firstly, how to characterize a “corner” node? In the path graph in Figure 2, it would be a node of
the degree 1, i.e., one of the end nodes. However, no such node exists, e.g., in a square lattice graph.
We could select the nodes with smallest degree, but in networks corresponding to a tree graph there
may be too many such nodes. Therefore, we chose to select the nodes with the lowest eigenvalues as
the “corner” nodes.

If we want to do a local optimization, we should not choose just one such “corner” node, but more,
so that we would have a larger selection of “central” nodes within the graph distance bg − i from then.
The number was set to d

√
(|V(G)\Si|)e. This means a ceiling of a square root of the number of vertices

would remain unburned if the current partial sequence X was in time steps burned and spread the
burns up to bg time steps (in the last steps, the new nodes not defined in X yet would not be burned).

Still, this characterization of “corner” nodes is not satisfactory. Let us take as an example a graph
in Figure 3. If we take nodes with minimum eigenvalues, they are all positioned in the “tail”, while we
would prefer one node at the end of the tail and the rest in the corners of the square.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 12

of vertices would remain unburned if the current partial sequence X was in time steps burned and
spread the burns up to bg time steps (in the last steps, the new nodes not defined in X yet would not
be burned).

Still, this characterization of “corner” nodes is not satisfactory. Let us take as an example a graph
in Figure 3. If we take nodes with minimum eigenvalues, they are all positioned in the “tail”, while
we would prefer one node at the end of the tail and the rest in the corners of the square.

Figure 3. Potential “corner” nodes with minimum eigenvalues are marked by a green color. However,
we would prefer potential “corner” nodes also in the corners of the square, not only in the “tail”.

This problem has been solved by a sequential selection of the “corner” nodes, when the first one
has the minimum eigenvalue, but the next one is one with the minimum eigenvalue of those nodes,
which are at least a given minimum distance from any of the already selected nodes. The function
minDist(v,CornerNodes) finds the smallest graph distance of v to any of the nodes from the set of
CornerNodes. This minimum distance was set to a floor of a half of average path length of the
unburned remaining graph, after the partial sequence X would burn and spread the burns up to bg
time steps.

For the selected “corner” nodes, the goal is to find the best “center” node ideally in the distance
bg − i from the selected corner node. For each “corner” node, a maximum of three potential “center”
nodes in the distance bg − i from the current “corner” node and with maximum eigenvalue in the
graph with unburned vertices are selected. For each node from this this set of potential central nodes,
the number ubn (unburned neighborhood) of unburned nodes in its bg − i neighborhood is evaluated,
and nodes with the top quartile of the number of neighboring unburned nodes are selected. These
nodes are then evaluated by the apl (average path length) of the remaining unburned graph and by
the number of its components, if their neighborhood would be burned.

We then use a weighted aggregated sum product assessment (WASPAS) method to assess the
quality of these central nodes. These nodes should have a maximum sized unburned neighborhood
ubn (which they would cause to burn in the remaining time steps), a minimum average path length
apl of the remaining unburned graph afterwards (more compact graphs burn better than linear paths)
and the smallest possible number of the components compNo of the remaining unburned graph. We
used practically equal weights w for the normalized values of these parameters, but in general,
different weights should be used for different types of graphs.

The cb sequence contains max, if the component is benefit, like ubn, but cb contains min, if the
component is cost, like apl and compNo. The best “central” node according to the WASPAS method
was then added to the X sequence of nodes to burn.

The Algorithm 2 can find an ideal burning sequence both for a path graph as well as for the
artificial test example presented in Figure 1. However, from the NP complexity of the problem, it is
clear, that there is still space for improvement. The simplest approach would be to search more
candidate nodes to burn.

Figure 3. Potential “corner” nodes with minimum eigenvalues are marked by a green color. However,
we would prefer potential “corner” nodes also in the corners of the square, not only in the “tail”.

Appl. Sci. 2019, 9, 3269 8 of 12

This problem has been solved by a sequential selection of the “corner” nodes, when the first
one has the minimum eigenvalue, but the next one is one with the minimum eigenvalue of those
nodes, which are at least a given minimum distance from any of the already selected nodes. The
function minDist(v,CornerNodes) finds the smallest graph distance of v to any of the nodes from the
set of CornerNodes. This minimum distance was set to a floor of a half of average path length of the
unburned remaining graph, after the partial sequence X would burn and spread the burns up to bg
time steps.

For the selected “corner” nodes, the goal is to find the best “center” node ideally in the distance
bg − i from the selected corner node. For each “corner” node, a maximum of three potential “center”
nodes in the distance bg − i from the current “corner” node and with maximum eigenvalue in the
graph with unburned vertices are selected. For each node from this this set of potential central nodes,
the number ubn (unburned neighborhood) of unburned nodes in its bg − i neighborhood is evaluated,
and nodes with the top quartile of the number of neighboring unburned nodes are selected. These
nodes are then evaluated by the apl (average path length) of the remaining unburned graph and by the
number of its components, if their neighborhood would be burned.

We then use a weighted aggregated sum product assessment (WASPAS) method to assess the
quality of these central nodes. These nodes should have a maximum sized unburned neighborhood
ubn (which they would cause to burn in the remaining time steps), a minimum average path length apl
of the remaining unburned graph afterwards (more compact graphs burn better than linear paths) and
the smallest possible number of the components compNo of the remaining unburned graph. We used
practically equal weights w for the normalized values of these parameters, but in general, different
weights should be used for different types of graphs.

The cb sequence contains max, if the component is benefit, like ubn, but cb contains min, if the
component is cost, like apl and compNo. The best “central” node according to the WASPAS method was
then added to the X sequence of nodes to burn.

The Algorithm 2 can find an ideal burning sequence both for a path graph as well as for the
artificial test example presented in Figure 1. However, from the NP complexity of the problem, it
is clear, that there is still space for improvement. The simplest approach would be to search more
candidate nodes to burn.

Appl. Sci. 2019, 9, 3269 9 of 12

Algorithm 2. Cutting corners heuristic for a shortest burning sequence

Input: A network G = (V , E) and a guess value bg of a burning number
Output: A sequence X= x1, . . . , xbg of nodes from G
1: X←∅; TG←G; S0 ← O;
2: for i = 1, . . . , bg do
3: maxSizeComp ← component of TG with maximum number of nodes
4: if i ≥ radius of maxSizeComponent
5: then xi ← v ∈ V| min

v∈V(maxSizeComp)\X
eccentricity(v, maxSizeComp)]

6: else CentralNodes← O;
7: CornerNodes← v ∈ V| min

v∈V(maxSizeComponent)
eigen_centrality(v, maxSizeComp);

8: for j = 2, . . . ,
⌈√
|V(G)\Si−1|

⌉
do

9: minCornerDist← average.path.length(maxSizeComponent)/2
10: distNodes←

{
v ∈ V(maxSizeComp)|minDist(v, CornerNodes) ≥ minCornerDist

}
11: CornerNodes← CornerNodes ∪ v ∈ V| min

v∈distNodes
eigen_centrality(v, TG);

12: for k = 1, . . . , |CornerNodes| do
13: tempNodes←

{
v ∈ V(maxSizeComp)|dist(v, CornerNodesi) ≥ bg− i

}
14: tempNodes← decreasing_order(

v∈tempNodes
eigencentrality(v,maxSizeComponent), 3 nodes)

15: CentralNodes← CentralNodes ∪ tempNodes
16: for m = 1, . . . , |CentralNodes| do
17: Ve(CentralNodesm)← ego(G, bg − i, CentralNodesm);
18: ubnm = |Ve(CentralNodesm)\Si−1|

19: CentralNodes ← CentralNodes with top quartile values of ubn
20: ubn← top quartile values of ubn
21: for r = 1, . . . , |CentralNodes| do
22: aplr ← average_path_length(G(V, E(TG)\E(G[Si ∪Ve(CentralNodesr)]);
23: compNor ← number_of_components(G(V, E(TG)\E(G[Si ∪Ve(CentralNodesr)]);
24: w← (0.33,0.33,0.34)
25: lambda← 0.5
26: cb = (max,min,min)
27: xi ←best node determined by WASPAS(ubn,apl,compNo,w,cb,lambda);
28: X← X ∪ xi

29: Si ← ∪
j=i
j=1Ve

(
x j

)
;

30: E(TG) ← E(TG)\E(G[Si]);
31: if Si ≡ V then return X else return FAILED TO BURN

3.3. Greedy Algorithm with Forward-Looking Search Strategy

Both Algorithm 1 as well as Algorithm 2 select in each time step the currently best looking
candidate node to be burned. However, to search the space of solutions more thoroughly, we used an
improved greedy algorithm with a forward-looking search strategy, which was originally proposed
by Huang et al. [27] and applied to other problems, like packing. In our version of this algorithm,
we consider at the first level several candidates for vertices to be burned, so not only the best node
determined by a WASPAS method like in Algorithm 2 is used, but also several other less optimal
looking candidates (we set the maximum number of candidates in each level to 20). Each of the
candidates is used as x1 in the burning sequence X, and the rest of the sequence X is filled with the
best nodes recalculated anew by WASPAS. If the graph is burned at the end of the sequence for any of
the candidates, then the algorithm is stopped, and we have our answer. However, if the graph is not
burned for burning sequences starting with various candidates, we select the starting node x1, which
left minimum vertices unburned. Then we use this nodes in the next runs as x1 and start the same
procedure with the next node x2. Again, we select several candidates by WASPAS approach, use each
of them as x2, and fill the x3 and the remaining sequence X again only by the best new candidates. If

Appl. Sci. 2019, 9, 3269 10 of 12

for any of the sequences X the graph is burned, we stop. If the algorithm did not stop, we select the x2

node, which left minimum unburned nodes. In this way we continue with x3, etc. until the graph is
burned, or we tried all the candidates for the last xbq node. This approach, which we shall refer to as
Algorithm 3 in the Table 1, shares most of the pseudocode with the Algorithm 2, therefore we shall not
present it here as a stand-alone code. It searches the solution space slightly more extensively than the
entirely greedy approach of Algorithm 2. Theoretically, we could try to use a version of A* algorithm
or some other tree search algorithm, however, it would be much more computationally demanding.
Improvement can be also found by a parallelization, similar to [28].

4. Testing and Results

For testing purposes, we have selected a wide range of networks, and both real as well as artificial
examples. Their resulting burning numbers for all the tested algorithms are given in the Table 1. The
first network is a path graph, similar to the one in Figure 2, only with 49 nodes instead of nine nodes.
It was used for testing, as it is clear that its optimal burning number is seven (the maximum number of
nodes in a path graph for a particular burning number can be calculated as

∑bg
i=1(2i− 1)). The second

network, squaredIdealBurn7, is an artificial example with known optimal burning number equal to seven,
the network is shown in Figure 1. The Reed98, polblogs, ba-1k-2k, mahindas, and netscience are networks
from repository [29]. The 2D and 3D lattices and binary and ternary regular trees were standardly
generated and are reproducible. The Geometric random provides averaged results achieved for 10
randomly generated geometric networks, where 1000 random points on a unit square were connected
by an undirected edge if they were closer to each other than a given radius 0.05. The Erdős–Rényi
provides averaged results achieved for 10 randomly generated networks, each with 1000 nodes, each
couple of nodes connected with a probability 0.012. The Barabási–Albert provides averaged results
for the networks produced by the Barabási–Albert (BA) preferential attachment model, generated by
starting with a triangle and adding each time a node together with three edges. The algorithms as
well as the network generation used an igraph module in R [30], which was managed through the
RStudio environment. Some of the required functions, like finding eccentricity, radius, eigenvalue
centrality, number of components or the largest component, average path length, the vertices of the
neighborhood of the given vertex within the given graph distance (EGO), or the weighted aggregated
sum product assessment (WASPAS) method are directly available in standard R modules, mostly in
the igraph module.

The burning numbers obtained by Algorithms 1–3 were compared with the results by Bonato
and Kamali algorithm [3]. The best-obtained results are emphasized by red font. The best-achieved
values were obtained by Algorithm 3, which is however also the most complicated. Algorithm 2 was
only slightly worse, and Algorithm 1 has the maximum deviations on artificial examples, while on
real networks or their models its results were still close to optimum. Compared to the Botato and
Kamali algorithm [3], our best Algorithm 3 achieved on average a 37 percent improvement. However,
this comparison is slightly unfair, the algorithm in [3] was used mainly to obtain an upper bound
value for the burning number and it has the advantage of properly analyzed complexity. Although
the complexity of Algorithm 1 is similar to [3], our Algorithm 3 has too many heuristically defined
parameters to obtain its complexity easily. From a practical point, run times for the tested networks
were comparable (within a minute on PC).

5. Conclusions

In this paper, we have proposed three heuristics to achieve optimal distribution of an alarm in a
network during subsequent time steps. The heuristics increase in their complexity as well as in the
quality of their results. They were compared on a range of artificial as well as real networks. The best
Algorithm 3 achieved, on average, a 37 percent improvement over the algorithm from [3]. In future,
slightly better results can be expected from tabu search, simulated annealing or evolutionary heuristics.
However, this improvement would likely be paid with an increase of several magnitudes in CPU time.

Appl. Sci. 2019, 9, 3269 11 of 12

From a practical point of view, the current approach assumes that sending and receiving the critical
information from “outside” source, e.g., a satellite, takes the same time as broadcasting the information
to neighbors of the already informed node, e.g., within a terrestrial network. Since this assumption
may not be correct, the algorithm might require modification due to these technological issues.

Author Contributions: Conceptualization, I.D.L. and L.H.; methodology, I.D.L.; software, M.Š.; validation, M.Š.;
formal analysis, L.H.; investigation, I.D.L.; writing—L.H., and J.P.; visualization, M.Š.; supervision, I.D.L.; project
administration, I.D.L.; funding acquisition, L.H. and J.P.

Funding: The work was in part funded by the grant VEGA 1/0145/18 Optimization of network security by
computational intelligence, and the grant APVV-17-0116-Algorithm of collective intelligence: Interdisciplinary
study of swarming behavior in bats.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bonato, A.; Janssen, J.; Roshanbin, E. How to burn a graph. Internet Math. 2016, 12, 85–100. [CrossRef]
2. Bessy, S.; Bonato, A.; Janssen, J.; Rautenbach, D.; Roshanbin, E. Burning a graph is hard. Discret. Appl. Math.

2017, 232, 73–87. [CrossRef]
3. Bonato, A.; Kamali, S. Approximation Algorithms for Graph Burning. In Theory and Applications of Models of

Computation; Gopal, T.V., Watada, J., Eds.; Springer: Cham, Germany, 2019; pp. 74–92.
4. Bessy, S.; Bonato, A.; Janssen, J.; Rautenbach, D.; Roshanbin, E. Bounds on the burning number.

Discret. Appl. Math. 2018, 235, 16–22. [CrossRef]
5. Mitsche, D.; Prałat, P.; Roshanbin, E. Burning graphs: A probabilistic perspective. Graphs Comb. 2017,

33, 449–471. [CrossRef]
6. Mitsche, D.; Prałat, P.; Roshanbin, E. Burning number of graph products. Theor. Comput. Sci. 2018,

746, 124–135. [CrossRef]
7. Sim, K.A.; Tan, T.S.; Wong, K.B. On the burning number of generalized petersen graphs. Bull. Malays. Math.

Sci. Soc. 2018, 41, 1657–1670. [CrossRef]
8. Liu, H.; Zhang, R.; Hu, X. Burning number of theta graphs. Appl. Math. Comput. 2019, 361, 246–257.

[CrossRef]
9. Gonzalez, T.F. Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 1985,

38, 293–306. [CrossRef]
10. Hochbaum, D.S. Approximation Algorithms for NP-Hard Problems; PWS Publishing Company: Boston, MA,

USA, 1997; pp. 346–398.
11. Diaz, J.G.; Mendez, R.M.; Hernandez, J.S.; Mendez, R.M. Local Search Algorithms for the Vertex K-Center

Problem. IEEE Lat. Am. Trans. 2018, 16, 1765–1771.
12. Šimon, M.; Dirgová Luptáková, I.; Huraj, L.; Pospíchal, J. Multi-Hub Location Heuristic for Alert Routing.

IEEE Access 2019, 7, 40369–40379. [CrossRef]
13. Gabriska, D.; Olvecky, M. Analysis and Risk Reduction in Operation of Hazardous Programmable Electronic

Systems. In Proceedings of the 2018 IEEE 16th International Symposium on Intelligent Systems and
Informatics (SISY), Subotica, Serbia, 13–15 September 2018.

14. Hromkovič, J.; Klasing, R.; Monien, B.; Peine, R. Dissemination of information in interconnection networks
(broadcasting & gossiping). In Combinatorial Network Theory; Springer: Boston, MA, USA, 1996; pp. 125–212.

15. Beier, R.; Sibeyn, J.F. A Powerful Heuristic for Telephone Gossiping; Max-Planck-Institut für Informatik:
Saarbrücken, Germany, 2000.

16. Qayyum, A.; Viennot, L.; Laouiti, A. Multipoint relaying for flooding broadcast messages in mobile wireless
networks. In Proceedings of the 35th Annual Hawaii International Conference on System Sciences, Big Island,
HI, USA, 10 January 2002; pp. 3866–3875.

17. Resta, G.; Santi, P.; Simon, J. Analysis of multi-hop emergency message propagation in vehicular ad hoc
networks. In Proceedings of the 8th ACM international symposium on Mobile ad hoc networking and
computing, Montreal, QC, Canada, 9–14 September 2007; pp. 140–149.

18. Benkerdagh, S.; Duvallet, C. Cluster–based emergency message dissemination strategy for VANET using
V2V communication. Int. J. Commun. Syst. 2019, 32, 3897. [CrossRef]

http://dx.doi.org/10.1080/15427951.2015.1103339
http://dx.doi.org/10.1016/j.dam.2017.07.016
http://dx.doi.org/10.1016/j.dam.2017.09.012
http://dx.doi.org/10.1007/s00373-017-1768-5
http://dx.doi.org/10.1016/j.tcs.2018.06.036
http://dx.doi.org/10.1007/s40840-017-0585-6
http://dx.doi.org/10.1016/j.amc.2019.05.031
http://dx.doi.org/10.1016/0304-3975(85)90224-5
http://dx.doi.org/10.1109/ACCESS.2019.2907161
http://dx.doi.org/10.1002/dac.3897

Appl. Sci. 2019, 9, 3269 12 of 12

19. Pan, J.S.; Dao, T.K. A Compact Bat Algorithm for Unequal Clustering in Wireless Sensor Networks. Appl. Sci.
2019, 9, 1973.

20. Samadi, M.; Nagi, R.; Semenov, A.; Nikolaev, A. Seed activation scheduling for influence maximization in
social networks. Omega 2018, 77, 96–114. [CrossRef]

21. Chen, W.; Lu, W.; Zhang, N. Time-critical influence maximization in social networks with time-delayed
diffusion process. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, Toronto,
ON, Canada, 22–26 July 2012; pp. 592–598.

22. Pham, C.V.; Duong, H.V.; Hoang, H.X.; Thai, M.T. Competitive Influence Maximization within Time and
Budget Constraints in Online Social Networks: An Algorithmic Approach. Appl. Sci. 2019, 9, 2274. [CrossRef]

23. Garcia, J.O.; Ashourvan, A.; Muldoon, S.; Vettel, J.M.; Bassett, D.S. Applications of community detection
techniques to brain graphs: Algorithmic considerations and implications for neural function. Proc. IEEE
2018, 106, 846–867. [CrossRef] [PubMed]

24. Host’ovecký, M.; Babušiak, B. Brain activity: Beta wave analysis of 2D and 3D serious games using EEG.
J. Appl. Math. Stat. Inform. 2017, 13, 39–53. [CrossRef]

25. Finbow, S.; MacGillivray, G. The Firefighter Problem: A survey of results, directions and questions.
Australas. J. Comb. 2009, 43, 57–78.

26. Newman, M. Networks; Oxford University Press: Oxford, UK, 2018.
27. Huang, W.; Li, Y.; Akeb, H.; Li, C. Greedy algorithms for packing unequal circles into a rectangular container.

J. Oper. Res. Soc. 2005, 56, 539–548. [CrossRef]
28. Siládi, V.; Povinský, M.; Satymbekov, M. Adapted parallel Quine-McCluskey algorithm using GPGPU.

In Proceedings of the 14th International Scientific Conference on Informatics, Poprad, Slovakia,
14–16 November 2017; pp. 327–331.

29. Rossi, R.; Ahmed, N. The network data repository with interactive graph analytics and visualization.
In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA,
25–30 January 2015; pp. 4292–4293.

30. Csardi, G.; Nepusz, T. The igraph software package for complex network research. Inter J. Complex Syst.
2005, 1695, 1–9.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.omega.2017.06.002
http://dx.doi.org/10.3390/app9112274
http://dx.doi.org/10.1109/JPROC.2017.2786710
http://www.ncbi.nlm.nih.gov/pubmed/30559531
http://dx.doi.org/10.1515/jamsi-2017-0008
http://dx.doi.org/10.1057/palgrave.jors.2601836
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Burning Number and Previous Algorithms
	The Proposed Algorithms to Obtain the Shortest Burning Sequence
	Maximum Eigenvector Centrality Heuristic
	Cutting Corners Heuristic
	Greedy Algorithm with Forward-Looking Search Strategy

	Testing and Results
	Conclusions
	References

