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Abstract: An intelligent analytical technique which is able to accurately identify maceral components
is highly desired in the fields of mining and geology. However, currently available methods based
on fixed-size window neglect the shape information, and thus do not work in identifying maceral
composition from one entire photomicrograph. To address these concerns, we propose a novel Maceral
Identification strategy based on image Segmentation and Classification (MISC). Considering the
complex and heterogeneous nature of coal, a two-level coarse-to-fine clustering method based on
K-means is employed to divide microscopic images into a sequence of regions with similar attributes
(i.e., binder, vitrinite, liptinite and inertinite). Furthermore, comprehensive features along with random
forest are utilized to automatically classify binder and seven types of maceral components, including
vitrinite, fusinite, semifusinite, cutinite, sporinite, inertodetrinite and micrinite. Evaluations on
39 microscopic images show that the proposed method achieves the state-of-the-art accuracy of
90.44% and serves as the baseline for future research on maceral analysis. In addition, to support
the decisions of petrologists during maceral analysis, we developed a standalone software, which is
freely available at https:/github.com/GuyooGu/MISC-Master.

Keywords: maceral components; image segmentation; coal petrography; random forest;
two-level clustering

1. Introduction

1.1. Background and Motivation

Coal is an extremely complex heterogeneous material formed from ancient wetlands over geological
processes. It consists of various organic components called macerals and a lesser amount of inorganic
minerals [1,2]. Different from the minerals with homogeneous internal composition and structures, the
macerals derived from coalified plant tissues have distinct physical and chemical properties, and are
related to the degree of coalification. In addition, the maceral composition is an important factor in
evaluating the coal seam quality. Precise identification of the maceral components has a multitude
of uses across various industry sectors, including hydrogenation, combustion, carbonization and
gasification [2–4].

Macerals can be categorized into three basic groups through petrographic analysis, including
vitrinite from coalified woody tissue, liptinite from more decay-resistant parts of plants and inertinite
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from hydrogen-rich plant and decomposition products. These maceral groups are subdivided into
maceral subgroups and macerals [5]. Most laboratories associated with the coke-making industry
Standard Test Method for Microscopical Determination of the Maceral Composition follow the standard
test methods, such as International Commission for Coal Petrology (ICCP) standard [6] and American
Society for Testing and Materials (ASTM) standard D2799-13 [7], and the microscopic analysis is always
performed manually for the identification of maceral components. Despite being the most widely used
method, it is costly and labor-intensive to identify the maceral composition due to the complicated
nature and substantial diversification of the petrographical properties of coal. Even for specialists in
petrography, they may arrive at different judgements in the analysis of the same microscopic image as
a consequence of the subjective factors. To address these concerns, an intelligent analytical technique
which is able to automatically provide objective identification of maceral components is highly desired
for the growing industrial demand.

1.2. Related Work

Automatic geological identification is becoming an increasingly important technique in various
fields, such as in mining and geology. Camalan et al. presented a novel strategy to estimate the
liberation spectrum from optical micrographs via random forest [8]. Lei et al. proposed an autonomous
classification method of rock images via unsupervised feature learning [9]. In [10], transfer learning
was employed to deal with the problem of cross-region microscopic sandstone images classification.
Numerous attempts have been made on the classification of microscopic rock images and achieved
great success [11–13]. Considering the heterogeneous nature of coal, automatic identification of maceral
components is still a challenging task [3].

In the early stage, the analytical methods to estimate the volume proportions of coal macerals
were mainly based on the gray scale value of pixels [14,15] and provided interesting results. However,
the liptinite and background resin have similar gray scale values, and therefore it is difficult to separate
them. In addition, different maceral components in a maceral group differ only subtly in term of
the reflectance, and the existing methods merely based on gray scale values are not suitable for
distinguishing maceral components. Furthermore, the gray scale values of a specific component
may vary over a large range with the degree of coalification. Although the gray scale descriptions
of pixels remain important, the need for more quantitative features, such as shape and texture,
from photomicrographs has been recognized. With the development of machine learning and image
processing, it is possible to automatically make more elaborate classifications [12,16]. Over the past
several years, attempts based on machine learning techniques have shown promising results in
maceral analysis.

Wang et al. utilized principal component analysis (PCA) to extract primary features from
texture-related and intensity-related features, and employed Support Vector Machine (SVM) to
classify maceral components of the vitrinite group [17]. Skiba et al. selected 10 textural features
via PCA and developed a novel strategy for automatic identification of macerals of the inertinite
group. The proposed method achieved an outstanding accuracy of 93.6% based on a group of neural
networks [16]. Most of the works focus on a single maceral group. So far, attempts to provide full
identification of macerals have been considerably limited. Młynarczuk and Skiba evaluated the ability
of three machine learning methods for identifying three maceral groups of coal and non-organic
minerals [3] . They cropped the region of interest (ROI) of 41 px × 41 px and determined the label of the
central pixel. Considering the morphological gradients along with the gray level features, the proposed
method achieved an accuracy of 97% in classifying maceral groups. Furthermore, they analyzed
six kinds of macerals of the inertinite group and an obtained accuracy is over 91%. Pearson and
CSIRO have released two automated tools to identify maceral composition, including Pearson Coal
Petrography (Pearson Coal Petrography—http://www.coalpetrography.com/blog1/) and CSIRO coal
grain analysis (CGS) (Coal Grain Analysis—https://www.csiro.au/en/Do-business/Commercialisation/

http://www.coalpetrography.com/blog1/
https://www.csiro.au/en/Do-business/Commercialisation/Marketplace/Coal-Grain-Analysis
https://www.csiro.au/en/Do-business/Commercialisation/Marketplace/Coal-Grain-Analysis


Appl. Sci. 2019, 9, 3245 3 of 15

Marketplace/Coal-Grain-Analysis), which have been successfully commercialized. However, they do
not mention the detailed technologies employed in these two tools on the corresponding websites.

Despite providing inspiring performance via machine learning-based methods, there are many
issues that require more scientific breakthroughs. The motivations of the proposed method derive
from the following three aspects:

First and foremost, both patch-wise classification aiming to assign a label to a given region and
pixel-wise classification aiming to provide a label for the central pixel of ROI neglect the shape and
the size information. For instance, the micrinites are always small in size and the cutinites are very
thin [18,19]. In cases where the selected regions contain two or more groups/components of macerals,
it directly affects the performance. The results of the previous methods based on fixed-size window
are always observed with poor generalized ability.

Second, due to the complex and heterogeneous nature of coal, the task for identifying macerals
requires more parameters describing the shape, texture and morphology. Comprehensive features
along with powerful machine learning techniques are required to detect the subtle differences between
maceral groups/components.

Last but not least, there is no publicly available software for identifying maceral
groups/components, especially targeted for geologists without strong expertise in the machine learning
and image processing domains. In addition, the existing methods focus on predicting the label for a
given region or pixel, whereas they do not work in the identification of maceral components from the
entire photomicrograph.

To address the above-mentioned concerns, we propose a novel framework for autonomous
coal macerals identification based on image segmentation and classification (MISC). A two-level
coarse-to-fine clustering strategy is implemented for image segmentation, and random forest is
employed to classify maceral components from the entire microscopic image. The main contributions
of the proposed framework can primarily be broken down into three aspects.

1. Inspired by the distribution of maceral subgroups and the gray scale characteristics of maceral
groups, we design a coarse-to-fine segmentation strategy to divide an entire photomicrograph into
a number of discrete regions, providing the shape and the size information. Both coarse clustering
and fine clustering are based on K-means, which is one of the most popular unsupervised image
segmentation methods.

2. We extract the discriminative features from microscopic images, including geometric, grayscale
and texture features, which are combined into a 172-element feature vector. A comprehensive
feature combination for identification of maceral components, not limited to maceral groups, is
proposed. In addition, we evaluate six kinds of machine learning classifiers, and the random
forest provides the best performance with an average accuracy of 90.44%.

3. A publicly available tool, namely MISC, to identify macerals in microscopic images of coal is
released. The software integrates the best segmentation and classification algorithms involved in
this paper, and provides an AI-assisted autonomy algorithm for maceral components identification.

2. Experiment Dataset

The metallurgical coal samples used in the study are randomly selected from samples submitted
to the laboratory of the United States Geological Survey (USGS). The selected samples were prepared
through a sequence of operations, including sieving, molding and polishing. All the procedures follow
protocols established by the ASTM Standard D2797 [20]. Photomicrographs are captured using a Leica
DMRX microscope with a Leica DFC 480 digital camera under incident white light in oil immersion,
in accordance with ASTM standard D2799-13 [7].

https://www.csiro.au/en/Do-business/Commercialisation/Marketplace/Coal-Grain-Analysis
https://www.csiro.au/en/Do-business/Commercialisation/Marketplace/Coal-Grain-Analysis
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With the increment of coalification, the difference in term of gray levels between macerals is
reduced. It will be difficult to distinguish between vitrinite and liptinite at a high degree of coalification
(e.g., R0 > 1.25%). In this work, the selected coal samples are with a relatively low degree of coalification
(i.e., R0 < 1%). The maceral composition of each coal sample was annotated by 5 petrographers
according to ASTM Standard D2799-13, and the 39 samples out of 50 samples with consistent results
were further analyzed. The resolutions of these photomicrographs are different with each other, in the
range of (267–1024) × (230–768) px, with each pixel roughly corresponding to 2–4 µm. Table 1 shows
all the maceral components analyzed in this study, with brief descriptions and the number of macerals
(909 in total). In addition, 64 objects belonging to binder are also included in the dataset. Binder is
large relative to maceral components and can hold these components together. The demonstration of
each maceral is provided in Figure 1.

Table 1. Brief description of seven types of macerals used in this study.

Maceral Group Maceral Brief Description of Specific Maceral The Number of Macerals

vitrinite ____

The predominate maceral in most coals of
intermediate reflectance. It is always brilliantly
glossy resembling vitreous. Vitrinite is derived
from coalified woody tissue and occurs
generally in thin bands of 2–10 mm thickness.
It plays an important role in defining the
properties of the whole coal.

116

liptinite

sporinite A liptinite maceral exhibition various lenticular,
oval, round forms, or small rod-like projections. 102

cutinite

A maceral is derived from the stratum corneum
of plant leaves, roots and stems. It occurs as
stringers strips of varying thickness, with a
smooth outer margin and serrated edges. It is
not very abundant.

30

inertinite

fusinite

An inertinite maceral distinguished principally
by the preservation of some features of the
plant cell wall structure. It has charcoal-like
structure and is commonly broken into small
shards and fragments.

198

semifusinite

It looks like fusinite in morphology. It has the
largest range of reflectance. The partial size is
always great than 50 µm except when
occurring as a fragment within binder.

122

inertodetrinite

Small, discrete inertinite fragments (>2 µm in
size) of varying shape. Reflectance values of
inertodetrinite are greater than surrounding
vitrinite macerals.

141

micrinite Generally, micrinite is non-angular, and occurs
as particles around 1 to 5 µm diameter. 200
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Figure 1. Examples of maceral components and binder. Each row represents a class. They are binder, 
vitrinite, fusinite, semifusinite, cutinite, sporinite and inertodetrinite from top to bottom respectively. 
The black color areas (i.e., RGB value = 0) in each figure represent the background of the given maceral 
component. The micrinite is not shown here for its small size accounting for only a few pixels. 

3. Methods 

3.1. Image Segmentation Based on Two-Level Clustering 

The main differences between maceral groups are the gray scale values. Generally, the gray scale 
values of liptinite, vitrinite and inertinite decrease successively, as demonstrated in Figure 2a. The 
gray scale distribution curves illustrate that there are noticeable differences among three maceral 
groups and the binder. However, it is difficult to define the boundaries between them. In addition, 
the boundaries corresponding to different photographs are different. The gray scale range of each 
maceral group varies with the degree of coalification. Figure 2b shows the distribution of gray scale 
values of binder and inertinite across four photomicrographs. It can be seen that the gray range of 
binder is relatively fixed, whereas that of inertinite group of 4 coal samples differs greatly. Therefore, 
it is unreliable to adopt a fixed threshold to segment microscopic photographs with different 
coalification degrees. 
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Figure 2. Comparison of gray scale distributions corresponding to different maceral groups and the 
binder. (a) Gray scale distributions of maceral groups and the binder in one coal sample; (b) the 
difference in the gray scale distributions across 4 coal samples. For simplicity, we only show the 
curves corresponding to binder and inertinite in (b). 

Figure 1. Examples of maceral components and binder. Each row represents a class. They are binder,
vitrinite, fusinite, semifusinite, cutinite, sporinite and inertodetrinite from top to bottom respectively.
The black color areas (i.e., RGB value = 0) in each figure represent the background of the given maceral
component. The micrinite is not shown here for its small size accounting for only a few pixels.

3. Methods

3.1. Image Segmentation Based on Two-Level Clustering

The main differences between maceral groups are the gray scale values. Generally, the gray scale
values of liptinite, vitrinite and inertinite decrease successively, as demonstrated in Figure 2a. The gray
scale distribution curves illustrate that there are noticeable differences among three maceral groups and
the binder. However, it is difficult to define the boundaries between them. In addition, the boundaries
corresponding to different photographs are different. The gray scale range of each maceral group
varies with the degree of coalification. Figure 2b shows the distribution of gray scale values of binder
and inertinite across four photomicrographs. It can be seen that the gray range of binder is relatively
fixed, whereas that of inertinite group of 4 coal samples differs greatly. Therefore, it is unreliable to
adopt a fixed threshold to segment microscopic photographs with different coalification degrees.
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corresponding to binder and inertinite in (b).



Appl. Sci. 2019, 9, 3245 6 of 15

In order to automatically detect the boundaries of each maceral, we employed image-wise
segmentation which is able to divide each microscopic image into a sequence of discrete regions,
each having similar attributes. It is an essential step for further maceral composition analysis.
Considering the fact that the maceral components within each group mostly are not adjacent to
each other and the gray scale values are the major difference between maceral groups, we adopt the
gray scale values of each pixel as the features. K-means clustering, one of the most favorable clustering
techniques, is utilized for its simplicity and computational efficiency [21,22].

The main steps of K-means algorithm can be summarized as follows:
(1) Choose initial cluster centroids µ1,µ2,µ3, . . . ,µk ∈ Rd randomly, where k represents the number

of clusters and d represents the dimension of the feature space.
(2) Repeat until convergence:
For each pixel p, assign it to its nearest centroid,

cp := argmin
j
||υp
− µ j||

2 (1)

Update each centroid,

µ j :=

M∑
i=1

1
{
cp = j

}
υp

M∑
i=1

1
{
cp = j

} (2)

where cp represents the cluster of pixel p, υp is a vector consisting of RGB value of pixel p, and M
represents the total number of pixels in each photomicrograph, respectively.

In addition, due to the complexity of coal properties, it is difficult to achieve accurate clustering
results by using single-level clustering only. Single-level clustering is difficult to provide satisfactory
segmentation results. Hence, a coarse-to-fine strategy is adopted. In the coarse clustering level, the
regular K-means clustering algorithm is first applied to get rough clustering results, which splits
a whole image into two sub-clusters. In the fine clustering level, each of the previous clusters is
partitioned again into two fine sub-clusters (i.e., maceral groups and binder).

3.2. Feature Extraction

Inspired by the way that the petrologists examine photomicrographs, we extracted three types of
features for maceral identification. Table 2 lists 172 features utilized in this study, such as reflectance
contrasts, shape, morphology and size, which can be categorized into geometric, grayscale and texture
features [23]. The detailed descriptions of these features can refer to the papers on image pattern
recognition [24,25].

Table 2. Feature space utilized in this study.

Geometric Features (x1–x16) Grayscale Features (x17–x90) Texture Features (x91–x172)

x1: Area x17: Mean gray value x91–x92: Mean and standard deviation of energy
x2: Perimeter x18: Standard deviation of gray value x93–x94: Mean and standard deviation of entropy
x3: Rectangle degree x19: Max gray value x95–x96: Mean and standard deviation of inertial moment
x4: Aspect ratio x20: Min gray value x97–x98: Mean and standard deviation of correlative
x5: Length of long axis x21: Gray scale median X99–x100: Small and large gradient advantage
x6: Length of short axis x22: Gray scale mode x101–x102: Inhomogeneity of grayscale and gradient distribution
x7: Eccentricity x23: Average contrast x103: energy
x8: Solidity x24: Smoothing Degree x104–x105: Mean value of grayscale and gradient
x9: Extent x25: Third-order Moment x106–x107: Mean variance of grayscale and gradient
x10–x16: Hu’ seven invariant moments x26–x90: Grayscale probability x108: correlative

x109–x111: Grayscale entropy, gradient entropy, mixed entropy
x112: inertia
x113: Deficit moment
x114–x172: Fifty-nine local binary pattern features
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For instance, we employ the image moment as the shape descriptor. The moment invariants have
been extensively exploited to characterize image patterns. Among various image moments, Hu’s 7
invariant moments have been widely applied in a variety of applications for its invariant features on
image translation, scaling and rotation [26]. They are defined as follows:

M1 = η20 + η02

M2= (η20 − η02)
2 + 4η11

M3 = (η30 − 3η12)
2 + (3η21 − η03)

2

M4 = (η30 + η12)
2 + (η21 + η03)

2

M5 = (η03 − 3η12)(η30 + η12)[(η30 + 3η12)
2
− 3(η21 + η03)

2]+

(3η21 − η03)(η21 + η03)[3(η30 + η12)
2
− (η21 + η03)

2]

M6 = (η20 − η02)[(η30 + η12)
2
− (η21 + η03)

2] + 4η11(η30 + η12)(η21 + η03)

M7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2
− 3(η21 + η03)

2]+

(3η21 − η30)(η21 + η03)[3(η30 + η12)
2
− (η21 + η03)

2]

(3)

ηab =
µab

µ
ρ
00

,ρ =
a + b

2
+ 1 (4)

where µab represents the central moment and ηab stands for the normalized central moments.
The features x17–x90 are the statistical characters related to the gray scale values of the region

of interest; x91–x99 are statistics for examining texture features based on the spatial relationship
of pixels [27]; x99–x113 are the gray gradient features [28]; and the remaining features x114–x172
correspond to local binary patterns encoding the texture information [29].

3.3. Random Forest for Image Classification

Random forest (RF) is an ensemble machine learning method, which consists of multiple
uncorrelated decision trees. It is widely used in image classification tasks due to its high accuracy,
easy parameterization and robustness against overfitting [30]. Figure 3 illustrates how the random
forest model works. Given the dataset with N samples D =

{
(x1, y1), . . . , (xl, yl), . . . , (xN, yN)

}
, where

xl = [xl(1), xl(2), . . . , xl(172)] and yl
∈ {1, 2, 3, 4, 5, 6, 7, 8} denote the input 172 features and the output

label of sample l, the general idea of random forest can be described as,

(1) Randomly select N samples with replacement from the original dataset, and obtain N subsamples
for constructing each tree.

(2) Select features for constructing decision tree nodes from a random subset of all 172 features, and
construct a decision tree.

(3) Repeat step (1) and (2) for B times and construct a random forest with B trees. The final prediction
result is obtained by the majority vote of the trees in the forest.

As an ensemble model, random forest model fits the input data in a shorter time as each decision
tree is independent, making parallel computing and modeling possible [31,32]. We also test the
performance of the other five machine learning methods, including Fine Tree, Radial Basis Function
kernel Support Vector Machine (RBF SVM), Weighted K-Nearest Neighbors (KNN), Linear Discriminant
and Subspace KNN [33,34].
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3.4. Evalutation Criteria

The results of the automated segmentation method are quantitatively evaluated by using three
popular evaluation criteria including clustering accuracy, entropy and purity. We refer to the class
labels as the ground truth and the results of clustering algorithms as the clusters [35,36]. We refer to
class as the ground truth and cluster as the results of clustering algorithms. Clustering accuracy is the
most intuitive measure to evaluate the performance of clustering, which is defined as follows

accuracy =
4∑

i=1

nii
n

(5)

where nii represents the number of common samples in cluster i and class i, i ∈ {1, 2, . . . , 4}, and n is the
size of the data set.

Entropy is an information theoretic measure and is defined as

entropy = −
4∑

i=1

ni
n

4∑
j=1

ni j

ni
log2

ni j

ni
(6)

where ni j indicates the number of common samples in cluster i and class j, ni stands for the number of
samples in cluster i.

Purity is computed to measure the degree of clusters containing a single class. The purity is
calculated as follows

purity =
4∑

i=1

ni
n

max(
ni j

ni
) (7)
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4. Experimental Results and Discussion

4.1. Image Segmenation

The proposed segmentation strategy has been tested on 39 microscopic images taken by Leica
DFC 480 digital camera, and the results in terms of accuracy, purity and entropy are given in Table 3.
It can be observed that the proposed two-level K-means algorithm achieved significantly higher
accuracy (90.82%), higher purity (90.82%) and lower entropy (0.6042) than the other clustering
algorithms. In particular, the output result via two-level coarse-to-fine clustering consistently has
better segmentation results as compared to the corresponding single-level clustering. For instance,
regarding the K-means algorithm, the accuracy of the two-step strategy is 17.59% better than that of
applying single-level K-means.

Table 3. Quantitative assessment of automatic segmentation methods.

Methods Accuracy (%) Purity (%) Entropy

Fuzzy c-means 69.35 86.36 0.7291
K-medoids 68.34 89.94 0.6805
K-means 73.21 89.43 0.6748

2-level Fuzzy c-means 76.58 83.33 0.7961
2-level K-medoids 82.14 85.31 0.7306
2-level K-means 90.82 90.82 0.6042

Furthermore, in this paper, one out of those tested images was selected to visualize the performance
of the proposed strategy and the other five kinds of clustering methods. The segmentation results of
single-level clustering and two-level clustering are compared with the ground truth segmentations
provided by five petrologists for evaluation. It can be seen from Figure 4 that the boundary of the
resultant segmentation images by K-means is slightly clearer as compared to Fuzzy c-means (FCM)
and K-medoids clustering. The segmented images produced by the two-level clustering are sharper
and much closer to the ground truth. Overall, the proposed two-level coarse-to-fine clustering strategy
based on K-means has outperformed the other clustering algorithms.
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segmentation results of single-level clustering and two-level clustering are compared with the 
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Figure 4. Comparison of automated segmentation results with ground truth. From left to right,
the images represent original image, ground truth, the segmentation results of single-level Fuzzy
c-means (FCM), 2-level FCM, single-level K-medoids, 2-level K-medoids, single-level K-means, and
2-level K-means.

We also compare the results of image segmentation with the results of the fixed-size window
strategy. As can be seen from Figure 5, it is feasible to detect the thin sporinites (i.e., a-1) and the granular
micrinites (i.e., a-2). We can obtain the shape information for each object of interest. As to the fixed-size
window strategy, 41 px × 41 px was demonstrated to be the optimal size for maceral identification [3].
However, it is unrealistic to retrieve the shape information in feature extraction. In addition, micrinites
distributing through the window may only account for a small amount of the area, and therefore
it might be unreliable to train the classification models based on the information provided by the
whole window. Similarly, sporinites are always thin and they might be misclassified based on the
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fixed-size window strategy. Our method is also very effective in extracting maceral composition with
a large area (i.e., a-3), which is helpful to improve classification accuracy. Although the proposed
strategy achieved satisfying performance in identifying the objects of interest (i.e., maceral groups), the
differences in term of gray scale values between maceral components are too subtle to differentiate
them. More discriminative features are required.
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Figure 5. The results of image segmentation based on (a) the proposed Maceral Identification strategy
based on image Segmentation and Classification (MISC) and (b) the fixed-size window strategy.
(a-0) and (b-0) denote the original image. (a-1) and (b-1) are the enlargement of sporinites, (a-2) and
(b-2) are the enlargement of micrinites, (a-3) and (b-3) are the enlargement of fusinites.

4.2. Maceral Composition Classification

Each microscopic image was divided into a series of discrete objects (i.e., macerals groups). Then we
extracted geometric, grayscale, texture features from each object, and created a 172-dimensional feature
vector for each object. We compared the recognition performance of random forest with five popular
classification methods via a 10-fold cross validation. The experiments were repeated 10 times and
the average accuracies were reported in Table 4. This summarizes the classification results of all the
973 objects obtained by image segmentation. The proposed approach yields a high accuracy of 90.44%,
outperforming other classifiers. This should be regarded as a very good performance, especially
when we take into account the high degree of complexity of coals. The obtained results show that the
proposed strategy based on image segmentation and classification has a high potential for maceral
components identification.

Table 4. Comparing the results of random forest and the other 5 machine learning methods for
identifying maceral components (10-fold cross-validation, and repeat the experiment 10 times).

Classification Accuracy (%) ± std (%)

Classifier Geometric Features Grayscale Features Texture Features All Features

Fine Tree 72.29 ± 0.72 70.01 ± 0.83 78.79 ± 1.02 85.71 ± 1.08
Radial basis function kernel

support-vector machine 72.47 ± 0.11 76.97 ± 0.59 85.54 ± 0.33 86.62 ± 0.58

Weighted K-Nearest Neighbors 55.22 ± 0.49 71.40 ± 0.56 80.44 ± 0.47 78.69 ± 0.88
Linear Discriminant 53.76 ± 0.32 70.34 ± 0.46 82.12 ± 0.40 83.36 ± 0.60

Subspace K-Nearest Neighbors 55.45 ± 0.74 71.13 ± 0.68 79.61 ± 0.56 81.26 ± 0.47
Random Forest 79.30 ± 0.47 78.86 ± 0.34 85.64 ± 0.30 90.44 ± 0.37

We further test the performance of an individual kind of features. The recognition performance
using texture features is much higher than that of the other two types of features. Generally, the fusion
of multiple kinds of features can achieve a significant improvement over a single kind of features,
except for weighted KNN classifier.

To observe relations between the predictions of classifiers and the true labels, we also employ
confusion matrices to report the results of different approaches. The confusion matrix enables us to know
not only the error rates being made by a classifier but also the types of errors. More specifically, the rows
of the matrix represent the predicted class, and the columns correspond to the true class (i.e., ground
truth). The green diagonal cells stand for the number of correctly classified observations, while the red
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cells represent the misclassified observations. The precision and the recall rate corresponding to each
class are also shown at the far right of each row and the bottom of each column, respectively. The overall
accuracy is shown at the bottom-right corner of the matrix. As shown in Figure 6, the proposed method
provides satisfying performance for most of the maceral components. The main flaws of all these six
classifiers come from the misclassification of semifusinite and inertodetrinite. The following reasons
could contribute to the worse performance for these two components: semifusinite and inertodetrinite
belong to inertinite group, and the difference in terms of gray level is too subtle to classify them
properly [37]; semifusinite is intermediate between fusinite and vitrinite, and has a similar texture and
general structure to fusinite; the origin of inertodetrinite is similar to fusinite and semifusinite [38].
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Figure 6. Confusion matrix comparison of six classifiers, including the results of (a) Fine Tree; (b) Radial
basis function kernel support vector machine; (c) Weighted K-Nearest Neighbors (KNN); (d) Linear
Discriminant Analysis; (e) Subspace KNN and (f) Random Forest. The labels in each subfigure include
1: binder, 2: sporinite, 3: cutinite, 4: vitrinite, 5: fusinite, 6: semifusinite, 7: inertodetrinite, and
8: micrinite.

The process of training a random forest involves the construction of multiple decision trees.
In this study, we also evaluated the classification accuracy with the increase of the number of trees
from 1 to 300. As shown in Figure 7, in general, more trees can provide the better performance,
especially when the number of trees is smaller than 50. However, the improvement decreases as the
number of trees increases from 50. Considering the tradeoff between the computational efficiency and
the robustness of the developed model, in this study, we set the number of trees to be 200.
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4.3. The Platform of Automatic Coal Petrographic Analysis

The proposed maceral analysis method, MISC, based on image segmentation and classification
makes it possible to identify the maceral composition automatically and intelligently. In order to facilitate
the usage by petrologists, we developed a standalone software implemented in Matlab. We integrate the
two-level K-means and various classification algorithms into the software for intelligent identification of
maceral composition. Figure 8 is the screen snapshot of MISC software. Users can submit a microscopic
image of coal with the degree of coalification R0 < 1.0%. The segmentation results are presented as
four subfigures, corresponding to the binders and three maceral groups. The classification result for
each object detected by image segmentation is shown with different colors for visualization. The MISC
is freely available for users at the following website: https://github.com/GuyooGu/MISC-Master. It can
be used to support the decisions of petrologists in classifying maceral components. To the best of our
knowledge, it is the first non-commercial software for identification of maceral components. It is an
efficient and effective tool for the complete analysis of maceral composition.

https://github.com/GuyooGu/MISC-Master
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5. Conclusions

Inspired by the way that petrologists examine photomicrographs, we proposed an automatic
and effective framework for maceral classification. The proposed strategy is fundamentally different
from previous attempts to classify a region and classify the central pixel of a ROI. Based on the image
segmentation, rather than the fixed-size window, the regions of interest are cropped automatically.
Current fixed-size window-based strategies, including both patch-wise classification and pixel-wise
classification, neglect the shape and the size information and therefore do not work in identifying
maceral composition from one entire photomicrograph. The utilized two-level coarse-to-fine clustering
strategy achieved significantly better segmentation results as compared to the corresponding single-level
clustering. In addition, considering the complicated nature of coal, it may prove difficult to identify
maceral components based on a single kind of features. Our results suggest that classification approach
based on multiple kinds of features, such as geometric, grayscale and texture features, will be a
promising direction for identifying maceral components.

However, it should be stressed that the research described in this paper is a preliminary study
which still has some limitations. First, the proposed method only works when the degree of coalification
is smaller than 1.0%. With the increase of that degree, it will be difficult to distinguish vitrinite and
liptinite based on gray scale values. Second, we assume that there are four maceral groups of each
sample. However, this assumption may not hold in a few cases. We have tried density-based clustering
methods, such as density-based spatial clustering of applications with noise (DBSCAN), which can
automatically detect the optimal number of clusters. However, the performance is not better than
the proposed method. We will investigate this issue in the future. In addition, 39 photomicrographs
used in this study were analyzed according to definitions in ASTM Standard D 2799-13 and atlas
in [39]. There are seven types of maceral components, belonging to three maceral groups (i.e., vitrinite,
liptinite and inertinite). Liptinites include sporinite and cutinite. Inertinite macerals include fusinite,
semifusinite, inertodetrinite, and macrinite. However, the mineral components and the other macerals,
such as funginite or macrinite, are rarely found in these photomicrographs, and are not abundant
in nature. Therefore, in this study, we do not consider these components, and follow a simplified
classification as that in [39]. The proposed MISC strategy obtained relatively good performance,
especially when we take into account a high degree of complexity of coals. Although with some
limitations, to the best of our knowledge, our work is the first study aiming to provide complete
analysis of maceral composition.
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