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Abstract: Currently, the optical components of a camera embedded in the device constrain its overall
thickness. Moreover, if the camera is strongly shaken, the lens and sensor may be misaligned, resulting
in a defocusing effect. In this paper, we propose a novel lensless-camera communication model, which
removes the lens of camera, therefore decreasing the overall thickness of the device without affecting
communications. To decode the images captured by the lensless camera, a decoding algorithm
aided by back propagation (BP) neural network was designed, which recognizes the blurred image
patterns efficiently. To adapt to time-varying environments, an adaptive training sequence adjustment
mechanism was designed. Simulation results show that the proposed image decoding algorithm
presents a good bit-error-rate (BER) performance. The proposed system has robust movements and
provides resilience to interference, benefiting from the neural network and the designed algorithm.
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1. Introduction

The high popularity of communication devices and the natural integration with new technologies,
known as the “internet of things”, optical camera communications (OCC) [1,2] has become a promising
technology in the field of visible light communications (VLC). In addition, IEEE 802.15.7r1 as the
official standard of OCC further promotes OCC standardization development [3]. In the future, OCC
is expected to be a candidate for VLC used in some low-speed communication services.

One shortcoming of OCC is that the optical components of the camera embedded in the electronic
device greatly increase the thickness of the device, affecting overall appearance [4]. The camera thickness
of most mobile devices currently on the market is greater than 5 mm [5]. If the optical components
were removed without affecting communications, it would be possible to create ultra-thin cameras,
which would facilitate the use of small cameras, endoscopes, pill cameras, and body microscopes.
Moreover, the authors of [6] proposed a method for lensless photography, which eliminated the need
for lenses by utilizing computation and coded apertures in front of the image sensor. Inspired by their
research, we propose a new lensless-camera communication system model to achieve communications
in a new and effective way.

Figure 1a shows the proposed model of optical camera communications, which works in a
half-duplex mode. The access point (AP) and terminal device both consist of a LED (as the transmitter)
and a lensless camera (as the receiver). The transmitter can be a lighting LED light or the signal light of
the communication device using white or any color. During communications, the up link (terminal to
AP) only transmits control information. The model can be applied to some low-speed communication
occasions, such as smart supermarkets or museums. Customers can use their electronic devices to
download advertisements, news data, or obtain a URL link from the light source.

For OCCs that use standard cameras, the image captured by the receiver contains a light source
and its surrounding scenes. Accordingly, positioning or locating the light source on the image is
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important to decoding it, which currently is implemented by a template matching method [7]. However,
when the terminal device and AP have relative movements during communications, the light source
must be searched and extracted in a timely fashion; accordingly, template matching method becomes
complex and inefficient. Additionally, interference lights and time-varying environments also degrade
communication performance of OCC. In contrast, the decoding method used in [8], targets a stationary
communication case.

Interested in a new design for OCC, we propose a lensless camera-based OCC in this paper; we
focus on decoding the special image captured by our camera. We designed an algorithm based on the
back propagation (BP) neural network for image decoding. The captured images by our receiver are
light spots on objects; accordingly, all the details are blurred. Accordingly, our neural network-based
decoding algorithm can work efficiently. To make our decoding algorithm maintain better performance
in time-varying environments, an adaptive training sequence adjustment mechanism was designed.
Similar to [9], 4B6B coding and on-off keying (OOK) modulation were used, as shown in Figure 1b.

Our main contributions can be summarized as follows: (1) We propose a novel optical camera
communication model, which uses a lensless camera as the receiver to decrease the overall thickness
of the device without affecting communications. (2) In consideration of the special features of the
image captured by the lensless camera, we designed a decoding algorithm based on the BP neural
network, which recognizes light source patterns in complex conditions (e.g., ambient light, bad weather,
movement of communication devices). The simulation results show the reliable performance of our
system. (3) To adapt our decoding algorithm to the time-varying environments, we designed an
adaptive training sequence adjustment mechanism.
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Figure 1. Lensless camera communication system: (a) Lensless camera communication model; (b)
proposed system block diagram. AP: access point; LED: light-emitting diode; OOK: on-off keying.

2. Proposed Scheme

We propose an image decoding algorithm based on the BP neural network, which is suitable
for most indoor and outdoor environments. Moreover, to improve the functionality of our decoding
algorithm in time-varying environments, we propose an adaptive training sequence adjustment scheme.

2.1. Image Decoding Algorithm

Our image decoding algorithm is based on the BP neural network, which includes two stages.
One is image preprocessing, the other is neural network training.

Figure 2 shows four images of the same sender captured by two different receivers. Figure 2a is
the “on” image (communication light source is on) captured by a camera with lens; Figure 2b is the “off”
(communication light source is off) image captured by a camera with lens. The image quality is fine.
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The white LED is used as the communication light source. The blue LED is used as an interference light
source. To decode the data for these images, the communication light source should be identified first;
accordingly a light source positioning procedure should be carried on. As a result of the interference
and the relative movements between light source and receiver, the positioning algorithm is complex.
Figure 2c is the “on” image captured by a lensless camera, and Figure 2d is the “off” image captured
by a lensless camera. No real image of object could be captured, only the blurred, shape-less light
spot surrounding the object. In fact, the essential component of OCC is the use of the camera as a
receiver to identify an on/off state of a light source; detail of the image is not important at this stage
of OCC. From this angle, our lensless receiver is suitable for OCC and could realize decoding easily.
Without a positioning process, our algorithm realizes the decoding with the help of the BP neural
network, which could identify the difference between two images, the image with “on” communication
light and the image with “off” communication light. The proposed algorithm can work under the
interference as long as the interference light does not change quickly. Additionally, the algorithm has
robust movements because the position of the LED on the image is not important.
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Figure 2. Comparisons of images captured by different cameras: (a) “on” image captured by a camera
with lens; (b) “off” image captured by a camera with lens; (c) “on” image captured by a lensless camera;
(d) “off” image captured by a lensless camera.

2.1.1. Image Preprocessing

In actual applications, the LED transmitter may use colored or white LED bulbs to transmit
different types of signals (e.g., warning or danger signals). Any image can be decomposed into three
component images (Y, Cb, and Cr) [10]. Different component images from different light sources
can result in a different decoding effect in different environments. Accordingly, we first selected the
appropriate component to train the neural network, then performed decoding. Figure 3a is the analysis
of the “off” image of the illumination LED without ambient light interference. Figure 3b is the analysis
of the “on” image of the illumination LED without ambient light interference. Figure 3c is the analysis
of the “on” image of the blue LED without ambient light interference. Figure 3d is the analysis of the
“on” image of the illumination LED with blue ambient light interference.

By comparing the Y, Cb, Cr components of the captured images in different environments, we
determined that we should choose the right component for a training neural network in different
environments. After comparing the Y, Cb and Cr components of Figure 3a,b as well as Figure 3a,d,
we found that, in these two cases, we should choose Y component for training. After comparing
Figure 3a,c, we determined that the Cb component should be selected for training in this case.
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2.1.2. Neural Network Training

In this stage, our main goals were to create a neural network structure that met our functional
requirements and to find the best settings for the stable training process [11]. After many experiments
and adjustments, in the training process, this paper adopts the fastest descent method with adaptive
learning rate and additional momentum factor in the weight update process, as shown in Equation (1);
the equation can prevent the network from falling into oscillations and find the minimum point more
easily. The learning rate has a huge impact on the performance of the network. In different stages of
training, the value of the learning rate is different, so we used the adaptive learning rate and tried to
find the best settings for the training process. We used an initial learning rate 0.01 and a momentum
0.9 as well as other parameters, as shown in Table 1.

w(k + 1) = w(k) + α(k)[(1− η)D(k) + ηD(k− 1)] (1)

where w(k) is the weight of step k, α(k) is the learning rate of step k, η is the momentum factor, and D(k)
= −∂E/∂w(k) is the negative gradient of step k; E is the error function.
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To maintain good decoding performance in time-varying environments, our neural network was
trained periodically; accordingly, the number of images in the training set was determined by the
channel condition.

Table 1. Parameters.

Training Environment Specification

The size of input image 48 × 48 [Pixel]
Number of input layer nodes 2304

Number of hidden layer nodes 48
Number of output layer nodes 2

Initial learning rate 0.01
Momentum 0.9

Optimization method gradient descent (SGD)
Transfer Function of hidden layer Logsig
Transfer Function of output layer Softmax

2.2. Adaptive Training Sequence Adjustment Mechanism

Because the classification effect of the BP neural network is related to the size of the training
set, we had to control the training sequence length to ensure the accuracy of classification without
incurring too much data overhead.

In indoor working conditions, the difference between the “on” and “off” states of the LED images
varies due to the change of the background scene; e.g., at night, the difference between these two types
of images is obvious, but at daytime it becomes vague. The length of the training sequence should be
adaptive and ensure the recognition effect of the neural network. When system works outdoors, the
communication channel is more complicated due to ambient light intensity variation or bad weather
(snow or rain). In this paper, an adaptive training sequence adjustment mechanism is proposed to
adapt to time-varying environments.

2.2.1. Frame Structure

In our proposed system, before communications, communication parties establish connection
through exchanging control frames. The structure of the control frame is shown in Figure 4. It includes
“SFD” (full name is shown in Table 2), which separates the starting bits from the remaining information
bits. The field “Type” differentiates control frame and data frame. The field “Subtype” consists of four
bits, which indicates the types of frame. The “Duration” field of the control frame indicates the time
between the end of the current control frame and the completion of data reception. Here, the “Duration”
field is reserved for occasions in which multiple users have simultaneous communications in the future.
The field “Length of Training Sequence”(LTS) is used by the terminal device to notify the AP the length
of the training sequence in the next cycle. The LTS is “000000” if the length does not need change or if
this confirmation frame comes from the AP. The field “Frame Check Sequence“ (FCS) is used to verify
whether the received data is correct.

As shown in Figure 5, the field of Training sequence of data frame consists of alternating “1” and
“0” bit, which makes the number of two types of images in the training set approximately the same.
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Table 2. Special field description of the frame.

Abbreviation Full Name Data Field

SFD Start Frame Data 0011111000
Type ———————— 01/10
RTC Request To Connect 1011
CTS Confirm To Send 1101
ETS End To Send 1100
LTS Length of Training Sequence ——-
FCS Frame check sequence ——–

2.2.2. Training Sequence Adjustment Process

In this process, after each communication is completed, the receiver determines the number of
required training images according to the current bit error rate (BER); it then informs the transmitter
by transmitting a control frame. In this paper, via a large number of experiments, the relationship
between training sequence length and BER has been established. The main implementation process is
shown in Figures 6 and 7 and described below.

(1) Before the terminal device requests the connection, the terminal first captures several image
frames sent by the AP for training its neural network to decode the data later;

(2) Then, the terminal device sends a request frame to the AP;
(3) The AP receives several request frame images for training the neural network at the AP end;
(4) The AP sends information to confirm the connection after receiving the request frame.
(5) Once the terminal device receives the confirmation message from AP, it sends CTS frame to

the AP.
(6) If the AP receives the CTS frame, which means the connection is established, the AP begins to

send data to the terminal device.
(7) After each communication, the receiver will determine the training sequence length required for

the next communication according to the accuracy of the data received in this communication,
and send CTS frame to notify AP to adjust the length of the training sequence.

(8) Finally, either party of the communication can send the end frame to end the communication.
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3. Lensless Camera Communication System Experimental Platform

To evaluate the BER performance of our system when used indoors and outdoors, we set up a
lensless camera communication system, as shown in Figure 8. The receiver of the system is a lensless
camera. To obtain the lensless camera, we used the camera module on the microcontroller, of which
the lens is detachable. Then, we used a LED (as sender) to send signals. During the experiments,
we made the lensless camera move slowly in a short range and used the lensless camera to capture the
images of the LED on the sending end. It can be seen from the simulation results that the BER can
meet the communication requirements. Therefore, our decoding algorithm can resist the movement of
communication devices.
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3.1. Hardware Design of Sender Module

The sender consists of a microcontroller, an amplifier circuit, and a switch circuit. In the
experimental process, we selected the STM32F429 as microcontroller. The MAX4427 chip was used
in the amplification circuit. The microcontroller is used to generate modulated signals that are then
amplified by the amplification chip to form 2A sink current. We also selected an IRF54ON FET with a
short response time (about 20 ns) as the switch to drive the LED to transmit modulated visible light
signals. Figure 9 shows the circuit diagram of the sender.
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3.2. Hardware Design of the Receiver Module

We obtained a lensless camera receiver by implementing the OV2640 camera module on the
ALIENTEK Explorer STM32F4 board, for which the lens of the camera module was moved. The frame
rate of the lensless camera was set to 30 fps. During the experiments, we used the lensless camera to
capture the images of the LED on the sending end.
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4. Results and Discussion

This section analyzes the BER performance of the proposed model. Here, we compare the BER
performance of our system when using our decoding algorithm or threshold determination decoding
method. The threshold determination decoding method is to compare the average gray value of an
image with a fixed threshold value. If the average gray value of the image is greater than the threshold
value, it will be judged as “on” image; otherwise, it will be judged as “off” image. For the indoor
situation, we analyze the BER performance under different background brightness. For the outdoor
situation, we analyze the decoding accuracy of our decoding algorithm on snowy channel condition.
Table 3 lists the key experimental parameters.

Table 3. Experimental parameters.

Parameters Values

Resolution 800 × 600 [Pixel]
Camera frame rate 30 fps

FOV 78 [deg]
The size of sensor 1/4 inch

The sensitivity of sensor 0.6V/Lux-sec
Distance 40 cm

Modulation frequency fook = fcamera
Encoding RLL

Lighting level 156 Lux

Figure 10 compares the BER performance of two cases, one in which the receiver is stationary and
the other in which the receiver is slowly moving within a certain range. It can be seen from the results
that the difference in BER performance between the two cases is not obvious, which indicates that our
proposed decoding algorithm is not sensitive to terminal device movement. Therefore, in comparison
with some image decoding algorithms, our image decoding algorithm can resist the movement of
communication devices.
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Figure 10. Comparison of bit-error-rate (BER) performance between moving terminal device. and
stationary terminal device.

Figure 11 shows the images of LED transmitter captured by our lensless camera when the indoor
background brightness (the brightness of the “off” image) was around 0.5. Figure 11a is the “off”
image of LED light without noise light source interference; Figure 11b is the “on” image of LED light
without noise light source interference; Figure 11c is the “on” image of the blue LED light without
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noise light source interference; and Figure 11d is the “on” image of LED light with blue noise light
source interference. Here, we use different colors of LED lights as transmitters to simulate the signal
lights of communication devices. During the experiments, our images were captured while the lensless
camera was moving slowly within a certain range, indicating we took the movement of communication
devices into account.
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Figure 12a presents the diagram of BER using our proposed decoding algorithm. It shows that
the BER is related to the indoor brightness and the length of the training sequence. Within a certain
range, as the number of the training images increases, BER decreases. Moreover, normally the BER in
high indoor brightness environments will be slightly higher than the BER in low indoor brightness
environments. This is because the higher the indoor brightness, the more severely the image is
disturbed by ambient light, e.g., when sunlight shines into a room during the day. However, in general,
our decoding algorithm works well under the condition of blue noise light source interference, as seen
in Figure 11d.

Figure 12b shows the curves of BER using the threshold determination decoding method, of which
the thresholds are different. The first threshold is set to the average gray value of all “off” images of the
training set; the second threshold is set to the average gray value of all “on” images of the training set;
the third threshold is set to the average of the gray value mean of all “off” images in the training set;
and the gray value mean of all “on” images in the training set. As seen in Figure 12b, the BER curves
under the first two thresholds are significantly higher than the third threshold, which indicates that
BER performance is very relevant to the threshold setting method in this decoding method. However,
it is difficult to find a good threshold setting method that can adapt to environmental changes. Overall,
this method cannot resist the interference of background light source to provide a reliable performance
for our system.

Figures 11 and 12 shows that our system can work well indoors in most cases. To analyze the
performance of our system while working outdoors, we simulated the images taken in the bad weather
(e.g., snowy days) and performed simulation analysis.

The snowflake density factor in Figure 13 indicates the intensity of the snowflake distribution.
The larger the factor is, the denser the snowflake distribution is. Figure 14a shows our image decoding
algorithm can meet the communication requirements on snowy days as long as the appropriate length
of the training sequence is provided. However, Figure 14b shows the poor BER performance of the
threshold determination method in the outdoor snowy environment.
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Figure 12. BER performance using different decoding algorithms indoors (the transmitter is illumination
LED light): (a) the BER using our proposed decoding algorithm under different indoor brightness and
(b) the BER using threshold determination method at different thresholds.
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Figure 13. Images of the states of the illumination LED light on snowy days: (a) “off” image of the
illumination LED light and (b) “on” image of the illumination LED light.
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Figure 14. BER performance using different decoding algorithms on snowy days (the transmitter is
illumination LED light): (a) the BER using our proposed decoding algorithm and (b) the BER using
threshold determination method at different thresholds.
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Figure 15 describes the BER performance of the blue LED at the transmitting end, which is
regarded as the signal light of communication device. We can see the “on” image of the blue LED
captured by the lensless camera from Figure 11c. Figure 15a shows that our proposed image decoding
algorithm can also work well when the transmitter is a blue LED. Figure 15b indicates that the decoding
performance of the threshold decision method is not good when the blue LED light is used as the sender.
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LED light): (a) the BER using our proposed decoding algorithm and (b) the BER using threshold
determination method at different thresholds.

5. Conclusions and Future Work

In this paper, we propose a lensless camera-based communication system model, which provides
a model for new designs for OCC systems. To evaluate the indoor and outdoor BER performance
of our system when using the proposed decoding algorithm, we set up an experimental platform
and performed the simulations. For indoor communications, we analyzed the BER performance of
our proposed decoding algorithm when the transmitter was white lighting LED light or blue LED
light. For outdoor communications, we analyzed the BER performance of snowy days with different
snowflake densities. We concluded that the decoding algorithm using the BP neural network that we



Appl. Sci. 2019, 9, 3238 14 of 14

designed can adapt well to the changes of the time-varying environment, guaranteeing the reliable
performance of the communication system over error probability.

In future work, we will consider high-order modulation to increase the data rate. Additionally,
we will also propose some effective methods to improve the communication distance of our system.
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