
applied  
sciences

Article

Pursuer’s Control Strategy for Orbital
Pursuit-Evasion-Defense Game with Continuous Low
Thrust Propulsion

Junfeng Zhou, Lin Zhao, Jianhua Cheng *, Shuo Wang and Yipeng Wang

College of Automation, Harbin Engineering University, Harbin 150001, China
* Correspondence: chengjianhua@hrbeu.edu.cn; Tel.: +86-156-4512-3923

Received: 25 June 2019; Accepted: 1 August 2019; Published: 5 August 2019
����������
�������

Abstract: This paper studies the orbital pursuit-evasion-defense problem with the continuous low
thrust propulsion. A control strategy for the pursuer is proposed based on the fuzzy comprehensive
evaluation and the differential game. First, the system is described by the Lawden’s equations, and
simplified by introducing the relative state variables and the zero effort miss (ZEM) variables. Then,
the objective function of the pursuer is designed based on the fuzzy comprehensive evaluation,
and the analytical necessary conditions for the optimal control strategy are presented. Finally, a
hybrid method combining the multi-objective genetic algorithm and the multiple shooting method
is proposed to obtain the solution of the orbital pursuit-evasion-defense problem. The simulation
results show that the proposed control strategy can handle the orbital pursuit-evasion-defense
problem effectively.

Keywords: differential game; fuzzy comprehensive evaluation; continuous low thrust; zero effort
miss variables

1. Introduction

Recently, the orbital pursuit-evasion problem has attracted increasing attention in space
research [1–4]. This problem can be formulated as a differential game [5], which aims to obtain
the optimal control strategy of the pursuer and/or the evader in the worst-case scenario, so as to realize
the interception of the evader or the evasion from the pursuer.

Wong [6] was regarded as the first person to study the orbital pursuit-evasion problem, he solved
the problem of intercepting a maneuverable satellite under the assumption of planar motion and
constant gravitational field. Since then, many works have focused on the orbital pursuit-evasion
problem. In reference [7], a method based on periodically updating the solution of the two-point
boundary value problem (TPBVP) was proposed to generate near optimal feedback controls for the
orbital pursuit-evasion problem. However, this method is time-consuming and difficult to be applied in
real time. In order to overcome these drawbacks, Anderson [8] used a modified first-order differential
dynamic programming algorithm to generate near-optimal feedback controls. References [9–11]
found the saddle-point equilibrium solutions of the three-dimensional orbital pursuit-evasion game
respectively by three different hybrid numerical methods. Hafer et al. [12] applied the sensitivity
method to the orbital pursuit-evasion problem, which greatly reduces the computation burden for
solving this problem numerically. Widhalm studied the problem of avoiding an interception and
proposed two optimal evasive-maneuver strategies with the impulsive thrust [13] and the continuous
low thrust [1] respectively. Prussing et al. [14] derived minimum-fuel impulsive strategies for
return-on-state maneuvers by applying the primer vector theory. Merz [15] developed the guidance
laws for the noisy satellite pursuit-evasion game. Woodbury et al. [16] studied an incomplete, imperfect
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information game and presented the adaptive strategies for the pursuer and the evader. Ghosh et al. [17]
developed a near-optimal feedback controller for the two-player pursuit-evasion games by using a
new extremal-field approach. The above works were studied in the two-player pursuit-evasion game
framework. However, in this framework, the evader can only perform maneuvers by itself to avoid
threats. It is called self-defense, which disturbs the original mission of the evader and requires a large
additional amount of fuel.

To overcome this disadvantage, a defender is introduced in [18]. The role of the defender is
intercepting the pursuer. In this way, the evader can perform its original mission without being
disturbed. A hybrid method combined particle swarm optimization with a Newton-Interpolation
algorithm was proposed to solve the orbital defense problem. However, because of the introduction of
the defender, the pursuer must avoid the interception by the defender while capturing the evader [19],
which makes the design of the pursuer’s control strategy more complicated. In order to develop
control strategies for pursuers, Liu et al. [19] proposed a distributed online mission plan algorithm for
pursuers to access targets. However, these works on the orbital pursuit-evasion-defense game adopted
the impulsive thrust, which suffers the drawback that the interception will fail when the target can
perform evasive maneuvers [4].

Compared with the impulse thrust, the continuous low thrust allows players to perform multiple,
continuous maneuvers, which meets the requirements of the frequently orbital transfers in the game.
When applying the continuous low thrust, the hypothesis about players’ maneuverable is removed. It
is closer to the actual situation of the orbital pursuit-evasion-defense game. Therefore, in this paper,
the orbital pursuit-evasion-defense game model is constructed based on the continuous low thrust.
Different from the model based on impulse thrust, the model based on continuous low thrust cannot
adopt the Keplerian dynamics [20]. Its dynamic equations are based on the non-Keplerian motion. Two
issues need to be solved in this model: (i) The system has a high dimension, which means that it will
suffer from the curse of dimensionality [21] when solving the problem; (ii) two objectives, intercepting
the evader and evading the defender, should be considered by the pursuer, and the corresponding
weights should be determined according to the current state. For the first issue, as the zero effort
miss (ZEM) can be used to simplify the linear system [4], the dimension of the system is reduced by
introducing the relative state variables and the ZEM variables [22]. For the second issue, the pursuer’s
objective function is designed based on the fuzzy comprehensive evaluation, and the pursuer’s control
strategy which is suitable for the orbital pursuit-evasion-defense game is proposed. Based on the
above model, the orbital pursuit-evasion-defense game is transformed into a TPBVP by applying the
differential game theory. A hybrid method combining the multi-objective genetic algorithm and the
multiple shooting method is presented to solve the TPBVP.

2. Mathematical Model of Orbital Pursuit-Evasion-Defense Game

2.1. Relative Orbital Dynamics

The orbital pursuit-evasion-defense game occurs in the final phase of the confrontation when the
spacecraft are close enough so that they can identify each other with onboard electronic devices [4]. In
this type of situation, the motion between the spacecraft can be expressed as relative motion [23]. As
is known, Lawden’s equations [24] and Clohessy–Wiltshire (C–W) equations [25] are two linearized
equations used to describe the relative motion between spacecrafts. Unlike the C–W equations, which
can only be applied to circular orbits, the Lawden’s equations can describe the relative motion of
a spacecraft in elliptical orbits. Same as in [26], the dynamics of the participating spacecraft are
described in the local-vertical local-horizontal (LVLH) frame centered at a virtual spacecraft. In
addition, Lawden’s equations are adopted as the relative dynamic equations of the spacecraft.

As shown in Figure 1, P, D, E respectively represents the pursuer, the defender, and the evader. We
establish an elliptical fictitious spacecraft O which is close to the players. The LVLH coordinate system
is centered at the point O. OX is pointing outward along the radius of the Earth, OY is perpendicular
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to OX in the reference orbital plane and points to the front of its flight direction, OZ is perpendicular to
the orbital plane and forms a right-handed frame with OX and OY.
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where µ is the Earth gravitational constant, rt is the distance between the origin O and the Earth core,
ω and

.
ω represent the orbital angular velocity and acceleration of the origin O, respectively. xi, yi, and

zi represent the position components of the players in the relative coordinate system. Ti represents the
maximum thrust. uxi, uyi and uzi respectively represent control variables in three directions (i.e., x, y, z
axis), ranging from 0 to 1.

The state variables (i.e., position and velocity) of the players are represented by Xi as follows:

Xi = [xi, yi, zi,
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.
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Thus, the dynamics equations can be written as:
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, i = P, D, E (4)

Ui (i = P, D, E) is the control variable, which can be represented by

Ui = [0, 0, 0, uxi, uyi, uzi]
T, ‖Ui‖ ≤ 1 (5)
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2.2. Dimension-Reduction

According to Equation (3), each player has 6 state variables, so the total number of state variables
in the game is 18. In the numerically solving process, co-state variables associated with state
variables are introduced, and the problem converts to a 36-dimensional TPBVP. However, solving this
high-dimensional TPBVP is quite difficult and possesses high computational demands [27]. In order to
improve computational efficiency, the dimension of the system needs to be reduced. This process is
performed in two steps. First, the relative state variables between the spacecraft are used to replace
the system states. Then, the ZEM variables are applied to further reduce the number of variables and
equations in the system.

In the first step, the game can be divided into two parts: One is the game between the pursuer P
and the evader E; the other is the game between the defender D and the pursuer P. The relative state
variables in two parts, XPE and XDP, can be respectively represented by{

XPE = XP −XE

XDP = XD −XP
(6)

Substituting Equation (6) into Equation (3), the state equations are converted to:
.

XPE = AXPE + TPUP − TEUE.
XDP = AXDP + TDUD − TPUP

(7)

where A = AP = AE = AD.
In the second step, according to the linear system theory, the zero-input state transfer matrix

Φ(tf, t) of the state equation is defined as:{
Φ(tf, t) = −Φ(tf, t)A
Φ(tf, tf) = I6

(8)

where tf is the terminal time and I6 is the 6× 6 unit matrix.
Although two factors, the relative position and the relative velocity are involved in the game, only

the first factor needs to be considered at the end of the game. The ZEM is the miss distance if both
players do not apply any control from the current moment to the end of the game. Thus, the ZEM
variables are introduced to reduce the dimension of the system and defined as:{

ZPE(t) = DΦ(tf, t)XPE

ZDP(t) = DΦ(tf, t)XDP
(9)

where D = [I3×3, 03×3].
Substituting Equation (9) into Equation (7), the state equations are reduced to:

.
ZPE = DΦTPUP −DΦTEUE.
ZDP = DΦTDUD −DΦTPUP

(10)

2.3. Design of Objective Function Based on Fuzzy Comprehensive Evaluation

In the orbital pursuit-evasion-defense game, the pursuer must survive from the defender’s
interception before it can successfully access the evader. Therefore, the pursuer-evader game and the
defender-pursuer game must be considered and weighed in the objective function of the pursuer. As
noted by Liu [19], the fuzzy comprehensive evaluation is an effective way to quantify various factors
that are difficult to evaluate. Thus, it is used to obtain the weights corresponding to the two games.
Detailed design is shown as follows.
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By taking the terminal miss distance as the cost, the objective function of the three players can be
defined as: 

JE = −‖ZPE(tf)‖

JD = ‖ZDP(tf)‖

JP = k1‖ZPE(tf)‖ − k2‖ZDP(tf)‖

(11)

where the parameter ki, i = 1, 2 is the weight factor, which satisfies ki ≥ 0. k1 > k2 indicates that
the pursuer prefers to reduce the terminal miss distance of the pursuer-evader game, while k1 < k2

indicates that the pursuer prefers to increase the terminal miss distance of the defender-pursuer game.
The value of ki is divided into 11 scales, which are shown in Table 1.

Table 1. The evaluation scales.

vi
1 1 2 3 4 5 6 7 8 9 10 11

k1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

k2 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
1 vi, i = 1, · · · , 11 represents the corresponding scales, respectively.

According to the analysis above, two factors need to be evaluated, one is the urgency of intercepting
the evader at the very moment, denoted by u1; the other is the urgency of evading the defender at
the very moment, denoted by u2. The effect of the factor u1 increases as the ZEM distance of the
pursuer-evader game decreases. The effect of the factor u2 increases as the ZEM distance of the
defender-pursuer game decreases. According to this rule, ZPE(t) and ZDP(t) are used to construct the
weights of the two factors, which are given by: a1 = 1−

(
‖ZPE(t)‖

‖ZPE(t)‖+‖ZDP(t)‖

)3

a2 = 1− a1

(12)

where a1 and a2 represent the weights of the factor u1 and the factor u2 respectively. Then the weight
vector is expressed as: A = [a1, a2].

In order to establish the relationship between weighting factors and evaluation scales, the
membership degree of each factor is calculated by the non-linear membership function which is written
as follows:  u1(x) = (k(x− 1))3

u2(x) = 1− (k(x− 1))3 (13)

where k = 0.1, x = 1, · · · , 11 are the corresponding evaluation scales.
Let ri j = ui( j), where i = 1, 2, j = 1, · · · 11, the fuzzy evaluation matrix can be obtained as:

R = [ri j]2×11 (14)

The fuzzy comprehensive evaluation result vector is generated by the fuzzy synthetic operation of
the weight vector and the fuzzy evaluation matrix. The fuzzy synthetic formula is defined as follows:

B = A ◦R = (b1, b2, · · · , b11) (15)

where “◦” is a fuzzy synthetic operator. In this paper, the weighted average fuzzy arithmetic operator
is adopted, which can make full use of the information of R. It is specifically expressed as:

b j = min

1,
2∑

i=1

ai·ri j

, j = 1, 2, · · · , 11 (16)



Appl. Sci. 2019, 9, 3190 6 of 16

The comprehensive evaluation value is obtained by analyzing the fuzzy comprehensive evaluation
result vector. The analysis is done in the following steps. First, the result vector is normalized:

b′j =
b j

11∑
j=1

b j

(17)

Then, the normalized vector: B′ = (b′1, b′2, · · · , b′n), which is processed using the weighted average
principle. The evaluation value can be obtained as follows:

b =

11∑
j=1

(b′j)
k
· j

11∑
j=1

(b′j)
k

(18)

where k = 10 is a specific coefficient. The purpose of this coefficient is to control the role played by a
larger b′j ( j = 1, 2, · · · , 11). If its value increases, the role of the largest term in b′j ( j = 1, 2, · · · , 11) will
be more prominent.

Finally, the values of k1 and k2 are obtained by finding the evaluation scale corresponding to the
evaluation value b.

3. Solution Method for Orbital Pursuit-Evasion-Defense Game

3.1. Necessary Conditions for Optimal Strategies

The orbital pursuit-evasion-defense model given in the second section can be formulated as a
non-cooperative N-person differential game. Necessary conditions for optimal strategies in this game
are provided by Sarma [28] and applied to the system composed of (7) and (8) to obtain the form of
optimal strategies.

The Hamiltonian function is introduced as follows:
HE = λT

E

.
ZPE = λT

E(DΦTPUP −DΦTEUE)

HD = λT
D

.
ZDP = λT

D(DΦTDUD −DΦTPUP)

HP = λT
PE

.
ZPE + λT

DP

.
ZDP = λT

PE(DΦTPUP −DΦTEUE) + λT
DP(DΦTDUD −DΦTPUP)

(19)

where λi (i = P, D, PE, DP) are the co-state variables of the system.
According to the necessary conditions, the co-state equations are expressed as follows:

.
λPE = −( ∂HP

∂ZPE
)T = 0

.
λDP = −( ∂HP

∂ZDP
)T = 0

.
λE = −

(
∂HE
∂ZPE

)T
= 0

.
λD = −

(
∂HD
∂ZDP

)T
= 0

(20)

and the transversality conditions are written as follows:

λPE(tf) =
∂JP

∂ZPE(tf)
= k1

ZPE(tf)
‖ZPE(tf)‖

λDP(tf) =
∂JP

∂ZDP(tf)
= −k2

ZDP(tf)
‖ZDP(tf)‖

λE(tf) =
∂JE

∂ZPE(tf)
= −

ZPE(tf)
‖ZPE(tf)‖

λD(tf) =
∂JD

∂ZDP(tf)
=

ZDP(tf)
‖ZDP(tf)‖

(21)
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From Equations (20) and (21), we can find the following relationship:{
λPE(t) = −k1λE(t)
λDP(t) = −k2λD(t)

(22)

In addition, the optimal control strategies need to satisfy:

u∗D = argmin
‖uD‖≤1

HD

u∗E = argmin
‖uE‖≤1

HE

u∗P = argmin
‖uP‖≤1

HP

(23)

For the sake of brevity, we define new variables Mi (i = D, E, P) as follows:
MD = λT

DDΦTD

ME = −λT
EDΦTE

MP = −k1λT
EDΦTP + k2λT

DDΦTP

(24)

Combining Equations (19), (22), (23), and (24) yields:
u∗D = [u∗xD, u∗yD, u∗zD]

T = −
[MD(4),MD(5),MD(6)]

T

‖[MD(4),MD(5),MD(6)]
T
‖

u∗E = [u∗xE, u∗yE, u∗zE]
T = −

[ME(4),ME(5),ME(6)]
T

‖[ME(4),ME(5),ME(6)]
T
‖

u∗P = [u∗xP, u∗yP, u∗zP]
T = −

[MP(4),MP(5),MP(6)]
T

‖[MP(4),MP(5),MP(6)]
T
‖

(25)

Combining Equation (25) and the form of control vector, the optimal control variables are expressed
as Equation (26), which satisfies Equation (27).

U∗D = [0, 0, 0, u∗xD, u∗yD, u∗zD]
T

U∗E = [0, 0, 0, u∗xE, u∗yE, u∗zE]
T

U∗P = [0, 0, 0, u∗xP, u∗yP, u∗zP]
T

(26)


JP

(
U∗P, U∗E, U∗D

)
≤ JP

(
UP, U∗E, U∗D

)
JE

(
U∗P, U∗E

)
≤ JE

(
U∗P, UE

)
JD

(
U∗P, U∗D

)
≤ JD

(
U∗P, UD

) (27)

Equations (10), (20), (21), and (24)–(26) constitute a TPBVP.

3.2. Hybrid Numerical Method

So far, the orbital pursuit-evasion-defense problem has been transformed into a 12-dimensional
TPBVP. Generally, this kind of problem cannot be solved analytically, and numerical algorithms must be
employed [9]. Numerical algorithms for solving this kind of problems include collocation method [29]
and multiple shooting method [30]. The collocation method suffers from poor accuracy and high
computational burden, while the multiple shooting method has high accuracy but is very sensitive
to the initial guess. As noted by Pontani [9], evolutionary methods constitute an effective statistical
search technique for selecting the best parameters. Thus, we apply evolutionary methods to generate
the initial guess for the multiple shooting method. A hybrid method combining the multi-objective
genetic algorithm and the multiple shooting method is proposed to obtain the solution of the orbital
pursuit-evasion-defense game. First, the initial guesses of unknown parameters are obtained by using
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the multi-objective genetic algorithm. Then the exact solution of the TPBVP is solved by using the
multiple shooting method.

For the sake of clarity, the state equations, the co-state equations, the initial conditions, and the
terminal conditions are arranged.

Combining Equations (10), (20), and (26), the state equations and the co-state equations can be
concluded as follows: 

.
ZPE = DΦTPU∗P −DΦTEU∗E.
ZDP = DΦTDU∗D −DΦTPU∗P.
λE = 0
.
λD = 0

(28)

The initial conditions of Equation (28) are expressed as follows:{
ZPE(0) = DΦ(tf, 0)XPE(0)
ZDP(0) = DΦ(tf, 0)XDP(0)

(29)

where XPE(0) =XP(0) −XE(0) , XDP(0) =XD(0) −XP(0).
According to Equation (21), the terminal conditions are written as follows: λE(tf) =

∂JE
∂ZPE(tf)

= −
ZPE(tf)
‖ZPE(tf)‖

λD(tf) =
∂JD

∂ZDP(tf)
=

ZDP(tf)
‖ZDP(tf)‖

(30)

3.2.1. Multi-Objective Genetic Algorithm

In the multi-objective genetic algorithm preprocessing, the terminal time tf and the unknown
initial co-state variables λE(0) and λD(0) are taken as parameters (individuals). According to the
terminal conditions, the objective functions of the multi-objective genetic algorithm are set as follows: J1 = ‖λE(tf) +

ZPE(tf)
‖ZPE(tf)‖

‖

J2 = ‖λD(tf) +
ZDP(tf)
‖ZDP(tf)‖

‖
(31)

The safe distance constraint is applied to ensure that the distance between any two players is
greater than the safe distance before the terminal time. The best parameters are obtained by setting
the reasonable population size, the appropriate maximum generation, and the suitable operators (i.e.,
crossover and mutation). The multi-objective genetic algorithm improved by Deb [31] is applied to
this problem. This algorithm can reduce the complexity of computation and maintain the diversity
of solutions. In this paper, we used the default operators in the toolkit on multi-objective genetic
algorithm which is provided by Aravind Seshadri [32]. In addition, the population size and the
number of generations are set as 100 and 200 respectively. Because of the use of the multi-objective
genetic algorithm, the preprocessing time is relatively long. Thus, this algorithm is suitable for
off-line calculation.

3.2.2. Multiple Shooting Method

In order to better illustrate the application of the multiple shooting method in this problem, a new
state vector is defined:

Ω(t) = [ZPE(t), ZDP(t), λE(t), λD(t)] (32)

Substituting Equation (32) into Equation (28), the system equations can be expressed as follows:

.
Ω(t) = f (t, Ω(t)) (33)
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The multiple shooting method transforms the TPBVP into a series of initial value problems. The
specific steps are given as follows:

Step 1. Divide the time interval [0, tf] into m subintervals, and tk (k = 0, · · · , m) represents the boundary
points of subintervals, which satisfy 0 = t0 < t1 < · · · < tm = tf.

Step 2. For each subinterval [ti, ti+1] (i = 0, · · · , m− 1), consider the initial value problem:
.

Ω(t) =

f (t, Ω(t)), Ω(ti) = si, where si is the initial value of the problem.
Step 3. Calculate the initial guess by the multi-objective genetic algorithm.
Step 4. Solve the initial value problem on each subinterval to obtain the solution Ω(t, ti, si).
Step 5. Determine whether the condition Ω(ti+1, ti, si) = si+1 and boundary conditions (29) and (30)

are satisfied. If not, use the Newton method to modify the initial value and return to step 4. If
the conditions are satisfied, the solution of the TPBVP is obtained successfully.

We point out that the accuracy of the initial guess value affects the solution obtained by the
multiple shooting method. If the accuracy of the initial guess value is not enough, the convergence
point may not be the desired solution. Moreover, it may increase the number of iterations and prolong
the calculation time.

4. Results and Discussion

In this section, the following four examples are given to verify the effectiveness of the proposed
strategy. Among these, Example 1 and Example 2 are taken as one group. Their initial conditions
and maneuver parameters are the same. The differences between the two examples are that when
performing orbital maneuvers, the pursuer in Example 1 adopts the control strategy based on the
fuzzy comprehensive evaluation, while the pursuer in Example 2 does not consider the impact of the
defender, that is, the parameters k1 = 1, k2 = 0 in the objective function JP. Example 3 and Example 4
are taken as the other group, with the differences between the two examples being the same as those
between Example 1 and Example 2 in the first group. The initial orbital altitude of their reference orbit
h = 500 km, the acceleration of gravity g = 9.8e− 3 km/s2, and the radius of the Earth R = 6371.393 km.
During the game, the safety distance between players is set as 0.5 km.

Example 1. The maximum unit mass thrusts of the pursuer, the evader, and the defender are
TP = 0.09 × g, TE = 0.01 × g, and TD = 0.02 × g, respectively, and the game time is 267.4124 s. The
initial positions and velocities of the pursuer, the evader, and the defender are shown in Table 2. The
pursuer adopts the control strategy based on the fuzzy comprehensive evaluation.

Table 2. Positions and velocities of the initial time.

Parameter Pursuer Evader Defender

X/km 0 12 6
Y/km 0 16 8
Z/km 20 0 10

VX/
(
km·s−1

)
0 0 0

VY/
(
km·s−1

)
0 0 0

VZ/
(
km·s−1

)
0 0 0

Figure 2 shows the curves of the positions of the three players changing with time in the directions
of X, Y, Z. From Figure 2, it can be seen that the pursuer bypasses the interception of the defender and
eventually catches up with the evader. From Table 3, it can be seen that at the terminal moment, the
distance between the pursuer and the evader is 0.3598 km, which is shorter than the safety distance
0.5 km, indicating that at the terminal moment, the pursuer catches up with the evader. Figure 3 shows
the distance between the defender and the pursuer during the game. It reaches the shortest distance at
203.5 s. After that, the distance between the pursuer and the defender becomes longer, the shortest
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distance being 0.5099 km, which is longer than the safety distance 0.5 km, indicating that during the
game the pursuer successfully bypasses the defender.Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 18 
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Figure 2. The position of each player changing with time in (a) x-axis, (b) y-axis, and (c) z-axis.

Table 3. Position of each player at the end of the game.

Parameter Pursuer Evader Defender

X/km 15.24 15.28 10.24
Y/km 17.44 17.68 11.72
Z/km −2.098 −2.363 4.87
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Figure 3. The distance between the pursuer and the defender changing with time.

Figure 4 shows the curves of the control variable of each player changing with time in the directions
of X, Y, Z. Figure 5 shows the curve of ZEM distance changing with time. From the figures, it can be
seen that when the ZEM distance ZDP(t) is close to 0 (i.e., 40 s to 130 s), the pursuer will consider more
about evading the defender. So in this phase, the pursuer’s control curve is nearer to the control curve
of the defender. During the time when the ZEM variables ZDP(t) are not close to 0, the pursuer almost
ignores the impact of the defender, so the control curve of the pursuer at this stage almost superposes
with that of the evader. Through this strategy, the pursuer successfully bypasses the defenders during
the game and finally captures the evader.
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Figure 4. The curves of the control variable of each player with time in (a) x-axis, (b) y-axis, and
(c) z-axis.
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Figure 5. The curves of zero-control miss distance with time in (a) x-axis, (b) y-axis, and (c) z-axis.

Example 2. The maximum unit mass thrusts of the pursuer, the evader, and the defender are
TP = 0.09× g, TE = 0.01× g, and TD = 0.02× g, respectively, and the game time is 159.81193 s. The
positions and velocities of the pursuer, the evader and the defender in the initial time are shown in
Table 2. The pursuer does not consider the impact of the defender when performing orbital maneuvers.

As shown in Figure 6, the defender successfully intercepts the pursuer at the terminal moment.
Figure 7 shows the distance between the defender and the pursuer during the game. According to
Figure 7, the distance becomes shorter and shorter in the entire game, which is caused by the pursuer’s
not considering the impact of the defender. At the terminal moment, the distance between the defender
and the pursuer is 0.4004 km, which is shorter than the safety distance 0.5 km.
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Figure 6. The position of each player changing over time in (a) x-axis, (b) y-axis, and (c) z-axis.
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Figure 7. The distance between the pursuer and the defender changing over time.

Figure 8 shows the control variable of each player changing with time in the game. As shown in
the figure, the control curve of the pursuer overlaps with that of the evader in the whole procedure,
the reason being that the pursuer only considers the evader when performing orbital maneuvers.
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Figure 8. The control variable of each player changing over time in (a) x-axis, (b) y-axis, and (c) z-axis.

Comparing Example 1 with Example 2, it can be seen that with the control strategy based on the
fuzzy comprehensive evaluation, the pursuer can successfully bypass the defender, and finally capture
the evader. The pursuer, for not considering the impact of the defender, is eventually intercepted by
the defender.

Example 3. The maximum unit mass thrusts of the pursuer, the evader, and the defender are
TP = 0.14× g, TE = 0.01× g, and TD = 0.14× g, respectively. The maneuverability of the defender and
that of the pursuer are the same, and the game time is 177.87788 s. The positions and velocities of the
pursuer, the evader, and the defender in the initial time are shown in Table 4. The pursuer adopts the
control strategy based on the fuzzy comprehensive evaluation.

Table 4. Positions and velocities of the initial time.

Parameter Pursuer Evader Defender

X/km 0 8 18
Y/km 0 9 24
Z/km 30 12 0

VX/
(
km·s−1

)
0 0 0

VY/
(
km·s−1

)
0 0 0

VZ/
(
km·s−1

)
0 0 0
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Figure 9 shows the curves of the positions of the three players changing with time in directions
of X, Y, Z. As shown in Figure 9, the defender successfully intercepts the pursuer at the end of the
game. Figure 10 shows the curves of the control variable of each player changing with time in the
directions of X, Y, Z. At 160 s or so, the pursuer starts to change the control strategy to evade the
defender. However, because of the same maneuverability of the defender and the pursuer, the pursuer
does not successfully bypass the interception of the defender. Table 5 shows the position of each player
at the terminal moment. From Table 5, it can be seen that at the terminal moment, the distance between
the defender and the pursuer is 0.4223 km, which is shorter than the safety distance 0.5 km, and at the
terminal moment, the distance between the pursuer and the evader is 1.7823 km, which is longer than
the safety distance 0.5 km. All the above show that at the terminal moment, the defender successfully
intercepts the pursuer and that the evader successfully evades the capture of the pursuer.
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Figure 9. The position of each player changing over time in (a) x-axis, (b) y-axis, and (c) z-axis.
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Table 5. Position of each player at the end of the game.

Parameter Pursuer Evader Defender

X/km 8.293 9.083 8.638
Y/km 8.804 9.609 9.026
Z/km 11.89 10.51 11.79

Example 4. The maximum unit mass thrusts of the pursuer, the evader, and the defender are
TP = 0.14 × g, TE = 0.01 × g, TD = 0.14 × g, respectively. The maneuverability of the defender and
that of the pursuer are the same, and the game time is 177.19431 s. The positions and velocities of
the pursuer, the evader, and defender in the initial time are shown in Table 4. The pursuer does not
consider the impact of the defender when performing orbital maneuvers.
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As shown in Figure 11, the defender intercepts the pursuer at the terminal moment. From Table 6,
it can be seen that the distance between the pursuer and the defender in the game is 0.3959 km, which
is shorter than the safety distance 0.5 km, and that the distance between the pursuer and the evader is
1.6016 km, which is longer than the safety distance 0.5 km. This shows that the defender intercepts
the pursuer successfully at the terminal moment, and the evader evades the capture of the pursuer
successfully. Figure 12 shows the curves of the control variable of each player changing with time in
the directions of X, Y, Z. From the figure, it can be seen that the control curves of the pursuer remain
overlapped with those of the evader.
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Table 6. Position of each player at the end of the game.

Parameter Pursuer Evader Defender

X/km 8.384 9.069 8.714
Y/km 8.956 9.593 9.132
Z/km 11.81 10.51 11.68
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Comparing Example 3 with Example 4, it can be seen that, because of the different control strategies
adopted by the pursuer, the time that the defender takes to intercept the pursuer in Example 3 is longer
than that in Example 4. Moreover, at the terminal moment, the distance between the pursuer and the
defender in Example 4 is shorter than that in Example 3.

The comparison between Example 1 and Example 2 shows that when the control variable of
the pursuer is in a dominant position, the optimal control strategy proposed in this paper makes the
pursuer bypass the defender and capture the evader. The comparison between Example 3 and Example
4 shows that when the control variable of the pursuer is not in a dominant position, the optimal control
strategy proposed in this paper prolongs the time that the defender takes to intercept the pursuer.
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5. Conclusions

The fuzzy comprehensive evaluation and the differential game theory are applied to design the
control strategy of the pursuer in the orbital pursuit-evasion-defense problem. The hybrid method
combining the multi-objective genetic algorithm and the multiple shooting method is proposed to solve
the problem. The simulation results show that when the pursuer control is in a dominant position,
the control strategy proposed in this paper can make the pursuer bypass the defender and capture
the evader, and that when the pursuer control is not in a dominant position, the control strategy
proposed in this paper can prolong the time that the defender takes to intercept the pursuer. The
proposed control strategy is applicable to the orbital pursuit-evasion-defense scenario, in which the
players adopt the continuous low thrust propulsion. When the ZEM distance between the pursuer and
the defender is close to zero, the control strategy can be automatically switched to parallel with the
defender’s control strategy, so that the pursuer can effectively avoid the interception of the defender.

However, the limitation of this paper is that the terminal time of the game is given by the genetic
algorithm, which is not accurate. Further research will be carried out on the accurate calculation of the
terminal time.
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