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Abstract: Flow measurements in open channels have often utilized velocity-area methods. Thus,
estimations of the average velocity in a cross-section of rural canals play an important role in the
flow measurement of an irrigation district. This paper derives a model for calculating depth average
velocity. This model considers the classical logarithmic formula describing the velocity distribution
and flow partitioning theory, which is aimed at finding out a location that represents the depth average
velocity (LDAV) along the vertical line from boundary to water surface. Subsequently, the average
flow velocity of the whole channel can be further determined by using the velocity-area method in
different regions. Moreover, the LDAV has different expressions in different sub-regions according to
flow partitioning theory under various aspect ratios. The results are verified by experiments under
different experimental conditions, and the formula is highly applicable and has a high theoretical
significance and practical value.
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1. Introduction

The measurement of irrigation water consumption in irrigation districts is significant in the
implementation of a stringent water resources management system [1]. Rural canals can be
approximated by rectangular open channels. The standard method for calculating discharge in
an open channel is the velocity-area method, which requires velocity measurements to be made at
many points throughout the area. Although this method is considered to be particularly reliable, a large
number of measurements results in an associated time cost of measurement. Numerous researchers [2]
have sought to define methods for estimating discharge on the basis of an extremely reduced number of
velocity observations. One important approach in this respect is to estimate the discharge by measuring
the velocity at a point which stands for the depth average velocity on a vertical measuring profile.
However, there is no relevant research on how to obtain the location of this point. For practical reasons,
it is helpful to separate the flow regions and to separate the bed or side-wall local friction velocity,
which is crucial for velocity distribution. It is universally acknowledged that the flow partitioning
theory is extremely important for velocity distribution. Nevertheless, the usual application of the flow

Appl. Sci. 2019, 9, 3222; doi:10.3390/app9163222 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-6711-530X
http://www.mdpi.com/2076-3417/9/16/3222?type=check_update&version=1
http://dx.doi.org/10.3390/app9163222
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 3222 2 of 15

partitioning theory is in calculating the shear stress in a practical channel. Thus, how to use the flow
partitioning theory to find a point which stands for the average velocity on a vertical measuring profile
has provoked researchers’ interest [3]. The depth average velocity of natural rivers is the basis for
studying sediment movement and riverbed evolution, and it has been a key issue in hydraulics for a
long time, which is directly related to its function in the calculation of cross-sectional flow and the
longitudinal dispersion coefficient [4]. The study of velocity distribution is critical to the calculation of
the depth average velocity.

There have been many studies on velocity distribution. In 1938, Keulegan [5] proposed that a
logarithmic expression can be used to describe the average velocity distribution of fully developed
uniform turbulence in open channels:

u+ = A log y+ + B (1)

where u+ = u/u∗, y+ = y/u∗, A = 2.3/k, u∗ is frictional velocity, v is the coefficient of kinematic
viscosity, A and B are constants, and κ is the Karman constant.

Coles [6] proposed a wake function to explain the turbulent boundary layer flow
development process:
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where Π is the wake function.
Further more, Coles proposed that the wake function can correct the deviation of logarithmic

functions of the velocity distribution of a two-dimensional incompressible turbulent boundary layer
flow near the water surface:
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Nikuradse [7] made an artificial sand rough pipe by using pasting sand with a uniform particle
size on the wall of a pipe. The analysis of the experimental data of the smooth sand tube showed that
the values of parameters k and B in logarithmic law are 0.4 and 5.5, as shown in Equation (4):

u = u∗
(
5.75lg

u∗y
v

+ 5.5
)

(4)

However, with the deepening of understanding in this research area, researchers have developed
different views on the scope of the applications of logarithmic law. As the description of logarithmic
law near the water surface is not perfect, some scholars have begun to try and find a more consistent
functional form to describe the velocity distribution in the whole water depth. Hu [8] conducted
experiments which showed that the velocity distribution on the same vertical line turns out to be
different with an increasing water depth in different water depth ranges.

Additionally, according to the distribution characteristics of velocity in different water depth
ranges, the whole water depth should be divided into three parts: the inner area, the outer area and
the surface area. Shiono and Knight [9] integrated the N-S equation along the flow direction to take the
average value along the water depth and proposed the Shiono and Knight Model (SKM), which is
most widely used in the calculation of the average flow velocity in the cross section of a compound
channel. The research conducted by different researchers [10] shows that logarithmic law could be
used on velocity distributions of open channel flows. However, under various conditions, there is no
agreement on whether the vertical velocity correlation of the cross-section can be expressed using a
unified correlation or not.

The Division of flow region for 3-D channel flows has been shown in a number of textbooks on
hydraulics [11]. Keulegan [5] is the first to mention the need to divide the flow cross-sectional area
into different sections. For turbulence in a prismatic channel, Einstein [12] suggested that the shear
force applied to the bed should be separated from the shear force applied to the lateral boundary.
Chien and Wan [13] briefly explained the physical meaning of Einstein’s thoughts, and reported that
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the residual energy in the mainstream should be transferred and eventually dissipated as heat at the
boundary. Additionally, the energy in any unit flow is transported to the nearest boundary. In fact, all
of these provide an excellent approach to calculating the shear stress in a cross-section. However, the
most important issue is whether it is possible to use flow partitioning theory to obtain local frictional
velocity separately in different regions. Hydraulic engineers use the concept of flow region division
to assume that there is no shear force on the dividing line and have proposed various methods for
dividing the cross-section of the channel. They have different views on the division of flow area, and
various models have been proposed to express the division lines:

Keulegan Method (KM): Keulegan [5] proposed that the flow in a polygonal channel could be
separated into three separate areas, and this is achieved by division lines bisecting the base angles,
as shown in Figure 1. Unfortunately, no theoretical explanation for this treatment was provided by
the authors.

Daido Method (DM): Daido [14] performed extensive research to derive an equation for the
division lines of a rectangular open channel. The author applied the Karman–Prandtl velocity equation
from the sidewall and bed for each dashed line shown in Figure 1. However, the validation of Daido’s
model in-flow has not been verified by experimental data.

Guo and Julien Method (GJM): Guo and Julien [15] determined the bed and sidewall shear
stresses in a rectangular open channel flow by solving the continuity and momentum equations.
Conformal mapping was used to partition the flow and the equation for division lines was derived.
The GJM method considers the control volume partitioned by the curved division lines by their first
approximation, as illustrated in Figure 1.

Yang and Lim Method (YLM): Their work has been widely quoted in many textbooks and has
had a great impact on fluid mechanics. Yang and Lim [16] proposed that there is a slanted straight line,
which can be used to divide the cross-section into two different flow regions, as shown in Figure 1.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 14 

boundary. Additionally, the energy in any unit flow is transported to the nearest boundary. In fact, 
all of these provide an excellent approach to calculating the shear stress in a cross-section. However, 
the most important issue is whether it is possible to use flow partitioning theory to obtain local 
frictional velocity separately in different regions. Hydraulic engineers use the concept of flow region 
division to assume that there is no shear force on the dividing line and have proposed various 
methods for dividing the cross-section of the channel. They have different views on the division of 
flow area, and various models have been proposed to express the division lines: 

Keulegan Method (KM): Keulegan [5] proposed that the flow in a polygonal channel could be 
separated into three separate areas, and this is achieved by division lines bisecting the base angles, as 
shown in Figure 1. Unfortunately, no theoretical explanation for this treatment was provided by the 
authors. 

Daido Method (DM): Daido [14] performed extensive research to derive an equation for the 
division lines of a rectangular open channel. The author applied the Karman–Prandtl velocity 
equation from the sidewall and bed for each dashed line shown in Figure 1. However, the validation 
of Daido’s model in-flow has not been verified by experimental data. 

Guo and Julien Method (GJM): Guo and Julien [15] determined the bed and sidewall shear 
stresses in a rectangular open channel flow by solving the continuity and momentum equations. 
Conformal mapping was used to partition the flow and the equation for division lines was derived. 
The GJM method considers the control volume partitioned by the curved division lines by their first 
approximation, as illustrated in Figure 1. 

Yang and Lim Method (YLM): Their work has been widely quoted in many textbooks and has 
had a great impact on fluid mechanics. Yang and Lim [16] proposed that there is a slanted straight 
line, which can be used to divide the cross-section into two different flow regions, as shown in Figure 
1. 

 
Figure 1. Different views on the division of the flow region. 

There have been many ways to obtain the average velocity in a cross-section of an open channel. 
However, the flow division theory has almost never been applied to obtain the average velocity in 
open rectangular channels. It is very important to find out where the characteristic point is, which 
stands for the average velocity along the normal line of boundary. This article aims to formulate a 
correlation for finding out the characteristic point standing for the average depth velocity along the 
normal line from the boundary wall of the channel and validate the correlation based upon 
experiments. 

2. Materials and Methods 

Figure 1. Different views on the division of the flow region.

There have been many ways to obtain the average velocity in a cross-section of an open channel.
However, the flow division theory has almost never been applied to obtain the average velocity in open
rectangular channels. It is very important to find out where the characteristic point is, which stands for
the average velocity along the normal line of boundary. This article aims to formulate a correlation for
finding out the characteristic point standing for the average depth velocity along the normal line from
the boundary wall of the channel and validate the correlation based upon experiments.
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2. Materials and Methods

Han [17] demonstrated the existence of a dividing line in a smooth channel flow with a smooth
flat or curved bed by analyzing the average velocity distribution, which can be used to obtain the
velocity distribution in different flow areas. In order to understand how flow division theory affects
the velocity distribution, Prandtl’s theory needs to be revisited. Prandtl [18] proposed the concept of
mixing length to express eddy viscosity.

vt = l2m

∣∣∣∣∣du
dy

∣∣∣∣∣ (5)

− ρu′v′ = ρl2m

∣∣∣∣∣du
dy

∣∣∣∣∣du
dy

= ρu2
∗ (6)

Prandtl assumed that the mixing length lm is directly proportional to the distance from the
boundary, lm = κy, where κ is the Karman constant. Generally, the value of κ is 0.4. Under different
conditions, the value of κmay be different [16]. Substituting the boundary conditions u = 0 and y = y0

into Equation (6), the equation for velocity is obtained.

u
u∗1

=
1
κ

ln
y
y0

(7)

where u∗1 is the frictional velocity, and y0 may be related to local velocity of the sticky lower layer,
according to Equation (8).

y0 =
v

cu∗s
(8)

where c is the coefficient measured by experiments, and u∗s is the local friction, which may be different
from u∗1.

Therefore, if a flow region can be divided, then the local shear stress can be used, which can better
reflect the actual side wall effect instead of the concept of average shear stress. Additionally, the local
boundary shear stress may be determined using Equations (9) and (10).

τ = ρu2
∗s (9)

u∗s =
√

gLns (10)

where Ln is the vertical distance from the boundary to the boundary line, as proposed by Yang and
Lim [15].

According to YLM, the division line in a rectangular open channel can be expressed using
Equation (11):

z = ky (11)

where z and y are normal to the boundary and k is the slope of division line. Furthermore, k is calculated
using Equations (12) or (13).

k3 + (2h/b)k− 2 = 0; b/h ≥ α (12)

or
k3 + (b/2h)k− 2 = 0; b/h ≤ α (13)

where h is the depth of water, b is the width of the channel, and α is the critical aspect ratio (width to
depth ratio), which is equal to 2 in Yang and Lim’s theory.

For a steady, uniform, and fully developed turbulent flow, the classical formulation which can
describe the velocity distribution is a logarithmic function that increases from zero velocity at the
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boundary of the channel and reaches its maximum at the water surface. The velocity distribution can
be expressed using Equations (14) and (15).

u
u∗

= 2.5 ln(u∗1y/ν) + B (14)

u
u∗

= 2.5 ln(u∗1z/ν) + B (15)

where u is the flow velocity, u∗ is the frictional velocity, which is given by the correlation: u∗1 =
√

gsLn

and u∗1 is the local frictional velocity, where g is the gravitational acceleration, s is the energy slope
and Ln is the distance from the division line to the boundary. Furthermore, y/z is the distance to the
boundary, v is the dynamic viscosity, and B is an empirical coefficient, which is usually equal to 5.5.

According to Yang and Lim’s theory, the flow region can be divided according to the schematic
shown in Figure 2 (aspect ratio > 2). Furthermore, the three regions can be defined in half cross-section.
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Figure 2. Flow partition in a rectangular channel (k stands for the slope of division line, k > 2h/b and
k = 2h/b).

There is a rectangular channel, whose depth and width are h and b, respectively. According to the
flow partition theory and the value of h/b, the three partitions can be determined.

2.1. Division Lines Cross above and on the Water Surface

In this condition, the flow area can be partitioned into three regions—Regions I, II and III—as
shown in Figure 2. In Region I, since both dy and dz (in Figure 2) are close to infinitesimal, a point
belonging to this infinitesimal rectangle can be substituted for rectangle ABCD. Therefore, the velocity
of any point in the flow area can be used to estimate the discharge of this infinitesimal rectangle.
Additionally, the discharge can be expressed using Equation (16).

dQ = vdydz (16)

where dQ is the discharge of infinitesimal flow area, and v is the longitudinal velocity of any point in
the flow area.

In order to obtain the discharge of this flow area, y is integrated and Equation (17) is obtained.

Q = dz
∫ h

0
vdy (17)
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Therefore, the average velocity of this flow area is obtained from the value of Q/A, where A
represents the rectangular cross-sectional area (A = hdz). Furthermore, the velocity can be expressed
using Equation (18).

v =
dz

∫ h
0 vdy

hdz
=

∫ h
0 vdy

h
= 2.5 ln(u∗1yI/ν) + 5.5 (18)

As the velocity distribution is continuous, an equation can be used to obtain the y value of the
point, which stands for the average velocity. Combining Equations (14) and (18) will give Equation (19).

2.5u∗ ln
(u∗1h

r

)
+ 3u∗

u∗
= 2.5 ln(u∗1yI/ν) + 5.5 (19)

By solving this equation, the y value of the point is obtained, which is expressed using Equation (20).

yI =
h
e

(20)

Equation (20) is used to calculate the depth of the point, which stands for the average velocity of
the rectangle ABCD in Region I.

Similarly, the y value of the point has to be determined, which stands for the average velocity of
two rectangular areas (they can be regarded as rectangles if GH approaches zero) whose lengths are hII
and hIII, respectively, and pass through Regions II and III (EFGH and GHIK, respectively, in Figure 2).
According to the flow division theory, Equation (14) should be used in Region II, and Equation (15) in
Region III. Therefore, the velocity distribution in Region II is different from the velocity distribution in
Region III. It is difficult to directly calculate the value of Q of a rectangular area through Regions II and
III. For Region II, hII can be regarded as h in Region I, as a result of which the result can be used in
Region I to obtain the value of y at the point, which stands for average velocity, whose length is hII and
width is dz. It can be expressed using Equation (21).

yII =
hII

e
(21)

The rectangular area has the length and width of hIII and dy, respectively, in Region III, where
hIII is the distance from the dividing line to the boundary. An infinitesimal rectangle with the length
and width of dy and dz (respectively) in the area is assumed. The discharge through this area can be
expressed using Equation (22).

dQ = vdydz (22)

Integrating across the width, z, the discharge can be determined using Equation (23).

Q = dy
∫ hIII

0
vdz (23)

Therefore, the average velocity v of this flow area can be calculated from the value of Q/A, where
A represents the area of the rectangle GHIK, whose length is hIII and width is dy. It can be expressed
using Equation (24).

v =
dy

∫ hIII
0 vdz

hIIIdy
= u∗

2.5 ln


√

gsh1.5
III

v

+ 1.75

 (24)
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Because the velocity distribution is continuous, it is possible to propose an equation to obtain
the value of z at the point, which stands for the average velocity. Combining Equations (25) and
Equation (26) will produce Equation (25).

2.5 ln


√

gsh1.5
III

v

+ 1.75 = 2.5 ln
(u∗1z

v

)
+ 5.5 (25)

By solving this equation, the value of z can be expressed using Equation (26).

zIII =
hIII

e
(26)

Additionally, for k = 2h/b, the only difference is that there is no Region I in the cross-section and
others are equal to k > 2h/b.

2.2. Division Lines Cross below the Water Surface

For Partition 2, the flow area can be divided into three regions—Regions II, III and IV—as shown
in Figure 3. The Regions II and III are similar to Partition 1. Only Region IV is different from Partition 1.
Therefore, an equation is derived to calculate at the depth of the average velocity point.
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The flow velocity in Region IV is constant, due to which the flow velocity at any point is the mean
velocity. Therefore, it is meaningless to find the depth of the average velocity point. In short, the depth
of the average velocity point can be expressed using Equations (27)–(29).

zIII =
hIII

e
(27)

yII =
hII

e
(28)

zIV =
b
2e
(hIII + hII ≤ y ≤ h) (29)
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2.3. Location of theCharacteristic Points in Different Regions

For Region I, measuring the velocity of points, in which the value of y equals h/e, can provide the
mean velocity for the whole section in Region I. Therefore, the flow can be obtained by multiplying the
mean velocity with the area. Similarly, the flow in Regions II, III and IV can be obtained using the
same method. The differences between Region I and the others are as follows.

For Region IV, the velocity at each point inside the region is the mean velocity. For Regions II
and III, all the LDAVs are connected in a line, as shown in Figure 4. Additionally, Figure 4 shows
that PI, PII, and PIII are the characteristic points that represent the mean velocities in Regions I, II, and
III, respectively.

For Region II, the discharge Q can be expressed using Equation (30).

Q = u∗

∫ z0

0

z
k

2.5 ln

 √gsz1.5

evk1.5

+ 5.5

dz =
u∗z0

2

k

1.25 ln

 √gsz1.5

evk1.5

+ 1.8125

 (30)

The mean velocity u can be calculated from the value of Q/A, which can be expressed using
Equation (31).

u =
Q
A

=

2u∗z0
2

k

[
1.25 ln

( √
gsz1.5

evk1.5

)
+ 1.8125

]
z0h0

(31)

Combining Equation (11), Equation (14) and Equation (31) will produce Equation (32).

u∗

2.5 ln

 √gsz0
1.5

evk1.5

+ 3.625

 = u∗

2.5 ln

 √gsz1.5

evk1.5

+ 5.5

 (32)

Therefore, the z value of the point, which can be used to calculate the value of Q of Region II, can
be calculated using Equation (33).

zII =
z0

e0.125
(33)

The y value of the point can be expressed using Equation (34).

yII =
y0

e1.125
(34)

For Region III, it is similar to Region II. The value of z and value of y at the point, which can be
used to calculate the value of Q of Region III, can be expressed using Equations (35) and (36).

yII =
y0

e0.125
(35)

zIII =
z0

e1.125
(36)
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3. Experimental and Results

3.1. Experimental Setup

The first experiment was conducted in a large-scale flow loop channel at the University of
Wollongong (UOW), Australia (Figure 5). The channel was a rectangular open channel with a length,
width and height of 11 m, 0.3 m and 0.45 m, respectively. Water was supplied to the channel from
a constant head tank. The test section was located 6 m downstream of the inlet. The velocity was
measured using a Dantec two-component LDA system. The equipment used in the experiment
included a 60 mm fiber optic probe, a 400 mm focal length front lens, a 300mW continuous wave
argon ion laser, and the transmit optics of the beam splitter Bragg cell and signal processor. In order
to improve accuracy, particles were uniformly mixed into the fluid. In the experiment, the water
depth was controlled by opening a baffle in the downstream tail water tank. When the required water
depth was reached, the water depths upstream and downstream of the LDA installation position were
measured, and the channel inlets had four positions at: X = 1.0 m, 2.6 m, 4.0 m and 6 m. When the
water depths measured at these locations were equal, it was considered that the fluid in the rectangular
open channel was uniformly flowing.
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The second experiment was carried out in a 6.3 m long, 0.8 m wide, 0.6 m deep rectangular
inclined water tank at the Fluid Mechanics Laboratory of China Agricultural University (CAU), China,
as shown in Figure 6. The main components of the channel were the head tank, the tail tank, the glass
channel and the circular duct circulation system. The head tank was aligned with the center of the
channel and was symmetrical with the center line of the glass water channel. Meanwhile, in order
to make the flow velocity more uniform, a honeycomb steel plate was added at the entrance of the
channel. An adjustable tail gate was installed at the end of the channel to change the water depth.
Furthermore, Q was measured using an electromagnetic flowmeter installed on the inlet pipe. The flow
velocity was measured using an acoustic doppler velocimetry (ADV). ADV is based on the principle of
the acoustic doppler effect—the acoustic signal emits an ultrasonic signal from the probe, which is
scattered by the particles in the water stream and then the scattered signal is received by the receiving
probe. The ADV measures fluid velocity by comparing the Doppler phase shift of coherent acoustic
pulses along three axes and transforming these to horizontal and vertical components.

The experimental conditions were varied by adjusting the flow rate and flow depth.
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3.2. Results

Equations (20) and (21) were verified by experimental data and the parameters of different
experimental rectangular open channels are presented in Table 1. The experimental verification
consisted of two parts. The experimental data for Run 1–Run 3 were obtained at the UOW, Australia,
whereas those for Run 4–Run 11 were obtained at the CAU, China.
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Table 1. Summary of all the experimental conditions.

Conditions s (m) n Q (L/s) h (m)

Run 1 0.001 0.01 40 0.065
Run 2 0.001 0.01 40 0.091
Run 3 0.001 0.01 40 0.110
Run 4 0.00025 0.0102 130 0.133
Run 5 0.00028 0.0104 130 0.130
Run 6 0.00028 0.0102 130 0.128
Run 7 0.00028 0.0102 130 0.128
Run 8 0.00028 0.0102 140 0.131
Run 9 0.00028 0.0102 130 0.128

Run 10 0.00025 0.0100 140 0.131
Run 11 0.00025 0.0100 140 0.142
Run 12 0.00025 0.0100 140 0.139
Run 13 0.0025 0.0100 140 0.137

4. Discussion

The experimental data obtained at the UOW (Australia) and the theoretical locations of depth
average velocity were compared, as shown in Figures 7–9. The solid lines in Figures 7–9 represent the
locations of the depth average velocity calculated using Equations (20) and (21). The triangles
represent the locations of the depth average velocity calculated using the interpolation of the
experimental data. Figures 7–9 show a significant consistency from the bottom corner to the middle
of the channel. We also recognized that the theoretical locations of the depth average velocity
calculated using Equations (20) and (21) can be used to determine the charge in the cross section of the
rectangular channel.
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values along different vertical lines from the bedform to the water surface (b/h = 2.727).

The values of b/h may have an effect on the empirical coefficient B in Equations (14) and (15),
which may cause error between the calculated and measured values.

In order to demonstrate the performance of the location of depth average velocity (LDAV), the
relative error between LDAV calculations (subscript l) and measurements (subscript i) is defined as:
E = |dl − di|/di, where d refers to the depth average velocity along the same vertical lines from the
bedform to the water surface under different water depths, as shown in Table 1. It should also be noted
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that LDAV relied on Log-Law, and the errors may be affected by secondary currents. According to the
comparison, it is found that Equations (20) and (21) produced more realistic results both in Regions
I and II, especially in the middle section of the channel. The relative differences of error between
calculations and measurements increased from 11.9% to 13.8% as the aspect ratio decreased from 4.62
to 1.88. This further proved that this model is more suitable for use in a wide channel.

Through the experiments at the UOW, Australia, the location of the depth average velocity along
the center line, as calculated by Equations (20) and (21), turns out to be highly consistent with the
measurements. Therefore, in order to further verify the application of Equations (20) and (21) at the
center line, a series of experiments concerning flow rate were conducted at different depths of the center
line at the CAU, China. The results of experiments at the UOW and the CAU are shown in Figure 10.
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5. Conclusions

In this paper, a laboratory study was conducted on the depth average velocity in a rectangular
open channel. Based on the flow division theory and Log-Law, a correlation for calculating the location
of depth average velocity on a vertical line from the bottom normal direction wall of different regions
in an open rectangular channel is proposed. The main findings of this study are as follows.
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(1) The division lines cross above and on the water surface (Partition 1), whereas the location of
depth average velocity can be calculated using Equation (20), Equation (21), and Equation (26)
and the locations of the points which stand for the depth average velocity in different regions can
be calculated using Equation (23), Equation (34), Equation (35) and Equation (36). According to
the comparison between calculation and measurement, the current approach gives an average
value of E, which is from 11.9% to 13.8%, thus proving the correctness of the flow division theory
and the universality of the fitting correlation.

(2) The division lines cross below the water surface (Partition 2), while the location of depth average
velocity can be calculated using Equation (20), Equation (21), Equation (26), and Equation (29).
It is found that the obtained results are consistent with the experimental measurements.

(3) According to the comparison, it is found that the proposed correlation achieves an accurate
matching both in Regions I and II, especially in the center line of the channel. It may be due to
the fact that it is far from the side wall and is less affected by the shear stress of the side wall.

Therefore, the proposed correlation will simplify the procedure of vertical measuring profile
measurements by only measuring the characteristic points representing the mean velocity of each
region, and then, calculating the flow in different regions using the velocity-area method. It will be
useful for flow measurement and the management of irrigation practices.
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