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Abstract: It is a common practice that one converter controls DC voltage and the other controls power
in two-terminal voltage source converter (VSC)–based high voltage DC (HVDC) systems for AC
gird interconnection. The maximum transmission power from a DC-voltage-controlled converter
to a power-controlled converter is less than that of the opposite transmission direction. In order
to increase the transmission power from a DC-voltage-controlled converter to a power-controlled
converter, an improved virtual impedance control strategy is proposed in this paper. Based on the
proposed control strategy, the DC impedance model of the VSC–HVDC system is built, including the
output impedance of two converters and DC cable impedance. The stability of the system with an
improved virtual impedance control is analyzed in Nyquist stability criterion. The proposed control
strategy can improve the transmission capacity of the system by changing the DC output impedance
of the DC voltage-controlled converter. The effectiveness of the proposed control strategy is verified
by simulation. The simulation results show that the proposed control strategy has better dynamic
performance than traditional control strategies.

Keywords: VSC–HVDC; DC-side oscillation; virtual impedance; impedance-based Nyquist
stability criterion

1. Introduction

With the development of power electronic devices, VSC–HVDC systems have been widely applied
to AC grid interconnection because of their independent decoupling control of active and reactive
power [1–3]. Recently, a large number of studies on modeling, control, and stability analysis of
VSC–HVDC system have been published [4–10]. Previous studies have shown that the interaction
between converters or between the converter and the grid influences the stability of a system. DC- side
oscillation is a problem in VSC–HVDC and has been reported in a real project [11]. When DC side
oscillation occurs, a DC system will not work and will impact on the power system. Therefore, the
DC-side stability of VSC–HVDC should be evaluated before connecting it to the main grid.

In VSC–HVDC systems applied to AC grid interconnection, active power often needs
bidirectional transmission [12]. However, studies show that the maximum transmission power
of the DC-voltage-controlled converter to power-controlled converter is less than that in the opposite
power flow direction [13]. An Impedance-based approach can be adopted to analyze the influence of
VSC–HVDC systems with different directions of transmission power on stability [13].

The impedance stability criterion was proposed in [14] and used in grid-connected inverters [15].
It was applied as a stability criterion in a VSC–HVDC system [12,16–19]. The impedance model of
two-terminal VSC–HVDCs was built in [12], and the cause of DC current resonance was analyzed with
Nyquist stability criteria. Different subsystems were selected to analyze the DC-side stability of the
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VSC–HVDC system with a transfer function method in [16]. The influence of overhead transmission
lines, DC cables, and the DC-side filter on system stability was investigated in [17]. The different
performances of the lumped parameter and distributed parameter circuit models in stability analysis
were discussed in [18]. It was found that the distributed parameter circuit model is more accurate in
stability analysis.

In the condition of VSC–HVDC for AC Grid interconnection, the maximum transmission capacities
of the different power flow directions are different. Thus, a control strategy is required to improve the
transmission capacity from the DC-voltage-controlled converter to the power-controlled converter to
improve resource utilization efficiency. To increase the maximum transmission power, the DC side
oscillation must be suppressed. The suppression methods of DC side oscillation can be classified
into passive methods [20,21] and active methods [22–29]. Passive methods suppress resonance by
introducing a passive damper branch into the circuit to remodel the impedance of the source converter
or load converter in a cascaded system. Active methods suppress resonance by introducing voltage
and current feedback control in a controller to improve the impedance of the source converter or
load converter. Virtual impedance is widely used in control systems as an active damping control
method [24–29]. It can be introduced to suppress DC-side oscillation [24,25], to limit output current
for voltage controlled inverters during overloads or faults [26,27], to improve the stability of a
grid-connected inverter by change its input admittance [28], and to enhance the small-signal stability
of a modular multilevel converter (MMC) based DC grid [29].

Virtual impedance in the DC voltage control loop can suppress the DC-side oscillation of a
VSC–HVDC transmission system and improve its stability margin and the transmission capacity of
the system [24,25]. However, virtual impedance control leads to steady-state errors in the DC output
voltage of DC-voltage-controlled converters, due to different operating points [25]. An improved
virtual impedance control strategy is proposed in this paper. To design an appropriate control strategy,
a stability analysis is required. Thus, a DC impedance-based model of VSC–HVDC is built, and the
stability of the system is analyzed based on impedance stability criteria.

The rest of the paper is organized as follows: Section 2 describes the system’s structure and the
simulation of a VSC–HVDC system, as well as the design of an improved virtual impedance control.
Section 3 presents the impedance model of an HVDC system. Section 4 conducts a stability analysis on
the basis of impedance stability criteria, and Section 5 shows the simulation verification. Section 6
summarizes the proposed method.

2. Improved Virtual Impedance Control Principle

This paper mainly studies a two-level topology structure. The analysis in this paper can be
also applicable to an MMC system if the dc bus voltage ripples are insignificant [12]. A two-level
VSC–HVDC system used in AC grid interconnection is depicted in Figure 1. Figure 1 shows a DC
voltage-controlled converter and a power-controlled converter on the left and right sides, respectively.
The two converters have an identical structure. Rn1 + jXn1 and Rn2 + jXn2 are the equivalent impedance
of the AC system, Rc1 + jω1L1 and Rc2 + jω2Lc2 are the impedance of the filter reactor, Cf1 and Cf2 are

the filter capacitors,
·

m1 and
·

m2 are the modulations of the converter station,
·
us1 and

·
us2 are the AC

voltage at point of common coupling,
·
ug1 and

·
ug2 are the AC voltage of the AC system,

·

is1 and
·

is2 are

the AC current flowing through the filter reactor, and
·

ig1 and
·

ig2 are the AC current flowing through
the AC system. The DC cable is a π type, with an equivalent resistance of Rd, an equivalent inductance
of Ld, and an equivalent capacitance of Cd.

The modeling and control of the VSC–HVDC system are presented in a synchronous rotating
frame (SRF). The transformation of the three-phase quantity from stationary reference frame to the
SRF is based on the amplitude-invariant Park transformation, with the d-axis aligned with the voltage
vector us and q-axis leading the d-axis by 90◦. The grid voltage defines the system’s dq reference. A
phase-locked loop (PLL) defines the controller dq reference. The system reference is aligned with the
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PLL reference in a steady state. When a small disturbance occurs, the system reference is no longer
aligned with the PLL reference. The relationship between the system reference and the PLL reference
under a small disturbance is shown in Figure 2.
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Figure 2. System and phase-locked loop (PLL) references.

Here, subscript dq represent the components of the physical quantity in the SRF. Subscript 0
represents the value of the physical quantity at the static working point, subscript ref represents the
given value of physical quantity, and subscript ∆ represents the small disturbance components of the
physical quantity. Superscript c represents the components of physical quantity in the PLL reference,
and superscript s represents the components in the system reference.

The simulation model of VSC–HVDC in Figure 1 is built on a MATLAB/Simulink. The system
parameters are shown in the following table. The vector current control [13] is adopted in the two
converters, and the control is shown in Figure 3. For symmetry of the VSC–HVDC system, subscripts
1,2 of the system parameters in Table 1 and the control diagram in Figure 3 are omitted. In the model,
controller parameters are per unit. The base angular grid frequency is 50 Hz, the base grid voltage
is 110 kV, the base system capacity is 500 MW, and the base DC voltage is 250 kV. According to the
parameters in Table 1, the system’s closed-loop bandwidth with a DC voltage controller is 65 Hz, and
the system’s open-loop phase margin is 58 degrees. The system’s closed-loop bandwidth with an
active power controller is 8 Hz, and the system’s open-loop phase margin is 150 degrees. The system’s
closed-loop bandwidth with the current controller is 180 Hz, and the system’s open-loop phase margin
is 85 degrees.
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Table 1. Simulation parameters.

Parameters Values

Converter and AC system

System capacity Sn/MW 500
Line voltage of grid ug/kV 110

DC voltage Vdc/kV 250
Grid internal resistance Rn/Ω 0.2

Grid frequency ω0/Hz 50
Grid internal inductance Ln/H 1 × 10−3

Filter reactor inductance Lc/H 4.5 × 10−2

Filter reactor resistance Rc/Ω 0.2
DC side capacitance Cdc/µf 300

DC cable
DC cable resistance Rd/Ω/km 1.39 × 10−2

DC cable inductance Ld/H/km 1.59 × 10−4

DC cable capacitance Cd/F/km 2.31 × 10−7

Controller

DC voltage outer loop kpvdc/kivdc 15/100
Current inner loop kpc/kic 0.5/0.1

Active power outer loop kpp/kip 1/10
Phase locked loop kpPLL/kiPLL 10/100

The power flow direction from the power-controlled converter to the DC voltage-controlled
converter is set to positive. Figure 4 shows the resulting time-domain responses of the DC voltage of
the VSC–HVDC system. At 2 s, the active power instruction value steps from 500 MW to −500 MW,
and the length of the DC cable is 50 km. It can be observed that the DC voltage starts to oscillate, the
active power starts to fluctuate, and the system loses stability.

The power-controlled converter exhibits a constant power load (CPL) when the active power
is transmitted from the DC-voltage controlled converter to the power-controlled converter. The
incremental input resistance characteristic caused by CPL affects the stability of the VSC–HVDC
system [24].
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A virtual impedance control strategy is introduced in the DC-voltage-controlled converter to
mitigate the DC-side oscillation caused by the negative incremental input resistance characteristic of
the power-controlled converter. The expression of the virtual impedance control is

vdcre f = vdcn − (Req + sLeq)idc (1)

where vdcref is the DC voltage reference value, vdcn is the no-load DC voltage of the converter, and Req

and Leq are the set values for the virtual impedance. Due to the addition of current feedback, under
loaded conditions, there will be a fixed steady-state error between the DC voltage reference value
and the measured value, which almost equals Req ∗ idc. Thus, the steady-state error increases with an
increase in the transmission power (in both power flow directions).

In order to eliminate the steady-state error caused by virtual impedance, this paper modifies the
voltage control loop, as shown by the blue dotted line frame in Figure 5.

idcn =
ki
s
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3. Impedance Model of Converters with Improved Virtual Impedance Control Strategy

3.1. DC-Side Impedance Modeling of DC-Voltage-Controlled Converter

The linearized dynamic equations of the DC voltage-controlled converter are expressed as[
md0
mq0

]
∆vdc + vdc0

[
∆ms

d
∆ms

q

]
+ Z0(s)

[
∆issd
∆issq

]
=

[
∆us

sd
∆us

sq

]
(4)

[
∆us

sd
∆us

sq

]
= −Zg(s)

 ∆isgd
∆isgq

 (5)

 ∆isgd
∆isgq

 =

[
∆issd
∆issq

]
+ Yc f (s)

[
∆us

sd
∆us

sq

]
(6)

where

Z0 =

[
Rc + sLc −ω0Lc

ω0Lc Rc + sLc

]
(7)

Zg =

[
Rn + sLn −ω0Ln

ω0Ln Rn + sLn

]
(8)

Yc f (s) =

[
sC f −ω0C f
ω0C f sC f

]
(9)

Its controller and modulator linearized equations are expressed as[
∆isd,re f
∆isq,re f

]
=

 kpvdc +
kivdc

s
0

(∆vdcre f − ∆vdc) (10)

vdc0

[
∆mc

d
∆mc

q

]
= −GpwmGcc

[
∆isd,re f
∆isq,re f

]
+ Gpwm

[
∆uc

sd
∆uc

sq

]
+ Gpwm(Gcc + Zdel)

[
∆icsd
∆icsq

]
(11)

where kpvdc and kivdc are the proportional and integral gains of the DC voltage controller, respectively,
Gpwm is the PWM delay, and Gcc is the current compensator transfer function, where kpc and kic are the
proportional and integral gains of the current compensator, respectively.

Gpwm =

[
Hpwm 0

0 Hpwm

]
(12)

Hpwm = e−sTs
1− e−sTs

sTs
(13)

Gcc =

 kpc +
kic
s 0

0 kpc +
kic
s

 (14)

Zdel =

[
0 ωpLLLc

−ωpLLLc 0

]
(15)

The variables of the controller are based on the output of the PLL reference, whereas the variables
of the circuit are based on the system reference. The relationship of physical quantity between the PLL
and the system references is expressed as [13]

[
∆icsd
∆icsq

]
=

[
∆issd
∆issq

]
+

Gi
PLL︷                    ︸︸                    ︷[

0 GPLL(s)isq0

0 −GPLL(s)isd0

][
∆us

sd
∆us

sq

]
(16)
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[
∆uc

sd
∆uc

sq

]
=

Gv
PLL︷                       ︸︸                       ︷[

1 GPLL(s)usq0

0 1−GPLL(s)usd0

][
∆us

sd
∆us

sq

]
(17)

[
∆mc

d
∆mc

q

]
=

[
∆ms

d
∆ms

q

]
−

Gd
PLL︷                    ︸︸                    ︷[

0 −GPLL(s)mq0

0 GPLL(s)md0

][
∆us

sd
∆us

sq

]
(18)

where
t fPLL = kpPLL +

kiPLL
s

(19)

GPLL =
t fpLL

s + usd0 fPLL
(20)

Here, tfPLL is the PLL transfer function and kpPLL and kiPLL are the proportional and integral gains
of the PLL compensator, respectively.

The linearized equation of the power balance between the AC and DC sides of the converter is
expressed as

∆idc = 1.5(
[

md0 mq10
][ ∆issd

∆issq

]
+

[
isd0 isq0

][ ∆ms
d

∆ms
q

]
) (21)

The small signal expression of the improved virtual impedance compensator is expressed as

∆idcn = −
ki
s

∆vdc (22)

∆vdcre f = −(Req + sLeq)(
ki
s

∆vdc + ∆idc). (23)

Inserting (22) and (23) into (10), the relation between the AC current reference values ∆isd,re f ,
∆isq,re f , DC voltage ∆vdc, and DC current ∆idc is expressed as[

∆isd,re f
∆isq,re f

]
=

[
Hvdc Hidc

0 0

][
∆vdc
∆idc

]
(24)

where

Hvdc = −(kpvdc +
kivdc

s
)(

kiReq

s
+ kiLeq + 1) (25)

Hidc = −(kpvdc +
kivdc

s
)(Req + sLeq) (26)

Formula (5) can be written as  ∆isgd
∆isgq

 = −Yg(s)
[

∆us
sd

∆us
sq

]
. (27)

Inserting (27) into (6), the relation between the AC voltage and AC current can be given as

[
∆us

sd
∆us

sq

]
=

Zs︷                 ︸︸                 ︷
(Yc f (s) −Yg(s))

−1
[

∆issd
∆issq

]
. (28)
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Considering PLL, inserting (16)–(18) and (28) into (11), the modulation index can be written as[
∆ms

d
∆ms

q

]
vdc0 = −GpwmGcc

[
Hvdc Hidc

0 0

][
∆vdc
∆idc

]
+ Gvdc

z (s)
[

∆issd
∆issq

]
(29)

where
Gvdc

z (s) = Gpwm(Gcc + Zdel) + Zs(s)Gi
c. (30)

Gi
c = (GpwmGv

PLL + Gpwm(Gcc + Zdel)Gi
PLL + vdc0Gd

PLL) (31)

The relation between the DC voltage, DC current, and AC currents can be obtained from (4) by
inserting (28) and (29):

YVdc
AC (s)

[
∆vdc
∆idc

]
=

[
∆issd
∆issq

]
(32)

where

YVdc
AC (s) = (Zs(s) −Z0(s) −Gvdc

z (s))
−1
(

[
md0 0
mq0 0

]
+ GpwmGcc1

[
Hvdc Hidc

0 0

]
) (33)

and YVdc
AC can be expressed as a 2*2 order matrix:

YVdc
AC =

[
Y1 Y2

Y3 Y4

]
(34)

Inserting (32) into (4), yields[
∆ms

d
∆ms

q

]
=

1
vdc0

((Zs(s) −Z0(s))YVdc
AC (s) −

[
md0 0
mq0 0

]
)

[
∆vdc
∆idc

]
. (35)

In the power balance relation, by inserting (34) and (35) into (21), (21) can be replaced by

∆idc = 1.5
[

md0 mq0
][ ∆issd

∆issq

]
+ 1.5

[
isd0 isq0

][ ∆ms
d

∆ms
q

]
= 1.5

[
md0 mq0

]
YVdc

AC (s)
[

∆vdc
∆idc

]
+

1.5
[

isd0 isq0
]

1
vdc0

((Zs(s) −Z0(s))YVdc
AC (s) −

[
md10 0
mq10 0

]
)

[
∆vdc
∆idc

]
= M1∆vdc + M2∆idc

(36)

where
M1 = 1.5md0Y1 + 1.5mq0Y3 +

1.5
vdc0

isd0(RY1 + sLY1 −ω0LY3 −md0)+

isq0(RY3 + sLY3 −ω0LY1 −mq0)
(37)

M2 = 1.5mq0Y2 +
1.5
vdc0

isd0(RY2 + sLY2 − isq0ω0LY4) + isq0(RY2 + sLY2 −ω0LY4) (38)

R = Rn −Rc (39)

L = Ln − Lc (40)

The DC impedance of the converters can be calculated by solving (36) and can be expressed as

Zdcr =
1−M2

M1
. (41)

Consider the DC-side capacitor,

Zdc1 =
Zdcr

1 + sCdcZdcr
. (42)
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3.2. DC Side Impedance Modeling of the Power-Controlled Converter

The linearized dynamic equations of the power-controlled converter are the same as those of the
DC-voltage-controlled converter, which are expressed as (4)–(6), and its outer loop controller linearized
equation is expressed as

[
∆isd,re f
∆isq,re f

]
= −Hp(

Gvp︷                   ︸︸                   ︷[
1.5usd0 1.5usq0

0 0

][
∆icsd
∆icsq

]
+

Gip︷                  ︸︸                  ︷[
1.5isd0 1.5isq0

0 0

][
∆uc

sd
∆uc

sq

]
) (43)

where Hp = kpp + kip/s is the active power compensator and kpp and kip are the proportional and
integral gains of the compensator. Its current compensator and modulator is same as (11). Inserting
(16)–(18) into (42) gives[

∆isd,re f
∆isq,re f

]
= −HpGvp

[
∆issd
∆issq

]
−(HpGvpGi

PLL + HpGipGi
PLL)

[
∆us

sd
∆us

sq

]
. (44)

Inserting (16)–(18) and (28) into (11), the relation between the modulation index and AC current
can be expressed as[

∆ms
d

∆ms
q

]
vdc0 = (GpwmGccHpGvp + Gpwm(Gcc + Zdel))

[
∆issd
∆issq

]
+

(GpwmGccHp(GvpGi
PLL + GipGv

PLL) + Gi
C)

[
∆us

sd
∆us

sq

] (45)

where
Gi

C = Gd
PLL + GpwmGv

PLL + Gpwm(Gcc + Zdel)Gi
PLL. (46)

Equation (45) can be rewritten as[
∆ms

d
∆ms

q

]
vdc0 = GP

Z

[
∆issd
∆issq

]
. (47)

Inserting (47) and (28) into (4) yields

YP
AC︷                                      ︸︸                                      ︷

(Zs(s) −Z0(s) −GP
Z(s))

−1
[

md0
mq0

]
∆vdc =

[
∆issd
∆issq

]
. (48)

The DC-side impedance of the converter can be obtained by inserting (47) and (48) into (21):

ZdcA =
1

1.5(
[

md0 mq0
]
+

[
isd0 isq0

]
GP

Z)Y
P
AC

. (49)

Consider the DC-side capacitor,

ZdcB =
ZdcA

1 + sCdcZdcA
(50)

Adding the DC cable impedance to the DC-side impedance of the power-controlled converter yields

Zdc2(s) = (ZdcB(s)
∣∣∣∣∣∣∣∣∣∣ 2

sCd
+ sLd + Rd)

∣∣∣∣∣∣∣∣∣∣ 2
sCd

. (51)
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3.3. Verifying Impedance Modeling Through Perturbation Signal Testing

Perturbation signal testing is used to verify the accuracy of the proposed small-signal model.
An AC current source should be placed parallel to the DC side of the system as an input signal, as
Figure 6a shows. It is necessary to inject AC current at different frequencies to measure the DC side
impedance at different frequencies. At each injection frequency, a simulation experiment is conducted.
The DC voltage and DC current data of each experiment are analyzed by fast Fourier transformation.
The components under the disturbance frequency are taken out, and the ratio of DC voltage and DC
current is calculated as the calculated impedance [13]. Figure 6b,c shows the DC-side impedance
verification of the DC system rectifier and inverter sides, respectively. The solid line in Figure 6b
represents the analytical impedance of the rectifier converter as in (42), and the points represent the
simulation results. Figure 6b represents the analytical impedance of the inverter station and the DC
cable as (51), and the points represent the simulation results.
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Controlled 
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Figure 6. Frequency response of the impedance and verification. The solid line represents the model
prediction, and the black points denote the simulation. (a) Disturbance signal testing. (b) Impedance of
the DC voltage-controlled converter (c). Impedance of the power-controlled converter.
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4. Stability Analysis of VSC–HVDC with Improved Virtual Impedance Control Strategy

According to the results of small signal modeling, the DC side of the voltage-controlled converter
is modeled by a DC voltage source (Vs), in series with an output impedance (Zs), which equals to
Zdc1. The DC side of the power-controlled converter and DC cable is modeled by a DC current source
shunted with an input impedance (Zl), which equals to Zdc2. Figure 7 shows the equivalent impedance
model of the system.
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According to Kirchhoff’s law, the output voltage of the DC side Vdc (s) can be expressed by
Formula (52). The stability of the DC system depends on the ratio of Zs to Zl, which is the open-loop
transfer function of system Tm. DC voltage is predicted to be stable when Tm satisfies the Nyquist
stability criterion [12–14]:

Vdc(s) = (vs(s) + il(s)Zs(s))(
1

1 + Tm
) (52)

Tm =
Zs(s)
Zl(s)

. (53)

4.1. Impact of the Power Flow Direction

Figure 8a shows the Nichols plots of an open-loop transfer function Tm when the transmission
power is ±500 MW and the length of the DC cable is 50 km. The traditional control strategy [13]
shown in Figure 3 is adopted to a DC-voltage-controlled converter, and controller parameters are set as
kpvdc = 15, kivdc = 100.
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Figure 8. (a) Nichols plots of Tm when transmission power is ±500 MW. (b) Impedance frequency
responses of Zdc1 and Zdc2 when transmission power is ±500 MW.

As shown in Figure 8a, the red line does not encircle (−180◦, 0), and the VSC–HVDC system
is predicted to be stable. The blue encircles (−180◦, 0), and the VSC–HVDC system is predicted to
be unstable.

Figure 8b shows the impedance frequency responses of Zdc1 and Zdc2 when the active power is set
as ±500 MW. Compared with the yellow line and the blue line, in the mid-frequency band, the blue line
shows negative damping while the yellow line does not. Zdc1 and Zdc2 intersect at the mid-frequency
band due to the influence of DC cable impedance. The phase difference at the red line and blue line in
the mid-frequency band is approximately 180◦, so the DC voltage is predicted to oscillate. The stability
analysis results are consistent with the simulation results in Figure 4.

4.2. Impact of Virtual Impedance by Frequency Responses

Figure 9 shows the impedance frequency responses of Zdc1 and Zdc2 when the active power is
set as −500 MW and the length of DC cable is 50 km. The proposed strategy in this paper is adopted
for a DC-voltage-controlled converter, and the controller parameters are set as kpvdc = 15, kivdc = 100,
and ki = 10. Figure 9a shows the impedance frequency responses of Zdc1 under a different Reqs. The
pink line represents Zdc2 and the blue, red, and yellow lines represents Zdc1 when Req = 0.5, 2 and 5,
respectively. The blue line shows that when the phase of Zdc1 impedance in the mid-frequency band is
below −90◦, the system exhibits negative damping. The phase difference at the intersection of the pink
and blue lines in the mid-frequency band is approximately 180◦, and the DC voltage is predicted to
oscillate. The red and yellow lines show that when the phase of Zdc1 impedance in the mid-frequency
band is above -90◦, and the phase difference is less than 160 degrees, the DC voltage is predicted to
stable. However, with the increase of Req, the phase difference at the intersection of the pink and blue
lines in low-frequency bands increases, and the system tends to lose stability.

Figure 9b shows impedance frequency responses of Zdc1 under a different Leqs. The pink line
represents Zdc2 and the blue, red, and yellow lines represent Zdc1 when Leq = 0.002, 0.02, and 0.05,
respectively. Blue line shows that phase of Zdc1 impedance in mid-frequency band is below −90◦,
the system exhibits negative damping. The phase difference at the intersection of the pink and blue
lines in the mid-frequency band is approximately 180◦, and the DC voltage is predicted to oscillate.
Red and yellow lines show that when the phase of Zdc1 impedance in the mid-frequency band is
above −90◦, and the phase difference is less than 160 degrees, the DC voltage is predicted to be stable.
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However, with the increase of Leq, the phase difference at the intersection of the pink and blue lines in
the low-frequency band increases, and the system tends to lose stability.

The conclusion is that if the virtual impedance is too small, it will not be enough to suppress the
oscillation. If the virtual impedance is too large, a new oscillation may occur in the low frequency band.Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 22 
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Figure 9. Impedance frequency responses of Zdc1 and Zdc2 under different equivalent virtual impedance
values (a) Req and (b) Leq.

4.3. Impact of Virtual Impedance Parameters by Nichols Plots

Figure 10 shows the Nichols plots of Tm with different virtual impedance parameters. The DC
cable length is 10 km and the transmission power is −500 MW. The proposed strategy in this paper is
adopted to the DC-voltage-controlled converter, and the controller parameters are set as kpvdc = 15,
kivdc = 100, and ki = 10. The blue, red, and yellow lines in Figure 10a show the Nichols plots of Tm

when the virtual impedance parameters Req are 0.5 Ω, 2 Ω, and 5 Ω, respectively. Figure 10a shows
that Tm encircles (−180◦, 0), and the system is predicted to be unstable when Req = 0.5 Ω. The system
is predicted to be stable when Req = 2 and 5 Ω. Increasing the Req value in a certain range helps
improve the stability of the system. The phase margin of the system is insufficient to suppress DC-side
oscillation when Req = 0.5 Ω.
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The blue, red, and yellow lines in Figure 10b show the Nichols plots of Tm when virtual impedance
parameters Leq are 0.002 Ω, 0.02 Ω, and 0.05 Ω, respectively. Figure 10b shows that Tm encircles (−180◦,
0), and the system is predicted to be unstable when Leq = 0.002 Ω. The system is predicted to be stable
when Leq = 0.02 and 0.05 Ω. Increasing the Leq value in a certain range helps improve the stability
of the system. The phase margin of the system is insufficient to suppress DC-side oscillation when
Leq = 0.002 Ω.

4.4. Impact of DC Cable Length

Figure 11 shows the Nichols plots of the open-loop transfer function Tm under different lengths of
DC cable when the transmission power is −500 MW. The control parameters are kpvdc = 15, kivdc = 100,
ki = 10, Req = 0.5 Ω, and Leq = 0.002 Ω. The blue, red and yellow lines in Figure 11 represent the Nichols
plots of Tm at DC cable lengths of 50, 100, and 150 km, respectively. As shown in Figure 11, the Nichols
plot gradually approaches (−180◦, 0), with a decrease in DC cable length. The Nichols plot encircles
(−180◦, 0), and the system is predicted to be unstable when the DC cable length is reduced to 50 km.
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4.5. Impact of DC Side Capacity

Figure 12 shows the Nichols plots of the open-loop transfer function Tm under a different
capacitance of the DC side capacity when the transmission power is −500 MW. The control parameters
are kpvdc = 15, kivdc = 100, ki = 10, Req = 0.5 Ω, and Leq = 0.002 Ω. The blue, red, and yellow lines in
Figure 12 represent the Nichols plots of Tm at the DC side capacity of 300, 450, and 600 µf, respectively.
As shown in Figure 12, the Nichols plot gradually approaches (−180◦, 0), with a decrease in the DC
side capacity. The Nichols plot encircles (−180◦, 0), and the system is predicted to be unstable when
the DC side capacity is reduced to 300 µf.
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From the above stability analysis, it can be concluded that there are three main factors affecting the
stability of the system—power flow [24], main circuit parameters, and controller parameters. Among
the main circuit parameters, the most important factors are the length of the circuit and the capacitance
of the DC side. According to the stability, analysis results in 4.4 and 4.5. The stability margin of the
system can be improved by increasing the DC capacitance and DC cable length. When the main circuit
parameters are determined and the power flow is determined, the stability of the system can also be
improved by optimizing the controller settings.

4.6. Impact of Grid Impedance

Figure 13 shows the Nichols plots of the open-loop transfer function Tm under different grid
impedance when the transmission power is −500 MW. The control parameters are kpvdc = 15, kivdc = 100,
ki = 10, and Leq = 0.02 Ω. The blue and red lines in Figure 13 represent the Nichols plots of Tm when
Ln = 1 and 5 mH, respectively. The blue line does not encircle (−180◦, 0), while the red line encircles
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(−180◦, 0), which means and DC-side oscillations are more likely to occur in weaker power grids. The
yellow line in Figure 13 represents the Nichols plot of Tm when Ln = 5 mH and Req = 2. The yellow
line does not encircle (−180◦, 0), which means the system is predicted to be stable after choosing
appropriate virtual impedance parameters.
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5. Simulation Verification

5.1. Impact of DC Cable Length

Figure 14 shows the simulation results of the VSC–HVDC system with virtual impedance control
strategy under different DC cable lengths. The voltage control parameters are kpvdc = 15, kivdc = 100,
ki = 10, Req = 0.5 Ω, and Leq = 0.002 Ω. At 2 s, the steady-state power command value is set from
500 MW to −500 MW. As shown in Figure 14, the blue line indicates the simulation results when the
DC cable length is 50 km, and the red line indicates 100 km. The DC voltage in the blue line drops by
approximately 5% and begins to oscillate, and the system loses stability. The DC voltage in the red line
drops by approximately 5%, smoothly restoring the instruction value, and the system remains stable.
The simulation results are consistent with the theoretical analysis in Section 4.4.
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5.2. Impact of DC Side Capacity

Figure 15 shows the simulation results of the VSC–HVDC system with a virtual impedance control
strategy under a different DC side capacity. The voltage control parameters are kpvdc = 15, kivdc = 100,
ki = 10, Req = 0.5 Ω, and Leq = 0.002 Ω. At 2 s, the steady-state power command value is set from
500 MW to −500 MW. As shown in Figure 15, the blue line indicates the simulation results when the
DC side capacity is 300 µf, and the red line indicates 450 µf. The DC voltage in the blue line drops by
approximately 5% and begins to oscillate, and the system loses stability. The DC voltage in the red line
drops by approximately 5%, smoothly restoring the instruction value, and the system remains stable.
The simulation results are consistent with the theoretical analysis in Section 4.5.
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5.3. Dynamic Performance Comparison

According to [13], reducing the value of kpvdc can improve the output impedance of the
DC-voltage-controlled converter, thereby reinforcing the stability of the system. However, this
condition influences the dynamic performance of the control. This paper compares the dynamic
performance of the two control strategies. Similarly, the DC cable length is 50 km, and the active
power instruction changes from 500 MW to −500 MW at 2 s. As shown in Figure 16a, the blue line
represents the DC voltage under the traditional control strategy [13]. When kpvdc = 5 and kivdc = 100,
the red line represents the DC voltage under the proposed control strategy when kpvdc = 15, kivdc = 100,
ki = 10 and Req = 2 Ω, and the yellow line represents the DC voltage under the proposed control
strategy when kpvdc = 15, kivdc = 10, ki = 10, and Leq = 0.02 Ω. The DC voltage in the blue line drops by
approximately 9% when the instruction value is changed and gradually increases to the instruction
value. The DC voltage in the red line drops by only 2% when the instruction value is changed and
increases the instruction value by more than 2%. The DC voltage in the yellow line drops by only 4%
when the instruction value is changed and gradually increases to the instruction value. The dynamic
performance of the proposed control strategy is better than that of the traditional control method.

Figure 16b compares system DC voltages under the proposed control strategy with different
virtual impedance parameters when kpvdc = 15, kivdc = 100 and ki = 10. The blue line represents Req = 0.5,
Leq = 0.02 Ω, the red line represents Req = 2 Ω, Leq = 0.02 Ω, and the yellow line represents Req = 2 Ω,
Leq = 0.002 Ω. From the comparison of these three lines, it can be seen that the speed of DC voltage
regulation mainly depends on Req. As can be seen from Figure 9a, increasing Req can reduce the
amplitude response of Zdc1 in the low-frequency band. However, increasing Leq has little effect on the
amplitude response of Zdc1 in the low-frequency band, as in Figure 9b.
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Figure 16. DC-link voltage and active power of the VSC–HVDC system (a) under the proposed control
strategy and traditional control strategy [13] and (b) under the proposed control strategy with different
virtual impedance parameters.

5.4. Steady State Error Elimination

On the basis of the previous analysis, although the traditional virtual impedance control strategy
can enhance the transmission capacity of the system, it causes the steady-state error of DC voltage.
Figure 17 shows the comparison of two virtual impedance control strategies. The length of the DC
cable is 50 km. At 2 s, the steady-state power command value is set from 500 MW to −500 MW.

The DC voltage in the blue line represents the traditional virtual impedance, shown as the yellow
frame in Figure 5, and the controller parameters are kpvdc = 15, kivdc = 100, and Req = 2 Ω. The DC
voltage in the red line represents the proposed control strategy, with kpvdc = 15, kivdc = 100, Req = 2 Ω,
and ki = 10. Under the two control strategies, the DC voltage fluctuates in a short time and a small
range only, and the active power can steadily step down. The DC voltage shown by the red line is
close to the instruction value of 250 kV, and the steady-state error of the blue line is approximately
5 kV in both power flow directions, which are consistent with the theoretical analysis. The simulation
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results show that the improved virtual impedance control method can improve the stability of the DC
system and eliminate the steady-state error of the DC voltage caused by the virtual impedance.
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strategy and traditional virtual impedance.

5.5. Impact of Gird Impedance

Figure 18 shows the simulation results of the VSC–HVDC system with a virtual impedance control
strategy under a different grid impedance. The voltage control parameters are kpvdc = 15, kivdc = 100,
ki = 10, and the transmission power is set as −500 MW. At 2 s, the grid impedance is switched from
1 mH to 5 mH. The blue line in Figure 18 indicates the simulation results when the virtual impedance
parameter is Leq = 0.02 Ω. The DC voltage in the blue line begins to oscillate, and the system loses
stability. The red line in Figure 18 indicates the simulation results when virtual impedance parameters
are Leq = 0.02 Ω and Req = 2 Ω. The DC voltage in the red line stays stable, and the system remains
stable. The simulation results are consistent with the theoretical analysis in Section 4.6.
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6. Conclusions

This paper investigates the stability of VSC–HVDC operation in a bidirectional power flow mode.
DC cable length affects the reverse power transmission power of the system. An improved virtual
impedance control strategy is presented to increase the reverse power transmission power of the
system. A system stability analysis based on the impedance model is applied to the proposed control
strategy. System stability is affected by the power flow, controller parameters, DC cable length, and
DC side capacity.

(1) DC-side oscillation occurs when the transmission power of the system is large. The maximum
transmission power of a DC voltage-controlled converter to a power-controlled converter is less
than that in the opposite transmission direction.

(2) The shorter the DC cable is, the more easily the oscillation of DC voltage will occur.
(3) The smaller the DC side capacity is, the more easily the oscillation of DC voltage will occur.
(4) The weaker the AC grid strength is, the more easily the DC side oscillation will occur.
(5) Appropriate virtual impedance parameters can improve system stability. The phase margin of

the system is insufficient to suppress DC-side oscillation when the virtual impedance parameter
is small. If the virtual impedance parameters, Req or Leq, are too large, then the system will enter a
new unstable state.

The simulation results show that the proposed improved control strategy can eliminate the
steady-state error of DC voltage caused by virtual impedance and maintain the advantage of a virtual
impedance strategy to improve system stability. The proposed control method has better dynamic
performance compared to the traditional control method.
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