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Abstract: Rockburst intensity prediction is one of the basic works of underground engineering disaster
prevention and mitigation. Considering the dynamic variability and fuzziness in rockburst intensity
prediction, variable fuzzy sets (VFS) are selected for evaluation and prediction. Here, there are two
problems in the application of traditional VFS: (i) the relative membership degree (RMD) calculation
process is complex and time-consuming, and the RMD matrix of all indexes can be only obtained by
using the RMD function repeatedly; (ii) unreasonable weights of indicators have great impact on the
synthetic relative membership degree (SRMD), so it is difficult to guarantee the correctness of the
final prediction result. In view of the above problem, this paper established three simplified feature
relationship expressions of RMD based on VFS principle and used the SRMD function to establish a
BP neural network model to optimize SRMD. The improved VFS method is more efficient and the
prediction results are more stable and reliable than the traditional VFS method. The main advantages
are as follows: (1) the improved VFS method has higher computational efficiency; (2) the improved
VFS method can verify the correctness of RMD at all times; (3) the improved VFS method has higher
prediction accuracy; and (4) the improved VFS method has higher fault tolerance and practicability.

Keywords: variable fuzzy sets; rockburst intensity prediction; relative membership degree; synthetic
relative membership degree

1. Introduction

The frequent occurrence of rockburst disasters has been acknowledged as one of the most serious
problems in underground projects all over the world because it directly threatened the safety of
underground constructors, equipment, and buildings and even induced mine earthquakes [1]. In recent
decades, many reliable measures have been studied to prevent rockburst. For example, Zheng et al. [2]
applied borehole pressure relief technology to prevent rockburst in deep-buried mine roadways and
achieved good results. Skrzypkowski et al. [3,4] studied a new type of bolt support system, which had
good energy absorption and rockburst prevention ability under the condition of tremor. However,
in addition to finding reliable prevention and control measures, it is also important to establish an
accurate rockburst prediction model in order to resist the occurrence of rockburst disasters [5–8].
Presently, many scholars have studied the mechanism of rockburst from different perspectives and
put forward corresponding prediction methods of rockburst intensity, for example, based on single
factor strength theory, rigidity theory, energy theory, catastrophe theory, bifurcation theory, instability
theory, Russeenes criterion [7], Wang Yuanhan criterion [8] and Lu Jiayou criterion [9], and random
forest classification [10], cloud model theory [11], attribute comprehensive evaluation method [12],
artificial neural network [13], matter-element extension theory [14], etc. All of the above methods have
predicted rockburst from different perspectives and achieved certain prediction results. However,
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because rockburst is a very complex nonlinear dynamic phenomenon, it needs many methods to
combine and complement each other to accurately predict the intensity of rockburst. Therefore, it is still
necessary to introduce new theories and methods to study the occurrence of rockburst and intensity
classification prediction.

Based on fuzzy mathematics, Chen [15] has proposed the variable fuzzy sets (VFS) method with
relative membership degree (RMD) and synthetic relative membership degree (SRMD) at the core.
This method establishes the corresponding VFS model according to the index classification level; then,
the RMD function is established by using the VFS model corresponding to each level, and finally the
method uses the SRMD function to combine the RMD values and weights of each index to get the final
result. Compared with the fuzzy mathematics method, this method considers the dynamic variability
and fuzziness of objective things, which improves the reliability of the prediction results [16]. Thus,
the VFS method has been widely used in many multi-attribute decision-making problems, such as
flood disaster risk assessment [16], surrounding rock stability assessment [17], water resources carrying
capacity assessment [18], runoff prediction [19], and so on. Although the indexes and classification
criteria are different in different evaluation types, the principle of the VFS method and the characteristics
of RMD and SRMD functions are unchanged.

Recently, the research of VFS mainly focuses on the application of the VFS method in different
fields and the development of some new methods. For example, Guo et al. [20] applied the VFS model
to landslide stability evaluation; Li et al. [21] established a multi-index identification method for flood
season stages based on VFS. On the other hand, some researchers also combined VFS with other
methods to establish many new evaluation models, such as Ma et al. [22], who combined VFS with
fuzzy rough set and applied it to groundwater pollution assessment, and Ren et al. [23], who used
evidence theory and VFS to assess flood risk in Chengdu. Fewer studies, however, discuss two core
issues of VFS method: (1) the characteristic relationship of RMDs at different classification levels and
(2) the influence of index weight on the results of SRMD function calculation.

Chen [24] deduced three laws of dialectics based on VFS and put forward the theory, model, and
method of multi-index and multilevel evaluation widely existing in the field of engineering science.
However, the characteristics of RMD and SRMD functions in VFS are still not discussed. In the VFS
method, the RMD function needs to be run repeatedly to get the final RMD value; this calculation
process is very complicated and time-consuming, and the correctness of the calculation results cannot
be guaranteed. For SRMD function, a prominent problem is how to reasonably determine the weight
of each evaluation index. At present, there are many methods for calculating weights, such as the
Delphi method, the AHP method, the efficacy coefficient method, grey relation analysis, and the
entropy method. These methods have played an active role in the evaluation and analysis of indicators,
but there are still some shortcomings. For example, the Delphi method and AHP are subjective and
difficult to implement; the entropy method only depends on the degree of variation of index data,
which will lead to deviations in the case of limited information. In addition, the weights calculated
by these different methods are quite different and there is no way to verify their rationality, so the
accuracy and credibility of the prediction results are reduced. However, the SRMD function has the
sigmoid function feature of the BP neural network [15], based on which the BP neural network model
can be established to optimize the SRMD so as to effectively reduce the interference of weight on the
prediction results and to improve the prediction accuracy of the model method.

Therefore, the primary objectives of this research are (1) to explore the characteristic relationship
of RMD in different classifications, of which these features are used to simplify the calculation process
of RMD, and (2) to establish a BP neural network model based on SRMD function in order to optimize
the SRMD value and to improve the prediction accuracy and practicability of the model. Finally,
the improved VFS model and method are applied to the prediction of rockburst cases to verify its
feasibility and effectiveness.
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2. The VFS Method

2.1. Principle of VFS

Definition: Let U be the universe of discourse, A be a fuzzy concept in U, and x be a random
element, x ∈ U. The RMDs of x to the concept of attracting (A) and repelling property (Ac) are uA(x)
and uAc(x), respectively. There are the following equations among them:

0 ≤ uA(x) ≤ 1
0 ≤ uAc(x) ≤ 1

uA(x) + uAc(x) = 1
(1)

Let DA(x) = uA(x) − uAc(x), then DA(x) = 2uA(x) − 1, where DA(x) is the relative difference
function of x to A. Hence, the RMD can be denoted as follows:

uA(x) =
DA(x) + 1

2
(2)

2.2. RMD Function

In VFS, attraction set and extended set are two important concepts to establish RMD function.
Let X0 = [a, b] be the attracting set of x on the real axis (0 < DA(x) ≤ 1) and X = [c, d] be the
extended set containing X0(X0 ∈ X). The M represents equilibrium point DA(x) = 1 in the attracting
set [a, b]. From the principle of VFS, it is clear that the intervals [c, a] and [b, d] are repelling sets of x
(−1 < DA(x) ≤ 0) (Figure 1).
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Figure 1. The position relation between random point x and intervals [a, b] and [c, d] and point M.

Now, suppose x is a random point among [c, d] (Figure 1); when x is on the left side of M,
the relative difference function is established as follows: DA(x) =

(
x−a
M−a

)β
x ∈ [a, M]

DA(x) = −
(

x−a
c−a

)β
x ∈ [c, a]

(3)

When x is on the right side of M, the relative difference function is established as follows: DA(x) =
(

x−b
M−b

)β
x ∈ [M, b]

DA(x) = −
(

x−b
d−b

)β
x ∈ [b, d]

(4)

According to Equations (2) and (3), the RMD function is expressed as follows:

uA(x) = 0.5
[
1 +

( x− a
M− a

)β]
x ∈ [a, M] (5)

uA(x) = 0.5
[
1−

(x− a
c− a

)β]
x ∈ [c, a] (6)
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According to Equations (2) and (4), the RMD function is expressed as follows:

uA(x) = 0.5

1 + (
x− b
M− b

)β x ∈ [M, b] (7)

uA(x) = 0.5

1− (
x− b
d− b

)β x ∈ [b, d] (8)

In Equations (5)–(8), β is a nonnegative index and, generally, β = 1. Equations (5)–(8) meet the
following conditions: 

uA(x) = 0.5 x = a or b
uA(x) = 1 x = M

uA(x) = 0 x ≤ c or x ≥ d
(9)

2.3. SRMD Function

In practical applications, the prediction and evaluation objects often have multiple attributes.
In order to make the results more realistic, Chen [15] proposed a comprehensive evaluation model to
calculate SRMD. The formula is as follows:

v(x) j =

1 +


∑n

i=1

[
wi

(
1− ui j(x)

)]p

∑n
i=1

[
wiui j(x)

]p


α
p

−1

j = 1, 2, · · · , m (10)

In Equation (10), n and m are the number of indicators and classification grade, respectively; ui j(x)
is the RMD of eigenvalue x of the ith indicator to level j; α and p are the model optimization criterion
parameter and the distance parameter, respectively (α = 1 for least absolute criteria and α = 2 for least
squares criterion, p = 1 denotes Heming distance and p = 2 denotes Euclidean distance); and wi is the
weight of indicator i,

∑n
i=1 wi = 1.

2.4. Calculating Steps of VFS Method

Step 1: Establishing parameters (c, a, M, b, d) of VFS model

Assuming an indicator i is divided into m levels and the boundary eigenvalues of each level
are

(
[Li1, Li2], [Li2, Li3], · · · ,

[
Lim, Li(m+1)

])
(Figure 2). According to previous literatures [13,22,25],

the attracting interval
[
ai j, bi j

]
, extended interval

[
ci j, di j

]
, and point Mi j for each level are calculated

as follows:

(i) For the minimum level, the intervals [ai1, bi1] and [ci1, di1] and point Mi1 were calculated as follows:

Level 1



ci1 = Li1
ai1 = Li1

Mi1 = Li1
bi1 = Li2
di1 = Li3

i = 1, 2, · · · , n (11)

(ii) For level j (j = 2, 3, · · · , m− 1), the intervals
[
ai j, bi j

]
and

[
ci j, di j

]
and point Mi j were expressed

as follows:

Level j



ci j = Li( j−1)
ai j = Li j

Mi j =
(
Li j + Li( j+1)

)
/2

bi j = Li( j+1)
di j = Li( j+2)

i = 1, 2, · · · , n (12)
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(iii) For maximum level m, the intervals [aim, bim] and [cim, dim] and point Mim were denoted as follows:

Level m



cim = Li(m−1)
aim = Lim

Mim = Li(m+1)
bim = Li(m+1)
dim = Li(m+1)

i = 1, 2, · · · , n (13)
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Step 2: Calculating RMD

Substituting the above parameters (c, a, M, b, d) into Equations (5)–(8) repeatedly can obtain RMD
functions corresponding to each level. Then, the measured value x of index i is brought into the RMD
function to calculate the RMD value of each level, which is expressed as follows:

ui j(x) = [ui1(x), ui2(x), · · · , uim(x)] (14)

Now, assuming that the prediction and assessment object has n indicators, the RMD matrix of n
indicators to m levels can be obtained by repeating the above process n times, which can be expressed
as follows:

ui j(x) =


u11(x) u12(x) · · · u1m(x)
u21(x) u22(x) · · · u2m(x)

...
...

. . .
...

un1(x) un2(x) · · · unm(x)

 (15)

Step 3: Calculating SRMD

Based on the obtained RMD matrix, the SRMD of the prediction and assessment object to each
level can be obtained by introducing ui j(x) into Equation (10):

v(x) j = [v(x)1, v(x)2, · · · , v(x)m] (16)

After calculating the SRMD, the final prediction and assessment level eigenvalue H can be obtained:
H = (1, 2, · · · , m)·(v(x) j

′)
T

v(x) j
′ =

v(x) j∑m
j=1 v(x) j

(17)

The relationship between classification level and eigenvalue H is expressed as follows:
1 ≤ H < 1.5 ∈ Level 1

j− 0.5 ≤ H < j + 0.5 ∈ Level j (j = 1, 2, · · · , m− 1)
m− 0.5 ≤ H < m + 0.5 ∈ Level m

(18)

In the above calculation process, it can be clearly found that two issues need to be improved when
employing the VFS method for multi-index prediction and evaluation. Firstly, how to simplify RMD
calculation process? The traditional RMD calculation process is very complicated and time-consuming;
a prediction object needs to run n × m times Equations (5)–(8) repeatedly to get the RMD matrix.
Although Equation (9) can reduce some, it still has a large computational burden. Secondly, how to
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consider the indicator weights of SRMD function so as to obtain high-precision prediction results?
In Equation (10), weight assignment is the core issue, which is related to the prediction accuracy of
SRMD. However, the weighting is generally carried out in a relatively specific situation in the actual
forecasting process. As shown in Table 1, weights are assigned differently based on different occasions,
objects, and methods. Weights applicable to one occasion cannot necessarily apply to other occasions,
which hinders the promotion and application of prediction methods. Therefore, it is necessary to find
a suitable method to optimize SRMD. Only in this way can we effectively guarantee the prediction
accuracy of SRMD, ignore the core role of weight, and improve the fault tolerance and application
ability of the method.

Table 1. The weights of the rockburst prediction factor obtained by different methods.

No.
Factors Weight Determination Method Reference

σθ/σc σc/σt wet

1 0.400 0.300 0.300 Fuzzy mathematics [8]
2 0.427 0.302 0.271 Back analysis [26]
3 0.365 0.313 0.322 Entropy method [27]
4 0.361 0.325 0.314 Combination weighting [28]
5 0.162 0.675 0.162 Delphi method [29]
6 0.266 0.413 0.321 Entropy method [30]
7 0.250 0.250 0.500 Rough set theory [31]
8 0.235 0.295 0.470 Rough set theory [32]

σθ/σc: Stress coefficient; σc/σt: Rock brittleness coefficient; wet: Elastic energy index.

3. Improved VFS Method

3.1. Simplifying the RMD Calculation Process

In the actual calculation process, combining Equations (5)–(8) and (11)–(13), it can be found that,
when the measured value x of index i is located in different levels, the RMDs exhibit some general
characteristics. Detailed analysis is as follows:
(1) When x is in the minimum level interval, Li1 ≤ x ≤ Li2 (Figure 3a).

When Li1 ≤ x ≤ Li2, only RMD functions of level 1 and level 2 are activated; for other levels, RMDs
are equal to 0 because x is not in the [c, d] range. According to Equations (11) and (12), the parameters
of the VFS model with levels 1 and 2 can be obtained as follows: ci1 = ai1 = Mi1 = Li1, bi1 = Li2,
di1 = Li3 and ci2 = Li1, ai2 = Li2, Mi2 = (Li2 + Li3)/2, bi2 = Li3, di2 = Li4. Thus, a linear relationship
between x and parameters c, a, M, b, and d for levels 1 and 2 can be established as shown in Figure 3b.
From Figure 3b, it can be seen that x is in the [Mi1, bi1] interval for level 1, and for level 2, x is in the
[ci2, ai2] interval. Therefore, the RMD of x for levels 1 and 2 can be calculated by Equations (6) and (7)
as follows:  ui1(x) = 0.5

[
1 + x−bi1

Mi1−bi1

]
= 0.5

[
1 + x−Li2

Li1−Li2

]
Li1 ≤ x ≤ Li2

ui2(x) = 0.5
[
1− x−ai2

ci2−ai2

]
= 0.5

[
1− x−Li2

Li1−Li2

]
Li1 ≤ x ≤ Li2

(19)

In Equation (19), 0 ≤ x−Li2
Li1−Li2

≤ 1, hence, 0.5 ≤ ui1(x) ≤ 1 and 0 ≤ ui2(x) ≤ 0.5. In addition, it can be
easily found that ui1(x) + ui2(x) = 1. The above features can also be presented intuitively in Figure 3c.
Based on the above analysis, when the measured value x of index i is within level 1, the characteristics
of RMD can be summarized as follows:

ui j(x) = [ui1(x), ui2(x), 0, · · · , 0]
ui1(x) + ui2(x) = 1

0.5 ≤ ui1(x) ≤ 1
0 ≤ ui2(x) ≤ 0.5

(20)
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Equation (12), the parameters of the VFS model with levels j, j – 1, and j + 1 can be obtained as follows: 

Level j 

{

𝑐𝑖𝑗 = 𝐿𝑖(𝑗−1)
𝑎𝑖𝑗 = 𝐿𝑖𝑗

𝑀𝑖𝑗 = (𝐿𝑖𝑗+𝐿𝑖(𝑗+1)) 2⁄

𝑏𝑖𝑗 = 𝐿𝑖(𝑗+1)
𝑑𝑖𝑗 = 𝐿𝑖(𝑗+2)

 𝑖 = 1,2,⋯ , 𝑛 (21) 

Level j − 1 

{

𝑐𝑖(𝑗−1) = 𝐿𝑖(𝑗−2)
𝑎𝑖(𝑗−1) = 𝐿𝑖(𝑗−1)

𝑀𝑖(𝑗−1) = (𝐿𝑖(𝑗−1) + 𝐿𝑖𝑗)/2

𝑏𝑖(𝑗−1) = 𝐿𝑖𝑗
𝑑𝑖(𝑗−1) = 𝐿𝑖(𝑗+1)

 𝑖 = 1,2,⋯ , 𝑛 (22) 

Level j + 1 

{

𝑐𝑖(𝑗+1) = 𝐿𝑖𝑗
𝑎𝑖(𝑗+1) = 𝐿𝑖(𝑗+1)

𝑀𝑖(𝑗+1) = (𝐿𝑖(𝑗+1) + 𝐿𝑖(𝑗+2))/2

𝑏𝑖(𝑗+1) = 𝐿𝑖(𝑗+2)
𝑑𝑖(𝑗+1) = 𝐿𝑖(𝑗+3)

 𝑖 = 1,2,⋯ , 𝑛 
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] 𝐿𝑖𝑗 ≤ 𝑥 ≤

𝐿𝑖𝑗 + 𝐿𝑖(𝑗+1)

2
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𝑀𝑖𝑗 − 𝑏𝑖𝑗

] = 0.5 [1 + 2
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2
≤ 𝑥 ≤ 𝐿𝑖(𝑗+1)

(184

) 

Figure 3. (a) The linear relationship between measured value x and standard value Li j; (b) the linear
relationship between x and the variable fuzzy set (VFS) model parameters c, a, M, b, and d on activation
levels 1 and 2; (c) the position of the relative membership degree (RMD) value corresponding to x on
the RMD function of activation levels 1 and 2.

(2) When x is located in the interval of a mid-level j (j = 2, 3, · · · , m− 1), Li j ≤ x ≤ Li( j+1) (Figure 4a).
When Li j ≤ x ≤ Li( j+1), only RMD functions of level j and adjacent levels j − 1 and j + 1 are

activated; for other levels, RMDs are equal to 0 because x is not in the [c, d] range. According to
Equation (12), the parameters of the VFS model with levels j, j − 1, and j + 1 can be obtained as follows:

Level j



ci j = Li( j−1)
ai j = Li j

Mi j = (Li j+Li( j+1))/2
bi j = Li( j+1)
di j = Li( j+2)

i = 1, 2, · · · , n (21)

Level j− 1



ci( j−1) = Li( j−2)
ai( j−1) = Li( j−1)

Mi( j−1) =
(
Li( j−1) + Li j

)
/2

bi( j−1) = Li j

di( j−1) = Li( j+1)

i = 1, 2, · · · , n (22)

Level j + 1



ci( j+1) = Li j

ai( j+1) = Li( j+1)

Mi( j+1) =
(
Li( j+1) + Li( j+2)

)
/2

bi( j+1) = Li( j+2)
di( j+1) = Li( j+3)

i = 1, 2, · · · , n (23)

Based on Equations (21)–(23), a linear relationship between x and c, a, M, b, and d for levels j, j − 1,
and j + 1 can be established as shown in Figure 4b. From Figure 4b, it can be seen that there are two
cases for level j when x is in the

[
ai j, bi j

]
interval: (1) ai j ≤ x ≤Mi j and (2) Mi j ≤ x ≤ bi j. Combined with

Equations (5) and (7), the RMD of x for level j can be calculated as follows: ui j(x) = 0.5
[
1 +

x−ai j
Mi j−ai j

]
= 0.5

[
1 + 2

x−Li j
Li( j+1)−Li j

]
Li j ≤ x ≤

Li j+Li( j+1)
2

ui j(x) = 0.5
[
1 +

x−bi j
Mi j−bi j

]
= 0.5

[
1 +

x−Li( j+1)
Li j−Li( j+1)

]
Li j+Li( j+1)

2 ≤ x ≤ Li( j+1)

(24)

In Equation (24), 0 ≤ 2
x−Li j

Li( j+1)−Li j
≤ 1 and 0 ≤ 2

x−Li( j+1)
Li j−Li( j+1)

≤ 1 such that 0.5 ≤ ui j(x) ≤ 1.
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In Equation (25), 0 ≤
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𝐿𝑖(𝑗+1)−𝐿𝑖𝑗
≤ 1 and 0 ≤

𝑥−𝐿𝑖(𝑗+1)

𝐿𝑖𝑗−𝐿𝑖(𝑗+1)
≤ 1; hence, 0 ≤ 𝑢𝑖(𝑗−1)(𝑥) ≤ 0.5 and 0 ≤

𝑢𝑖(𝑗+1)(𝑥) ≤ 0.5.  In addition, 1 −
𝑥−𝐿𝑖𝑗

𝐿𝑖(𝑗+1)−𝐿𝑖𝑗
+ 1 −

𝑥−𝐿𝑖(𝑗+1)

𝐿𝑖𝑗−𝐿𝑖(𝑗+1)
= 2 − 1 = 1  such that 𝑢𝑖(𝑗−1)(𝑥) +

𝑢𝑖(𝑗+1)(𝑥) = 0.5. The above features can also be clearly seen in Figure 4c, which can be summarized 
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Figure 4. (a) The linear relationship between measured value x and standard value Li j; (b) the linear
relationship between x and the VFS model parameters c, a, M, b, and d on activation levels j, j − 1, and j
+ 1; (c) the position of the RMD value corresponding to x on the RMD function of activation levels j,
j − 1, and j + 1.

Figure 4b also shows that, whether x is in the
[
ai j, Mi j

]
or

[
Mi j, bi j

]
intervals of level j, in the VFS

model of j − 1 and j + 1, x is located in the intervals of
[
bi( j−1), di( j−1)

]
and

[
ci( j+1), ai( j+1)

]
, respectively,

and RMD can be calculated according to Equations (6) and (8): ui( j−1)(x) = 0.5
[
1−

x−bi( j−1)
di( j−1)−bi( j−1)

]
= 0.5

[
1−

x−Li j
Li( j+1)−Li j

]
Li j ≤ x ≤ Li( j+1)

ui( j+1)(x) = 0.5
[
1−

x−ai( j+1)
ci( j+1)−ai( j+1)

]
= 0.5

[
1−

x−Li( j+1)
Li j−Li( j+1)

]
Li j ≤ x ≤ Li( j+1)

(25)

In Equation (25), 0 ≤
x−Li j

Li( j+1)−Li j
≤ 1 and 0 ≤

x−Li( j+1)
Li j−Li( j+1)

≤ 1; hence, 0 ≤ ui( j−1)(x) ≤ 0.5 and

0 ≤ ui( j+1)(x) ≤ 0.5. In addition, 1 −
x−Li j

Li( j+1)−Li j
+ 1 −

x−Li( j+1)
Li j−Li( j+1)

= 2 − 1 = 1 such that ui( j−1)(x) +

ui( j+1)(x) = 0.5. The above features can also be clearly seen in Figure 4c, which can be summarized
as follows: 

ui j(x) =
[
0, · · · , 0, ui( j−1)(x), ui j(x), ui( j+1)(x), 0, · · · , 0

]
0.5 ≤ ui j(x) ≤ 1

0 ≤ ui( j−1)(x) ≤ 0.5
0 ≤ ui( j+1)(x) ≤ 0.5

ui( j−1)(x) + ui( j+1)(x) = 0.5

(26)

(3) When x is within the maximum level m interval, Lim ≤ x ≤ Li(m+1) (Figure 5a).
When Lim ≤ x ≤ Li(m+1), only RMD functions of level m and level m − 1 are activated; for

other levels, RMDs are equal to 0 because x is not in the [c, d] range. According to Equations (12)
and (13), the parameters of the VFS model for levels m and m − 1 can be obtained as follows:
cim = Li(m−1), aim = Lim, Mim = bim = dim = Li(m+1) and ci(m−1) = Li(m−2), ai(m−1) = Li(m−1),

Mi(m−1) =
(
Li(m−1) + Lim

)
/2, bi(m−1) = Lim, di(m−1) = Li(m+1). Thus, a linear relationship between x and

c, a, M, b, and d for levels m and m − 1 can be established as shown in Figure 5b. Figure 5b shows that



Appl. Sci. 2019, 9, 3173 9 of 19

x is in the [aim, Mim] interval for level m and that, for level m − 1, x is in the
[
bi(m−1), di(m−1)

]
interval.

Therefore, the RMD of x for levels m and m − 1 can be calculated by Equations (5) and (8) as follows: uim(x) = 0.5
[
1 + x−aim

Mim−aim

]
= 0.5

[
1 + x−Lim

Li(m+1)−Lim

]
Lim ≤ x ≤ Li(m+1)

ui(m−1)(x) = 0.5
[
1−

x−bi(m−1)
di(m−1)−bi(m−1)

]
= 0.5

[
1− x−Lim

Li(m+1)−Lim

]
Li j ≤ x ≤ Li( j+1)

(27)

In Equation (27), 0 ≤ x−Lim
Li(m+1)−Lim

≤ 1; hence, 0.5 ≤ uim(x) ≤ 1 and 0 ≤ ui(m−1)(x) ≤ 0.5. In addition,

1 + x−Lim
Li(m+1)−Lim

+ 1 − x−Lim
Li(m+1)−Lim

= 2 such that uim(x) + ui(m−1)(x) = 1. When x is within level m,
these features can also be visually found in Figure 5c, summarized as follows:

ui j(x) =
[
0, 0, · · · , ui(m−1)(x), uim(x)

]
ui(m−1)(x) + uim(x) = 1

0.5 ≤ uim(x) ≤ 1
0 ≤ ui(m−1)(x) ≤ 0.5

(28)
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itself and one of the adjacent levels need to be calculated for RMD of the level itself, which can 

Figure 5. (a) The linear relationship between measured value x and standard value Li j; (b) the linear
relationship between x and the VFS model parameters c, a, M, b, and d on activation levels m and
m − 1; (c) the position of the RMD value corresponding to x on the RMD function of activation levels m
and m − 1.

In the above analysis, only considering the change of measured value x between the interval[
Li1, Li(m+1)

]
, the situation of x ≤ Li1 or x ≥ Li(m+1) is not considered because the cognition is exact and

not fuzzy in these two cases; its corresponding RMD value is equal to 1, which is expressed as follows:{
ui j(x) = [1, 0, · · · , 0] x ≤ Li1

ui j(x) = [0, 0, · · · , 1] x ≥ Li(m+1)
(29)

According to the above characteristics (Equations (20), (26), (28), and (29)), combined with
Equations (5)–(8), a simplified method of RMD calculation is proposed. The detailed steps are
as follows:

(1) The VFS model parameters (c, a, M, b, d) corresponding to each level are established according to
the criteria of indicator division, and the position of measured value x in the level interval needs
to be identified.

(2) According to the level interval where x is located, the corresponding activation RMD function is
determined. If x is in the minimum or maximum levels, it only needs to run the RMD function
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once. For level 1, RMD can be calculated by Equation (7), and for the maximum level, RMD
can be obtained by Equation (5). If x is in the middle level, only the RMD corresponding to the
level itself and one of the adjacent levels need to be calculated for RMD of the level itself, which
can be calculated by selecting an appropriate function from Equations (5) and (7), while for the
RMD of the adjacent level, one of Equations (6) and (8) can be selected for calculation. The RMD
corresponding to other levels can be obtained by feature Equations (20), (26), and (28). In addition,
when x is greater than Li(m+1) or less than Li1, the RMD function does not need to be run and the
RMD is determined directly by Equation (29).

(3) By repeating the above steps, the RMD values for other indicators can be calculated and the final
RMD matrix can be obtained.

3.2. Optimizing SRMD

In Equation (10), a weight is determined according to the actual situation. If the research target
already has a reasonable weight assignment, it is taken as the initialization weight. If it does not
exist, equal weight is preferable. Based on this, the obtained RMD is brought into Equation (10) to
calculate an initial SRMD. Then, a more accurate result is obtained by optimizing the initial SRMD
using the BP network model. In this way, the second issue raised in Section 2.3 can be effectively
solved. Many studies have shown that the fusion of BP neural network and fuzzy set theory can
give better play to their respective advantages [30,31]. In this paper, we use the sigmoid function
characteristics of the SRMD function in Equation (10) to establish a BP neural network to optimize
the SRMD. The establishment process mainly includes three parts: (1) creating a network structure;
(2) setting the activation function and calculating input and output of each layer; and (3) creating a
weight adjustment model. The specific establishment process is as follows:

(1) Creating a network structure

For convenient discussion, a three-layer structure of BP neural network is constructed, as shown
in Figure 6. Let the input layer have m nodes, i.e., the initial SRMD corresponds to m levels; the hidden
layer have p nodes, i.e., p unit systems; and the output layer have also m nodes corresponding to
the optimized SRMD. The error back propagation algorithm of BP network is used to update the
connection weights (wik and wkh) between network layers.
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(2) Setting the activation function

Sigmoid function is a commonly used activation function of BP networks, which has the
characteristics of being s-shaped, asymptotically bounded, completely monotone [32,33]. When α = 2,
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p = 1, let d jg =
∑n

i=1

[
wi

(
1− ui j(x)

)]
and d jb =

∑n
i=1 wiui j(x) such that d jg = 1 − dib. Submit d jb into

Equation (10) to obtain the following:

v(x) j =

1 + (1− d jb

d jb

)2
−1

(30)

According to Equation (30), v(x) j is a nonlinear function of d jb; its first and second derivatives can
be expressed as follows:

dv(x) j

dd jb
=

2d jb
(
1− d jb

)
((

1− d jb
)2
+ d2

jb

)2 (31)

d2v(x) j

dd2
jb

=
2
(
1− 2d jb

)[(
1− d jb

)2
+ d2

jb + 4d jb
(
1− d jb

)]
[(

1− d jb
)2
+ d2

jb

]2 (32)

In Equation (31), 0 ≤ d jb ≤ 1; therefore
dv(x) j
dd jb

> 0 and then v(x) j is a monotonically increasing

function of d jb.

According to Equation (32), when d jb = 0.5,
d2v(x) j

dd2
jb

= 0; when d jb < 0.5,
d2v(x) j

dd2
jb

> 0; and when

d jb > 0.5,
d2v(x) j

dd2
jb

< 0. Therefore, the function curve of Equation (30) in the [0, 0.5] interval is concave

and in the [0.5, 1] interval is convex, as shown in Figure 7. Based on the above analysis, d jb = 0.5 is
the only inflection point of Equation (30) in the interval [0, 1], so when α = 2 and p = 1, the SRMD
function (Equation (10)) can be transformed into a sigmoid function.
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(3) Creating a weight adjustment model

Before creating a weight updating formula, the activation function (Equation (30)) is used to
calculate the input and output of hidden and output layers. In the input layer, the input information
(SRMD for each level) of node m is transmitted directly to the hidden layer node k, that is, the input
and output of the node are equal (x j = v(x) j). For the hidden layer node k, the input and output are
as follows: 

Ik =
m∑

j=1
w jkv(x) j

uk =

1 + (
1∑m

j=1 w jkv(x) j
− 1

)2−1 (33)
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w jk is the connection weight between the input layer and the hidden layer. For the output layer
node h, the input and output are as follows:

Ih =
p∑

k=1
wkhuk

uh =

1 + (
1∑p

k=1 wkhuk
− 1

)2−1 (34)

wkh is the connection weight between the hidden and output layers; uh is the output value of the
output layer of the BP network model, which is the optimized SRMD for level h.

Assuming that the expected output of the evaluation or prediction object is oh, the square error E
between the expected output oh and the actual output uh is as follows:

E =
1
2
[oh − uh]

2 (35)

According to Equation (35), the weight-updating formula between input layer node j and hidden
layer node k can be deduced as follows [15]:

∆w jk = 2γv(x) jwkhu2
k

 1−
∑m

j=1 w jkv(x) j(∑m
j=1 w jkv(x) j

)3

δh

δh = 2u2
h

[
1−

∑p
k=1 wkhuk

(
∑p

k=1 wkhuk)
3

]
[oh − uh]

(36)

In Equation (36), γ is the learning ratio of the BP network. The weight adjustment value ∆wkh
between the hidden layer node k and the output layer node h is as follows:

∆wkh = 2γu2
huk

1−
∑p

k=1 wkhuk(∑p
k=1 wkhuk

)3

[oh − uh] (37)

Equations (36) and (37) are the weight adjustment models of the BP network. Applying this model
and combining with the iteration algorithm of normal neural network, the connection weight can be
determined to minimize the error between the actual output and the expected output.

3.3. Framework for Assessment and Prediction

Based on the above analysis, the framework of the assessment and prediction method based on
the improved VFS is summarized as follows:

• Determine the impact indicators of the forecasting and evaluation object, determine the
classification criteria of impact indicators, and divide them into m levels.

• Determine the VFS model parameters (c, a, M, b, d) of each level according to classification criteria
of indicators.

• Calculate the RMDs based on the simplified method proposed in Section 3.1.
• The obtained RMDs are introduced into the comprehensive evaluation model of Equation (10) to

initialize SRMD. In Equation (10), the index weight is determined according to the actual situation
and equal weight or variable weight is preferable.

• Optimize the initial SRMD according to the BP network model established in Section 3.2.
• The optimized SRMD is introduced into Equation (17) to calculate the eigenvalue H. Then,

Equation (18) is used to determine the final prediction and evaluation grade.

The flow chart of this method is shown in Figure 8:
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4. Results and Discussion

4.1. Rockburst Prediction Indicators and Cases

The occurrence mechanism of rockburst is complex and there are many influencing factors.
The selection of criteria is the key step in the prediction process. Based on the related studies of
rockburst [8,34,35], this paper synthetically considered the factors of in situ stress, lithology, energy,
and geological structure and selected the ratio of tangential stress to uniaxial compressive strength
σθ/σc (stress coefficient), the ratio of uniaxial compressive strength to tensile strength σc/σt (brittleness
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coefficient), and elastic energy index wet as indicators of rockburst proneness prediction. From the
current research situation, most of the literature has selected similar prediction indicators because
they cover both internal and external factors affecting the occurrence of rockburst and are easy to
obtain in the laboratory or field [36–38]. Also, it is convenient for comparative analysis between
different rockburst engineering cases. According to Wang et al. [8], rockburst prediction criteria for
these three indicators are established as shown in Table 2. In addition, in order to verify the correctness
and effectiveness of the improved VFS method in rockburst prediction, this paper takes 18 large
underground engineering rockburst cases collected by Wang et al. [8] as examples to analyze. The basic
data is shown in Table 3.

Table 2. The classification criteria of rockburst intensity.

Levels
Rockburst Indicators

σθ/σc σc/σt wet

None (I) <0.3 >40.0 <2.0
Light (II) 0.3~0.5 26.7~40.0 2.0~4.0

Moderate (III) 0.5~0.7 14.5~26.7 4.0~6.0
Strong (IV) >0.7 <14.5 >6.0

Table 3. Basic data of 18 typical rockburst cases around the world.

No. Project Name Main Prediction Indicators
Actual Situation

σθ/σc σc/σt wet

1 Diversion tunnel of Tianshengqiao II hydropower station 0.34 23.97 6.60 Moderate
2 Underground cavern of Longyangxia hydropower station 0.11 31.23 7.40 None
3 Diversion tunnel of Yuzixi hydropower station 0.53 15.04 9.00 Moderate-strong
4 Diversion tunnel of Lijiaxia hydropower station 0.10 23.00 5.70 None
5 Diversion tunnel of Jinping II Hydropower Station 0.82 18.46 3.80 Light-moderate
6 Underground powerhouse of Sima hydropower station, Norway 0.27 21.69 5.00 Moderate
7 Sewage tunnel, Norway 0.42 21.69 5.00 Moderate
8 Diversion tunnel of Vietas hydropower station, Sweden 0.44 26.87 5.50 Light
9 Guanyue Tunnel, Japan 0.38 28.43 5.00 Moderate-strong
10 No.2 branch cave of Ertan hydropower station 0.41 29.73 7.30 Light
11 Underground tunnel of Lubuge hydropower station 0.23 27.78 7.80 None
12 Diversion tunnel of Taipingyi hydropower station 0.38 17.55 9.00 Moderate
13 Underground cavern of Pubugou hydropower station 0.35 20.50 5.00 Moderate
14 Underground powerhouse of Laxiwa hydropower station 0.32 24.11 9.30 Moderate
15 Heggura Tunnel, Norway 0.36 24.14 5.00 Moderate
16 Cooling water tunnel of Forsmark nuclear power station, Sweden 0.39 21.67 5.00 Moderate
17 Mine tunnel of Rasvum chorr, USSR 0.32 21.69 5.00 Moderate
18 Mine tunnel of Raibl, Italy 0.77 17.50 5.50 Moderate

4.2. The Calculation Process of the Improved VFS Method

(1) Determining attracting interval, extended interval, and M point

Before calculating the parameters of the VFS model, it should be pointed out that Equations
(11)–(13) are available for fixed intervals, while levels I and IV in rockburst prediction criteria are
semi-interval forms such as [−∞, Lmax] and [Lmin,+∞]. Here, a pseudo-boundary is obtained using
the polynomial regression analysis method, assuming that the trend of increasing or decreasing of
boundary eigenvalues is consistent with level L and can be recognized (Figure 9). Based on rockburst
classification criteria and the polynomial regression technique, all quantitative boundaries of the levels
for all indicators can be obtained and the VFS model parameters

[
ai j, bi j

]
,
[
ci j, di j

]
, and Mi j for all level

can be determined as follows:

[
ai j, bi j

]
=


[0.1, 0.3] [0.3, 0.5] [0.5, 0.7] [0.7, 0.9]
[52.57, 40] [40, 26.7] [26.7, 14.5] [14.5, 1.57]
[0.5, 2] [2, 3.5] [3.5, 5] [5, 6.5]

 (38)
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where the first row is the attracting interval of σθ/σc to four levels and the remaining rows represent
σc/σt and wet. [

Mi j
]
=


0.1 0.4 0.6 0.9

52.57 33.35 20.6 1.57
0.5 2.75 4.25 6.5

 (39)

where the first row is the points M of σθ/σc to four levels and the remaining rows represent σc/σt

and wet. [
ci j, di j

]
=


[0.1, 0.5] [0.1, 0.7] [0.3, 0.9] [0.5, 0.9]

[52.57, 26.7] [52.57, 14.5] [40, 1.57] [26.7, 1.57]
[0.5, 3.5] [0.5, 5] [2, 6.5] [3.5, 6.5]

 (40)

where the first row is the extended interval of σθ/σc to four levels and the remaining rows represent
σc/σt and wet.
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(2) RMD matrix of indicators

In this paper, the rockburst case in Tianshengqiao II hydropower station is selected to illustrate the
calculation process of RMD. The eigenvalues of σθ/σc, σc/σt, and the wet indicator in Tianshengqiao II
hydropower station are 0.34, 23.97, and 6.60, respectively.

The eigenvalue (x1 = 0.34) of σθ/σc is located in the interval of level II. For level II, the VFS model
parameters (c, a, M, b, d) are 0.1, 0.3, 0.4, 0.5, and 0.7, respectively. From this, it can be seen that the
eigenvalue x1 is between a (0.3) and M (0.4). Taking these parameters into Equation (5), the RMD
value of level II can be calculated to be 0.7. Similarly, for level I, the VFS model parameters (c, a, M, b,
d) are 0.1, 0.1, 0.1, 0.3, and 0.5, respectively, and x1 is between b (0.3) and d (0.5). The RMD of level
I can be calculated as 0.4 by introducing the above parameters into Equation (8). According to the
characteristics described in Equation (26), the RMD is 0.1 for level III and is 0 for level IV.

For σc/σt, the eigenvalue (x2 = 23.97) is located in the interval of level III. The VFS model
parameters (c, a, M, b, d) of level III are 40, 26.7, 20.6, 14.5, and 1.57, respectively. Based on this,
the eigenvalue x2 belongs to the interval [a, M]. Inserting the above parameters into Equation (5),
the RMD for level III is 0.724. Similarly, the VFS model parameters (c, a, M, b, d) of level IV are 26.7,
14.7, 1.5, 1.5, and 1.57, respectively. Therefore, x2 is between c and a and the RMD for level IV can be
calculated by introducing the above parameters into Equation (6) with a value of 0.112. The RMDs of
level II and level I are 0.388 and 0, respectively, based on characteristic formula of Equation (26).
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As for wet, the eigenvalue (x3 = 6.6) is greater than the pseudo-boundary value 6.5 of level IV.
Equation (29) shows that RMD is equal to 1 for level IV and to 0 for other levels.

Therefore, the RMD matrix of these three indicators in Tianshengqiao II hydropower station can
be expressed as follows:

ui j(x) =


0.400 0.700 0.100 0.000
0.000 0.388 0.724 0.112
0.000 0.000 0.000 1.000

 (41)

Similarly, the RMD matrix of all rockburst cases can be obtained by repeating the above process.

(3) The Initialized SRMD

The comprehensive evaluation model of Equation (10) can transform RMD into SRMD, but the
weight of each index and model parameters α and p should be determined first. In this paper, α = 2
and p = 1 fuzzy optimization models are selected and eight different weight assignments are obtained
from the references in Table 1. Based on the above analysis, combined with RMDs and eight weight
assignment values, the initial SRMD can be calculated through Equation (10). Then, the initial SRMD
is introduced into Equation (17) to obtain the level eigenvalue H, as shown in Figure 10a.
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Figure 10. The prediction results of 18 rock burst cases before and after SRMD optimization: (a) initial
SRMD and (b) optimized SRMD under eight different weight assignment conditions.

(4) The Optimized SRMD

In order to optimize the SRMD, a three-layer BP neural network is established. The nodes of the
input layer, the hidden layer, and the output layer are 4, 5, and 4, respectively. The input of the network
is the initial SRMD value, and the expected output O corresponds to the actual rockburst strength level
of each rockburst case. In order to facilitate classification and calculation, the four strength levels are
converted into the following forms:

O =


Level 1
Level 2
Level 3
Level 4

 =


o1

o2

o3

o4

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (42)

The initial SRMD values of the first 14 cases are selected as training samples of the three-layer BP
neural network. Combining the expected output O and the weight adjustment models of Equation (36)
and (37), the connection weight w jk between the input layer and the hidden layer and the connection
weight wkh between the hidden layer and the output layer can be calculated (where the learning rate
γ is 0.05 and the network error E is 0.03). Then, based on the trained connection weight, the initial
SRMD of the last four rockburst cases are input into the network as test samples for training and the
network output is the optimized SRMD values of each rockburst case, of which the values are brought
into Equation (17) to calculate the level eigenvalue H. The results are shown in Figure 10b.
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4.3. Discussion

From Figure 10b, it can be seen that the predicted results of 18 rockburst cases based on the
improved VFS method are basically consistent with the actual rockburst strength grade, except for No.
3, 5, and 9. No. 3, 5, and 9 belong to mixed-grade rockburst, and the actual rockburst grades are III~IV,
II~III, and III~IV, respectively.

The new method improves the traditional VFS method from two aspects: simplifying the RMD
calculation process and optimizing the SRMD. Then, what are the advantages of the new method
compared with the traditional VFS method after such improvement? The following are discussed
in detail:

(1) The improved VFS method has higher computational efficiency: Equation (41) can clearly show
that the simplified RMD calculation method can reduce the number of RMD function operations at
least two times compared with the traditional RMD calculation method. With the number increase
of classifications level, indicators, and samples, this advantage will become more prominent.
Since the distribution characteristics of RMD functions at different levels are known in advance
(Figures 3c, 4c and 5c), the simplified RMD calculation method is simpler and more direct for
RMD calculation, which greatly improves the operation efficiency of the improved VFS method.

(2) The improved VFS method can verify the correctness of RMD calculation results at all times: RMD
is the core theme of the improved VFS method, which concerns whether the final prediction results
are correct or not. Therefore, the effective guarantee of the correctness of RMD calculation results
is the premise of obtaining high-precision prediction results. According to RMD relationship
characteristic Equations (20), (26), and (28), the range of traditional RMD value [0, 1] is reduced.
For example, the eigenvalue of σθ/σc in Tianshengqiao II hydropower station is located in
the interval of level II, so 0.5 ≤ u12(x) ≤ 1, 0 ≤ u11(x) ≤ 0.5, and 0 ≤ u13(x) ≤ 0.5. In
addition, u11(x) + u13(x) = 0.5. These features can be used to verify the correctness of RMD
calculation results.

(3) The improved VFS method has higher prediction accuracy: From Figure 10a, it can be found that
the prediction results based on the traditional VFS method are not ideal regardless of the weight.
For example, the predicted results of No. 2, 4, and 11 are totally inconsistent with the actual
strength grade. However, the prediction accuracy is significantly improved after the optimization
of the initial SRMD using the BP neural network. This phenomenon shows that the combination
of BP neural network and the VFS method can improve the classification and prediction ability of
the model.

(4) The improved VFS method has higher fault tolerance and practicability: From Figure 10a, we
can also find that the prediction results of traditional VFS method are easily affected by the
weight values and that different weight values may lead to different prediction results, resulting
in misjudgment. For example, the prediction results of No. 2–4, 8–12, 14, and 18 rockburst cases
span different levels in different weights. However, after the initial SRMDs are optimized by using
the fuzzy BP optimization neural network model, the prediction results are basically consistent
under different weights, which is within the same strength level, except for No. 3. The above
results show that the improved VFS method has higher fault tolerance and anti-jamming ability
and that its dependence on weight is low, so it has better practicability.

5. Conclusions

From the above analysis, we can draw the following conclusions.

(1) This research improved the traditional VFS method from two aspects: (i) simplifying the RMD
calculation process and (ii) optimizing SRMD, which was applied to the prediction of rockburst
strength. Good results have been achieved.

(2) Compared to the traditional VFS method, the improved VFS has a clearer, more efficient calculation
process and a more credible and stable prediction. The improved VFS method simplified the RMD
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calculation process by using the characteristic relationship of RMD at different levels and verified
the correctness of RMD calculation results through these characteristics at all times. Besides,
the improved VFS also uses the BP neural network to optimize the SRMD, which improves
the prediction accuracy of SRMD. By this way, the influence of weight change on SRMD is
also effectively avoided. Therefore, the improved method has higher fault tolerance rate and
anti-jamming ability.

(3) The original index data, the rockburst occurrence, and the intensity in underground projects all
have certain dynamic variability and fuzziness, so it is difficult to express the rockburst criterion
with an accurate relational expression. A more reasonable results can be obtained by using RMD
and SRMD to predict. However, the application of improved VFS to rockburst prediction is still in
the phase of theory and there are still some problems to be further explored, for example, how to
reasonably construct RMD function, how to select and calculate the layers of BP neural network,
the number of nodes and the connection weight matrix, etc. to make the rockburst prediction
results more in line with the actual situation, especially for the accurate prediction of mix-level
and intermediate-level rockburst.
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