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Abstract: This work investigates the natural vibration characteristics of free-form shells when
considering the influence of uncertainties, including initial geometric imperfection, shell thickness
deviation, and elastic modulus deviation. Herein, free-form shell models are generated while using a
self-coded optimization algorithm. The Latin hypercube sampling (LHS) method is used to draw the
samplings of uncertainties with respect to their stochastic probability models. ANSYS finite element
(FE) software is adopted to analyze the natural vibration characteristics and compute the natural
frequencies. The mean values, standard deviations, and cumulative distributions functions (CDFs)
of the first three natural frequencies are obtained. The partial correlation coefficient is adopted to
rank the significances of uncertainty factors. The study reveals that, for the free-form shells that were
investigated in this study, the natural frequencies is a random quantity with a normal distribution;
elastic modulus deviation imposes the greatest effect on natural frequencies; shell thickness ranks the
second; geometrical imperfection ranks the last, with a much lower weight than the other two factors,
which illustrates that the shape of the studied free-form shells is robust in term of natural vibration
characteristics; when the supported edges are fixed during the shape optimization, the stochastic
characteristics do not significantly change during the shape optimization process.
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1. Introduction

The term free-form shells refers to shells whose geometric shapes cannot be represented by certain
mathematical formulas or their combination [1]. When compared with traditional shells, such as
cylindrical shells and spherical shells, the geometrical shape of free-from shells is flexible to satisfy
certain structural, architectural, and other requirements, which advances the wide application of
free-form shells in civil engineering, aerospace engineering, and so on.

The mechanical properties of free-form shells are strongly dependent on their geometric shapes.
Therefore, shape optimization became an indispensable approach for designing a free-form shell.
Bletzinger et al. [2] optimized free-form shells for structural stiffness under given loads while using
numerical methods, which were emerged with physical experiments. Ohmori and Hamada [3]
combined Non-Uniform Rational B-Spline (NURBS) with genetic algorithm (GA), as well as the
gradient method to perform shape optimization of free-from shells, in which the objective functions are
set as minimum strain energy and minimum geometric deviation from the prescribed shape. Cui and
Yan [4] developed a height adjusting method to obtain optimal shape of free-form shells, with respect
to minimum strain energy. Feng and Ge [1] described a conjugate gradient optimization method for
the shape design of cable-braced free-form grid shells, with strain energy as the optimization objective.
Wang and Wu [5] conducted a study on local optimal solutions and a modified optimization method,
which was applied on the shape optimization of cable-stiffened latticed free-form shells, with the
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objective of the minimization of strain energy. It can be seen that, in the past decades, numerical
optimization methods have been developed for free-form shells, many of which made efforts to obtain
a geometrical shape with minimum strain energy, i.e., largest structural stiffness.

There is a relative dearth of research on mechanical properties of free-form shells despite the fast
development of shape optimization of free-form shells. Only minimal literature is concerned with
that. For example, Li [6] studied the buckling properties of free-form shells; Cui et al. [7,8] carried out
experimental and numerical studies on the static behaviors of the free-form concrete shells. However,
the existing work mainly studies static characteristics and it is limited to the deterministic analysis
without any consideration of uncertainty factors, which are unavoidable in practical engineering,
such as geometrical imperfection and deviations of material properties. The previous stochastic
studies on traditional shells have demonstrated the significant effect of uncertain factors on mechanical
properties of structures [9–13]. The construction process of free-form shells is more complex when
compared with traditional shells, which tends to lead more uncertainty factors. This further motivates
this study to consider the effects of uncertainty factors on mechanical properties of free-form shells,
particularly on the dynamic characteristics.

In this study, the stochastic natural vibration analyses of free-form shells is carried out while
considering three uncertainty factors, including geometric imperfection, shell thickness deviation,
and elastic modulus deviation. Free-form shell models are generated by a self-coded numerical
optimization algorithm. Latin hypercube sampling (LHS) is used for the random sampling of three
uncertainty factors based on their stochastic probability modeling. The global sensitivity study is
conducted to rank the importance of these error sources.

The outline of this paper is as follows: in Section 2, the shape generation method of free-form
shells is presented and programmed; Section 3 describes the stochastic and sensitivity analysis method;
in Section 4, stochastic and sensitivity analyses are carried out on free-form shell, which are designed by
the shape generation algorithm presented in Section 2. The results are reported along with discussions;
finally, Section 5 provides closing remarks.

2. Shape Generation of Free-Form Shells

2.1. Shape Parametrization

The geometric shape of free-form shells cannot be represented by certain mathematical formulas
or their combination, different from regular shells, such as spherical shells and cylindrical shells.
Therefore, shape parameterization is needed to describe their arbitrary shapes with desired smoothness.
NURBS is employed here to represent the shape of structures, which is developed from B-spline and
have been widely applied. This section gives a brief introduction on NURBS. For more details, one can
refer to [14].

A NURBS surface, as shown in Figure 1, is defined as

S(u, v) =

∑m
i=1

∑n
j=1 Pi, jωi, jNi,k(u)N j,l(v)∑m

i=1
∑n

j=1 ωi, jNi,k(u)N j,l(v)
(1)

where S(u, v) is the value of a point on the NURBS surface, Pi,j represents the coordinate positions
of a set of control points, which form a m × n bi-directional control-point grid, and ωi, j is their
respective weights; Ni,k(u) and N j,l(v) are B-spline basis functions, defined on the knot vector

Ξu =
{

u1, u2, · · · um+k+1

}
and Ξv =

{
v1, v2, · · · vn+l+1

}
, where u1 ≤ u2 ≤ · · ·um+k+1,

v1 ≤ v2 ≤ · · · ≤ vn+l+1; ui and vi are the real numbers representing the coordinates in the parametric
space [0, 1]; k and l are degrees.
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Ni,k(u) is defined by

Ni,0(u) =
{

1 ui ≤ u < ui + 1
0 otherwise

Ni,k(u) =
u−ui

ui+k−ui
Ni,k−1(u) +

ui+k+1−u
ui+k+1−ui+1

Ni+1,k−1(u) (i = 1, 2, 3 · · · )
(2)

while N j,l(v) is defined in the similar way.
The aforementioned equations have revealed that the geometry of a NURBS surface is affected

by its control points and their weights. However, the work that is presented in [6] shows that the
control points play a dominant role in changing shapes rather than the weights. Although setting
both locations and weights of control points as design variables could give more flexibility to the
shape and enlarge the design space, it would significantly increase the computational cost. For this
reason, we only consider the coordinates of control points as the optimization variables while keeping
the weights fixed. Particularly, the optimal shape is approached by updating the Z-coordinate of the
control points, while setting their X, Y-coordinates as the fixed parameters.
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Figure 1. Example of a NURBS (Non-Uniform Rational B-Spline) surface: (a) Control-point grid; (b) 
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Figure 1. Example of a NURBS (Non-Uniform Rational B-Spline) surface: (a) Control-point grid;
(b) Corresponding NURBS surface.

2.2. Optimization Algorithm

In this study, the free-form shape is generated through an optimization approach that minimizes
the strain energy. A gradient-based method is employed to solve the problem, in which a gradient
descent, or negative gradient direction of the objective function is selected as the search direction
of each iteration step, and it gradually approaches the minimum function value. In gradient-based
optimization, it is indispensable to solve the derivatives of the objective and/or constraint functions
with respect to the design variables, which could be computed while using analytical, semi-analytical,
or numerical methods, depending on the problem itself and the available resources [15]. Here,
a numerical differentiation method is selected to compute derivatives, since we have relatively small
number of design variables.

Combining the finite element (FE) forward analysis with the shell shape being parameterized
by NURBS, the gradient-based optimization procedure is obtained. The code is programmed while
using the FORTRAN language. The FE modeling is based on the Kirchhoff–Love plate theory and the
plane triangular shell element with 3 nodes is employed. For better understanding, the algorithm is
described in Algorithm 1.
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Algorithm 1: Shape generation of free-form shells

1. Given material properties, shell thickness, load, boundary conditions
2. Set up the location of control points
3. Assign an initial guess for the design variables, i.e., Z-coordinates of control points
4. Select the convergence criteria, i.e., the relative change of the objective function is smaller than a given

tolerance value
5. Loop until convergence

(1) Implement NURBS to obtain the geometry of the shape
(2) Generate FE mesh with surface parameterized by NURBS
(3) Solve the FE forward problem and obtain the objective function value
(4) Compute derivatives of objective with respect to Zi using a numerical method
(5) Compute the step size of Zi by the Golden section method
(6) Update the design variables Zi

6. End loop

3. Stochastic and Sensitivity Analysis Method

The natural vibration analyses are coupled with LHS to investigate the stochastic characteristics
of natural frequencies of free-form shells and to explore the sensitivity of the uncertainty factors.

LHS [16–18] is a widely-used sampling method, which allows for the extraction of a large amount
of stochastic and sensitivity information with a relatively small sample size. It can ensure that the entire
distribution of each input random variable is covered and good at estimating the mean values of output
variables [19]. LHS consists of two main steps, sampling and permutation. Sampling is implemented
to produce representative samples to describe the distribution of each input random variable, while
permutation aims at reducing the correlations between the samples of different random variables.

Herein, LHS is used for sampling. e1, e2, · · · , ene denote the input uncertainty factors. Their
respective probability cumulative function is expressed as Fi = Fi(ei). f represents the output variable,
i.e., the natural frequency in the current study. For a sample size ns, the range of Fi is divided into ns

equal interval zones, which are non-overlapping. One value is randomly selected for each intervals
and the sampling. A row of sampled values ei1, ei2, · · · , eins is obtained. A ne × ns sampling matrix can
be generated after all the input random variables are sampled. Subsequently, random permutation is
performed, in which the sampled value of every input variable is randomly chosen out of the sample
values from the corresponding row in sampling matrix without replacement.

To check the sample size, the convergence estimation formulas are given, as follows

check1 =

∣∣∣∣∣∣∣ f (ns) − f (ns − ch)

f (ns)

∣∣∣∣∣∣∣ ≤ ξ1; check2 =

∣∣∣∣∣∣σ(ns) − σ(ns − ch)
σ(ns)

∣∣∣∣∣∣ ≤ ξ2 (3)

where ns is the number of samplings; ch is added number of samplings; f (ns − ch), f (ns) is mean value
of output results with ns − ch samplings and ns samplings, respectively; σ(ns − ch) and σ(ns) is standard
deviation of output results with ns − ch samplings and ns samplings, respectively; referring the existing
work [19–21], the tolerances ξ1 and ξ2 are determined as values that are less than or equal to 0.01.

Based on LHS, the natural frequencies of free-form shells, which involve inherent randomness,
is investigated by a partial correlation-based method [17–19,22,23]. The partial correlation coefficient
was proposed by Iman and Helton [22], which is used to measure the degree of the linear correlation
between the input variable and the model output after making an adjustment to remove the linear
effect of all the remaining variables. The derivation of the partial correlation coefficient can be referred
to [23]. Herein, the formulation of the partial correlation coefficients between input uncertainty factors
ei and output variables f (i.e., natural frequencies in the current study) is given, as follows [22,23]
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Si = −ci f /
√

ciic f f (4)

where ci f , cii, and c f f are the elements of matrix C, written as follows

C =


c11 c12 · · · c1ne c1 f
· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

cne1 cne2 · · · cnene cne f
c f 1 c f 2 · · · c f ne c f f


=


r11 r12 · · · r1ne r1 f
· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

rne1 rne2 · · · rnene rne f
r f 1 r f 2 · · · r f ne r f f



−1

(5)

where ri j is linear correlation coefficient between input variables ei and e j; ri f is the linear correlation
coefficient between input variable ei and output variable f , see Equation (6)

ri f =

n∑
k=1

(
xik − x)( fk − f

)
√

n∑
k=1

(xik − x)2

√
n∑

k=1

(
fk − f

)2
(6)

Partial correlation coefficients Si, are dimensionless parameters with a range between −1.0 and
+1.0 and reveal the degree of association between the input and output variables. Herein, partial
correlation coefficients are applied to rank the importance of each input variables.

In this study, three uncertainty sources e1, e2, e3 are considered, which are initial geometric
imperfection of shells, shell thickness deviation, and elastic modulus deviation. The output variable f ,
i.e., natural frequency, is computed by software ANSYS while using the Block lanczos method.

4. Results and Discussion

As presented above, three main stochastic factors that may occur on shells are explored,
including geometric imperfection of shells, shell thickness deviation, and elastic modulus deviation.
The distribution of initial geometric imperfection throughout the shell is determined by the consistent
mode imperfection method [24], while the shell thickness deviation and elastic modulus deviation
are assumed to be uniformly distributed over the shell. Since each of uncertainty error sources is
determined by several independent factors, they are assumed to follow normal distribution [25].
Referring to the existing work and code [26,27], their respective mean values and standard deviations
are determined, as shown in Table 1, where initial geometric imperfection is described by the maximum
height deviation of the shell; the thickness and elastic modulus deviation is represented by the relative
error between actual and design values, with “+” and “−” meaning the actual value larger and smaller
than the design value, respectively.

Table 1. Stochastic models of uncertainties.

Uncertainty Factors Value Ranges (Guarantee Rate) Mean Values Standard Deviation

Initial geometric imperfection −100 mm ~ + 100 mm (95.0%) 0 51.0 mm
Thickness deviation −3.57% ~ + 5.71% (95.0%) 1.07% 0.02369

Elastic modulus deviation −15.00% ~ + 15.00% (99.6%) 0 0.05000

The presented stochastic analysis method is implemented on two widely used free-form shells.
One is a free-form shell with negative Gaussian curvature and the other one is a combination of two
positive-Gaussian domes. Both of the models are generated by the optimization approach, which is
presented in Section 2. The natural vibration analysis is implement by ANSYS finite element software.
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4.1. Shell Model 1: A Negative-Gaussian Free-Form Shell

4.1.1. Model Generation

The shell model in this example is as shown in Figure 2, which cover a rectangle plane section with
a dimension of 8× 12m. Both long-span edges are simply supported, while the two short-span edges
are free. The material properties and the design shell thickness are as shown in Table 2. The material is
assumed to be linear elastic.
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Figure 2. Layout of control points, mesh and initial guess shape of model 1: (a) Layout of control points
and mesh, (b) Initial guess shape.

Table 2. Material parameters and shell thickness.

Elastic Modulus (MPa) Poisson’s Ratio Thickness (mm) Density (kg/m3)

3.0 × 104 0.617 140 2500

The shape is generated by the proposed optimization approach. NURBS functions are adopted to
represent the geometric shape, with control points that are shown in Figure 2a, which forms a 5× 3
grid. As aforementioned, the weight factors have small effects on the NURBS surface [6]. Therefore,
the weight factors of all control points are chosen randomly from the range 0~1.0 as 0.5 and not
changed during the optimization process. Both the degrees of the basis functions in the two directions
are selected to be 2. The optimization aims at minimizing the strain energy under a given uniformly
distributed vertical load q = 3.5kN/m2. The strain energy is solved by a self-coded program, in which
triangular shell element is used with 768 elements and 425 nodes.

The gradient-based algorithm is used to solve the optimization problem. A cylindrical shell with
the height of 4 m is given as an initial guess, as shown in Figure 2b. In this example, the control point
on the long-span edges are fixed meaning the location and shape of the two edges are not changing
during the optimization process. Consequently, the total number of optimization variables is 5.

The variation of the objective function during the optimization process is depicted in Figure 3 to
show the convergence process, in which the vertical coordinate indicates the ratio of the strain energy
of the ith optimization step to that of the initial guess. It can be seen that the strain energy decreases
significantly during the first 50 optimization steps. After the 50th step, the strain energy decreases
slowly and then converges at the 400th step. Through the optimization, the strain energy decreases to
40% of that of the original design.

In Figure 4, the initial, 20th, 200th, and 400th (optimal) shapes are selected to show the shape
variation during optimization process. It is observed that, via the first 20 optimization steps, the shape
changes from a cylinder to a saddle to earn larger stiffness. Since the 20th step, the shape remains
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saddle-shaped, and the surface curvature increases overall. The shape change is too slight to be
observed after the 200th optimization step.
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Prior to the stochastic analysis, the deterministic analysis of free vibration is implemented on
shells with respect to several selected optimization steps, and the first three natural frequencies are
plotted in Figure 5. It can be seen that, all the first three natural frequencies significantly change during
the optimization process and increase by 158.0% (1st), 61.1% (2nd), and 111.5% (3rd), respectively.
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4.1.2. Stochastic and Sensitivity Analysis

Three representative shapes generated in the optimization, i.e., the initial shape, the 20th-step shape,
the 400th-step optimal shape, see Figure 4, are selected for the stochastic analysis of natural frequencies.

LHS is adopted to generate samples. To determine the sample size, sampling is repeated on the
optimal shape with size of 350, 400, 450, 500, 550, and 600, respectively. The mean values and standard
deviations of first three frequencies are solved and checked by Equation (3), with ξ1, ξ2 set up as 0.01
and 0.001, respectively. It is found that, when the sampling size is 400, Equation (3) is satisfied for the
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first three frequency of all the selected shapes. For brevity, only the check result of the first natural
frequency of the optimal shape is given in Figure 6. Herein, the size of samples is determined as 400
and Figure 7 depicts the samples.
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Via the stochastic analysis, it is found that the first natural frequency follows a normal distribution.
The cumulative distributions of first natural frequency of the three models are depicted and fitted in
Figure 9 for clear analysis and comparison. As presented in Figure 9a, it can be seen that the value of
first natural frequency of the initial guess ranges from 4.05 to 5.00 Hz and the cumulative distributions
function (CDF) is fitted as

F(x) =

 1
1+e−10.97(x−4.55) 4.05 ≤ x ≤ 5.00

0 else
(7)

where x denotes the first natural frequency. The determination coefficient is 0.9883, which shows a
good approximation.
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It is also observed that the CDFs of 20th-step shape and optimal shape is similar to Equation (7)
and fitted as Equations (8) and (9), respectively

F(x) =

 1
1+e−8.26(x−6.12) 5.52 ≤ x ≤ 6.80

0 else
(8)

F(x) =

 1
1+e−4.58(x−11.75) 10.74 ≤ x ≤ 12.78

0 else
(9)

Partial correlation coefficients with respect to the first natural frequency are calculated and
subsequently normalized to rank the significance of each factor, as shown in Figure 10. It is illustrated
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that, for initial guess, shell thickness and elastic modulus deviations impose relatively significant
effects with similar weights, while the initial geometric imperfection is the least significant factor. In
the case of the 20th-step shell, the significance ranking is similar to the initial guess, while the case
of the optimal (400th-step) shape shows a difference that the effect of elastic modulus is remarkably
higher than that of shell thickness deviation. The reason is that the increase (or decrease) of shell
thickness leads to the increase (or decrease) of both stiffness and mass, which affects the frequencies in
the opposite ways; in contrast, the increase (or decrease) of elastic modulus only affects the stiffness.
Therefore, in most cases, the impact of the elastic modulus is larger than shell thickness. The difference
between their significance depends on the geometrical shape to some extent.
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The stochastic and sensitivity analysis is repeated for the second and third natural frequency.
Similar results are obtained.

4.2. Shell Model 2: A Free-Form Shell Consisting of Two Connected Positive—Gaussian Domes

4.2.1. Model Generation

Figure 11 shows the shell of this example. The two long-span edges are simply supported and the
other edges are free. The material properties are same to that in Table 2. The shape is generated by
the proposed optimization approach. NURBS functions are adopted to represent the geometric shape.
The control points are located, as shown in Figure 11a, which forms a 5× 3 grid. Weight factors and
the degrees of the basis functions are determined as similar to that in Example 1. The optimization
aims at minimizing the strain energy under applied load, which is also determined as the uniformly
distributed vertical load of q = 3.5 kN/m2. The triangular shell element is used with 1024 elements
and 561 nodes.
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Figure 11. Layout of control points, mesh and the initial geometry of Model 2: (a) Layout of control
points and mesh; and, (b) Initial guess shape.
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As presented in Section 2, the gradient method is used to solve the optimization problem.
The initial shape of this model is set up as a free-form shape, which consists of two connected positive
-Gaussian domes. Similar to Example 1, the control point on the long-span edges is fixed, meaning that
the location and shape of these two edges are not changing during the optimization process. The total
number of optimization variables is 5, which is same to Example 1.

Figure 12 shows the convergence process of Model 2, which is slower than Model 1, since the
shape is relatively complicated. The optimization converges at the 1000th step with a 65% decrease of
strain energy. Figure 13 shows the changes of geometric shape of Model 2 during the optimization
process. It can be seen that, since the control points on the edges are fixed, the general shape remain
similar to the initial shape, which consists of two connected positive-Gaussian surfaces. However,
the curvature increases overall.
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Prior to the stochastic analysis, the deterministic analysis of free vibration is implemented on
shell models with respect to several selected optimization steps, and Figure 14 depicts their first
three natural frequencies. It is observed that, different from Model 1, both the first and third natural
frequencies decrease through the optimization, while only the second natural frequency increases.
It is also noted that the change of all the frequencies are slight. For example, the relative change of
the first natural frequency is only 11.9%, which is significantly smaller than Model 1. This can be
explained by the fact that, in this case, the stiffness is mainly increased by the increase of curvature,
which results in the increase of mass. The natural frequencies are affected by both stiffness and mass,
and they consequently show a slight change. The natural frequencies decrease when the increase of
mass plays a more significant role than stiffness.
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4.2.2. Stochastic and Sensitivity Analysis

The initial, 100th, and 1000th optimized shape of Model 2 in Figure 13 are selected to investigate
the influence of uncertainty factors on free frequencies. The samples are generated by LHS. The sample
size is also determined as 400, which has been checked for the current model by Equation (3), with
ξ1, ξ2 as 0.01 and 0.001, respectively.

Firstly, the first natural frequency is studied, which is depicted in Figure 15. The mean values of the
initial guess, 100th-step shape, 1000th-step shape is 11.91 Hz, 11.58 Hz, and 10.58 Hz, respectively. Their
standard deviation is 0.28 Hz, 0.32 Hz, and 0.28 Hz, respectively. The stochastic analysis shows that
the first frequency of this shell model always follows the normal distribution during the optimization
process. Their CDFs are depicted in Figure 16 and fitted, which are similar to Model 1.
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Through the sensitivity analysis, the ranking of the three factors with respect to the first frequency
is obtained, as shown in Figure 17. It can be seen that the elastic modulus deviation is the most
important uncertainty, with a weight of around 60%; the shell thickness deviation has relatively small
influence with a high weight of around 30%; and, the initial geometric imperfection imposes negligible
effects with a weight of less than 10%. Generally, the ranking is similar to Example 1, except for that the
sensitivity value of elastic modulus deviation is much higher. This could be attributed to the change of
the mass, as discussed above.
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5. Conclusions

In this work, an optimization algorithm generates free-form shells. The stochastic analysis
is carried out to investigate the stochastic characteristics of natural frequencies of free-form shells,
in which three uncertainty factors are involved, including initial geometric imperfection, shell thickness
deviation, and elastic modulus deviation. Furthermore, the global sensitivity analysis method is
employed to rank the effect of three uncertainty factors. The main conclusions are drawn, as follows:
(i) for the free-form shells investigated in this study, the natural frequencies of free-form shells follow a
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normal distribution in term of the three uncertainty factors. The elastic modulus deviation imposes the
greatest effect; shell thickness ranks the second; geometrical imperfection ranks the last with a much
lower weight than the previous two factors. It is demonstrated that the free-form shells studied in this
paper have good robustness on geometrical shape error; and, (ii) in the current study, the supported
edges are fixed during the shape optimization, which lead to a limited shape change. Therefore, the
stochastic characteristics do not significantly change during the optimization process. The case with
variable edges needs further study.
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