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Featured Application: With this bird audio enhancement method, the bird audio collected through
the WASN (Wireless Acoustic Sensor Network) can be processed to produce better quality audio,
which is more suitable for bird species identification based on the bird audio, then a higher
accuracy of identification will be achieved.

Abstract: Currently, wireless acoustic sensor networks (WASN) are commonly used for wild bird
monitoring. To better realize the automatic identification of birds during monitoring, the enhancement
of bird audio is essential in nature. Currently, distributed beamformer is the most suitable method for
bird audio enhancement of WASN. However, there are still several disadvantages of this method,
such as large noise residue and slow convergence rate. To overcome these shortcomings, an improved
distributed minimum variance distortionless response (IDMVDR) beamforming method for bird
audio enhancement in WASN is proposed in this paper. In this method, the average metropolis weight
local average consensus algorithm is first introduced to increase the consensus convergence rate, then
a continuous spectrum update algorithm is proposed to estimate the noise power spectral density
(PSD) to improve the noise reduction performance. Lastly, an MVDR beamformer is introduced
to enhance the bird audio. Four different network topologies of the WASNs were considered, and
the bird audio enhancement was performed on these WASNs to validate the effectiveness of the
proposed method. Compared with two classical methods, the results show that the Segmental signal
to noise ratio (SegSNR), mean square error (MSE), and perceptual evaluation of speech quality (PESQ)
obtained by the proposed method are better and the consensus rate is faster, which means that the
proposed method performs better in audio quality and convergence rate, and therefore it is suitable
for WASN with dynamic topology.

Keywords: bird audio enhancement; wireless acoustic sensor networks; IDMVDR; local average
consensus algorithm

1. Introduction

Bird species have been encountering increasing threats in recent years, which has attracted wide
attention from ornithologists [1]. It is significant to monitor bird species for bird protection. With
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wireless acoustic sensor networks (WASN) becoming more and more popular, WASNs are commonly
used for monitoring bird audio long-term [2]. Automatic bird species identification provides a suitable
way to analyze the huge audio data from long-term monitoring programs [3]. However, the bird
audio collected in nature is always accompanied by ambient noises, which consequently affect the
accuracy of the bird species identification [4]. Therefore, audio enhancement should be carried out
before identification, to improve identification accuracy.

By exploiting the spatial properties of speech and noise signals, WASN techniques can significantly
outperform single-channel techniques in terms of improving interference suppression and reducing
speech distortion [5–9]. Although WASN has many advantages, it also has several challenges, such as
the limited energy and calculation ability of each node. There are two kinds of audio enhancement
algorithms for WASNs. The first is centralized, all the data is transferred to a so-called fusion center
(FC) for further enhancement. The second is distributed, the enhancements are performed on all
the nodes, which means the computations are decomposed to all the nodes, then the amount of
data transferred between nodes is reduced. Compared with the centralized method, the distributed
method is typically preferred because of its lower energy consumption and higher scalability [10].
Several studies have been conducted on distributed methods of speech enhancement in WASNs. Three
distributed audio enhancement algorithms [11–13] were presented in full-connect or tree topology
networks, which can achieve the optimal estimated beamformer results at each node by using data
compression to reduce energy consumption. Yuan and Hendriks proposed a distributed delay and sum
beamformer (DDSB) for speech enhancement via randomized gossip in any topology of WASN—the
same result as centralized beamformers can be obtained in each node of WASN [14]. Moreover, on the
basis of previous studies, an improved general distributed synchronous averaging (IGDSA) algorithm
was proposed [15] and the proposed IGDSA algorithm presented faster coverage rate than original
synchronous communication scheme, especially for non-regular networks. Li proposed a speech
enhancement algorithm through a distributed minimum variance distortionless response (DMVDR)
beamformer. With this algorithm, each node in the WASN can obtain the same estimation result by
communicating with neighboring nodes [16].

For any network topology, the distributed beamformer can estimate the desired signal at each node
by only exchanging information with its neighbors. Only local signal interchanges are implemented
in the distributed beamformer, which brings the advantages of higher robustness and scalability for
sensor networks with a large node number and dynamic topology. So, the distributed beamformer
is chosen for bird audio enhancement in this paper. Despite the rapid development of the speech
enhancement technology of WASNs, research on the enhancement of bird audio using WASNs in
forest areas is scarce. The noises in forest areas are always time-variant. However, in the traditional
distributed speech enhancement of WASNs, the noise power spectral density (PSD) is commonly
estimated by means of temporal averaging over noise-only segments [11–16], which may introduce
large residual noise [17]. Moreover, the convergence rates of existing distributed beamformer methods
are not fast enough, such as the random gossip algorithm of DDSB [14,15]. These restrictions obstruct
the practical utilization of the distributed beamformer method. In this paper, an improved distributed
minimum variance distortionless response (IDMVDR) beamforming method is proposed to realize the
bird audio enhancement, in which the continuous spectrum update algorithm is introduced to estimate
the noise PSD, and then the average metropolis weight algorithm is proposed to update each signal
of all nodes to converge to the optimal solution of the centralized beamformer. At last, simulation
experiments with bird audios were performed to validate the effectiveness of the proposed method.

This paper is organized as follows. In Section 2, firstly, the optimal centralized beamformer
is discussed. Then, the average metropolis weight local average consensus algorithm is briefly
reviewed. Subsequently, the distributed MVDR (DMVDR) beamformer is described in detail. Finally,
the improved noise PSD algorithm is stated. After that, the iterative procedures of IDMVDR are
listed. In Section 3, the simulation experiments, results, and analysis of the convergence rate and noise
reduction performance are presented. Conclusions are drawn in Section 4.
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2. Method Analysis

The DMVDR beamforming method uses a local average consensus algorithm to update the
beamforming value in each node by only communicating with neighbor nodes. Each node can obtain
the same estimated beamforming result as centralized MVDR [10,14,15]. Based on this method, through
improving both the local average consensus algorithm and noise estimation algorithm, the IDMVDR
beamforming algorithm was proposed to enhance the bird audios which are collected through the
WASN in nature. The process flow chart of the proposed algorithm is shown in Figure 1. The
audio enhancement was performed in the time–frequency domain, so short-time discrete Fourier
transform (STDFT) was first performed to the audio signal. After the estimations of noise PSD and
acoustic transfer function (ATF), two initial beamforming values, Ỹ(0) and Ñ(0), were calculated.
The consistency weight matrix was used to update the beamforming value by iteration. Lastly, the
enhanced audio signal could be obtained after convergence. In order to express the contribution of
this paper more easily, in this section, the distributed beamformer was interpreted in detail after the
centralized beamformer was introduced.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 18 

reviewed. Subsequently, the distributed MVDR (DMVDR) beamformer is described in detail. Finally, 
the improved noise PSD algorithm is stated. After that, the iterative procedures of IDMVDR are 
listed. In Section 3, the simulation experiments, results, and analysis of the convergence rate and noise 
reduction performance are presented. Conclusions are drawn in Section 4. 

2. Method Analysis 

The DMVDR beamforming method uses a local average consensus algorithm to update the 
beamforming value in each node by only communicating with neighbor nodes. Each node can obtain 
the same estimated beamforming result as centralized MVDR [10,14,15]. Based on this method, 
through improving both the local average consensus algorithm and noise estimation algorithm, the 
IDMVDR beamforming algorithm was proposed to enhance the bird audios which are collected 
through the WASN in nature. The process flow chart of the proposed algorithm is shown in Figure 
1. The audio enhancement was performed in the time–frequency domain, so short-time discrete 
Fourier transform (STDFT) was first performed to the audio signal. After the estimations of noise 
PSD and acoustic transfer function (ATF), two initial beamforming values, 𝑌෨(0) and 𝑁෩(0), were 
calculated. The consistency weight matrix was used to update the beamforming value by iteration. 
Lastly, the enhanced audio signal could be obtained after convergence. In order to express the 
contribution of this paper more easily, in this section, the distributed beamformer was interpreted in 
detail after the centralized beamformer was introduced. 

 
Figure 1. The improved distributed minimum variance distortionless response (IDMVDR) 
beamforming method based on the local average consensus algorithm for bird audio enhancement in 
wireless acoustic sensor networks (WASNs). 

2.1. Centralized Beamformer (MVDR Algorithm) 

In the audio enhancement of the WASN with FC, other nodes needed to broadcast their signals 
to the FC, so that the centralized beamformer could be obtained at FC. We considered a WASN 
consisting of 𝑁ௗ  randomly connected nodes. Each node was assumed to consist of only one 
microphone. Here, only one signal source (bird audio) was considered. The 𝑁ௗ × 1 vector 𝐘(𝑘, 𝑙) 
contains the STDFT coefficients of 𝑁ௗ collected signals under certain a time-frame l and frequency-
bin k, which can be shown as follows: 𝐘(𝑘, 𝑙) = 𝐇(𝑘) · 𝑠(𝑘, 𝑙) + 𝐧(𝑘, 𝑙) = 𝐗(𝑘, 𝑙) + 𝐧(𝑘, 𝑙), (1) 

where the 𝑠(𝑘, 𝑙) is the STDFT coefficient of bird audio signal, and 𝑁ௗ × 1 vector 𝐧(𝑘, 𝑙) denotes 
the noise STDFT coefficients. The 𝐇(𝑘) is a 𝑁ௗ × 1 vector which denotes the ATFs from the bird to 
each microphone. If we omit the time and frequency indices for brevity, Equation (1) can be simplified 
as follows: 

WASN

Acquire audio signals

STFT transformation

Noise PSD estimation ATF estimation

Calculate beamforming 
initial value Ỹ(0) and Ñ(0) 

Calculate the consistency 
weight matrix U

Final signal

Local average 
consensus update

Update the Ỹ and Ñ by 
iteration 

Convergence ?

YES

NO

Signal preprocessing

Figure 1. The improved distributed minimum variance distortionless response (IDMVDR) beamforming
method based on the local average consensus algorithm for bird audio enhancement in wireless acoustic
sensor networks (WASNs).

2.1. Centralized Beamformer (MVDR Algorithm)

In the audio enhancement of the WASN with FC, other nodes needed to broadcast their signals to
the FC, so that the centralized beamformer could be obtained at FC. We considered a WASN consisting
of Nd randomly connected nodes. Each node was assumed to consist of only one microphone. Here,
only one signal source (bird audio) was considered. The Nd × 1 vector Y(k, l) contains the STDFT
coefficients of Nd collected signals under certain a time-frame l and frequency-bin k, which can be
shown as follows:

Y(k, l) = H(k)·s(k, l) + n(k, l) = X(k, l) + n(k, l), (1)

where the s(k, l) is the STDFT coefficient of bird audio signal, and Nd × 1 vector n(k, l) denotes the
noise STDFT coefficients. The H(k) is a Nd × 1 vector which denotes the ATFs from the bird to each
microphone. If we omit the time and frequency indices for brevity, Equation (1) can be simplified
as follows:

Y = H·s + n = X + n, (2)

where vector H consists of Nd rows, which is given by:

H =
[
H1···HNd

]T
, (3)
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ATF is used to describe the relationship between the source signal and collected signal of
microphone. ATF estimation is relatively complicated [14–16], and was not the core concern here.
Considering the absence of echoes and reverberation in forest areas, the ATF in reference [9] was
adopted directly in this paper, which is defined as:

H(k) =

 1
√

4Πq1
e−2 jΠq1v f /c, ···,

1
√

4ΠqNd

e−2 jΠqiv f /c
T

, (4)

when j =
√
−1, v f = k× fs/K is the continuous frequency (in Hz) corresponding to the frequency bin

k ∈ {0, · · · , K/2} (K denotes the STDFT length of one time frame), and fs is the sampling frequency.
qi denotes the distance between the target bird and the node i.

The purpose of the MVDR algorithm is to keep the output signal distortionless and minimize
the noise power. The MVDR algorithm is a special form of linearly constrained minimum variance
(LCMV) when the source number is limited to one. With the MVDR algorithm, the STDFT coefficient
of desired bird audio can be estimated by applying a complex weight to the vector Y with noisy STDFT
coefficients. That is,

Z = WHY = WHHs + WHn, (5)

where Z denotes the desired bird audio STDFT coefficients, W is a weight vector with filter coefficients,
and (·)H indicates Hermetian transposition of a matrix. According to the bird audio distortionless
constraint, to minimize the contribution of interference to the output Z, the optimal weight vector W is
the solution to the following optimization problem:{

W = arg minWHRYYW
HHW = 1

, (6)

where RYY = E
[
YYH

]
is the spectral covariance matrix of the noisy signal with the statistical expectation

operator E[·].

RYY = E
[
YYH

]
= E

[
(X + n)(X + n)H

]
= E

[
XXH

]
+ E

[
XnH

]
+ E

[
nXH

]
+ E

[
nnH

]
. (7)

In general, it is assumed that bird audio is uncorrelated with the noise. Therefore, the correlation
coefficient is zero:

E
[
XnH

]
= E

[
nXH

]
= 0, (8)

We simplified Equation (7) as follows:

RYY = E
[
XXH

]
+ E

[
nnH

]
= RXX + Rnn, (9)

Because HHW = 1,
WHRXXW = E

[
WHHs(Hs)HW

]
= E

[
ssH

]
, (10)

For certain time and frequency, s is a fixed value, then the E
[
ssH

]
is a fixed value too. Therefore,

the optimization problem of Equation (6) can be transformed into the equations as follows:{
W = arg minWHRnnW

HHW = 1
, (11)

By using the matrix inversion lemma [15], the optimal weight vector W of the above constrained
optimization problem Equation (11) can be written as:

W =
R−1

nnH

HHR−1
nnH

, (12)
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Assumed that the noise coefficient of each node was spatially uncorrelated with PSD σ2
i , then the

noise correlation matrix PSD Rnn can be described by the following equation [15]:

Rnn = E
[
nnH

]
= diag

{
RN1N1 , RN2N2 , · · · , RNdNd

}
= diag

{
σ2

1, σ2
2, · · · , σ2

Nd

}
, (13)

Rnn will be estimated by the continuous spectrum update algorithm, which is described in
Section 2.4. At last, the beamformer output is given as follows:

Z = WHY =

(
R−1

nnH

HHR−1
nnH

)H

Y =

∑Nd
i=1 HH

i σ
−2
i Yi∑Nd

i=1 HH
i σ
−2
i Hi

, (14)

where Hi and Yi are the ATF and the collected signal of node i, respectively. This is the result of the
MVDR beamforming algorithm with FC. In the centralized beamformer, the FC was required to collect
the information of all sensor positions. Besides, each node had to report its Yi to the FC. Hence, when
the node number of the WASN increased, the centralized process lacked robustness and scalability.

2.2. Average Metropolis Weight Local Average Consensus Algorithm

The metropolis weight local average consensus algorithm [18] is an iterative algorithm to solve
the average consensus problems in a distributed way, only the basic process of which is elaborated in
this section. Its relationship with MVDR and how each node obtains the same MVDR estimated result
with this method are provided in Section 2.3, with more details.

The relations between different nodes in WASNs can be represented by a topology diagram [18,19].
In order to describe the process of the consensus algorithm, some notations are needed. For the WASN
with Nd nodes, we introduced an undirected graph G = (V, ε), where the vertices in V = {1, 2, · · · , Nd}

correspond to the nodes in the network, and an edge (i, j) ∈ ε corresponds to the communication
links between node i and j. The adjacency matrix A =

[
ai j

]
indicates whether the ith node and the

jth node are connected. If (i, j) ∈ ε, ai j = 1, which means the nodes i and j are interconnected and
communication can be executed between them, otherwise ai j = 0. The set of neighboring nodes of
node i is Ci =

{
j ∈ V

∣∣∣(i, j) ∈ ε
}
. The degree din(i) of node i is determined by the following equation:

din(i) =
N∑

j=1

ai j, (15)

Given the initial value gi(0) at node i (in Section 2.3, the gi(0) stands for
~
Yi(0) and

~
Ni(0)), the

metropolis weight local average consensus algorithm aims to find the average value gave =
1

Nd

∑Nd
j=1 gi(0)

at all nodes by using an iterative scheme with only local information and local processing [14]. According
to [15,16,18], the linear iterative algorithm can be used to compute the weighted mean of the error
between the current value and average value, then the updated local estimate of node i is presented
as follows:

gi(t + 1) = gi(t) +
∑

j∈Ci(t)
Ui j(t)

(
g j(t) − gi(t)

)
= (1−

∑
j∈Ci(t)

Ui j(t))g j(t) +
∑

j∈Ci(t)
Ui j(t)gi(t)

= Uii(t)gi(t) +
∑

j∈Ci(t) Ui j(t)g j(t),

(16)

where t is the iteration number, the suffix (t) means the relevant value at iteration t. gi(t) is the updated
value of node i. Ui j(t) is the updated weight between node i and j. The updated self-weight of node i,
Uii(t) is defined as follows:

Uii(t) = 1−
∑

j∈Ci(t)

Ui j(t), (17)



Appl. Sci. 2019, 9, 3153 6 of 16

Let the vector g(t) =
[
g1(t), g2(t), ···, gNd(t)

]T
denote the vector of values at iteration t. U(t) ={

Ui j(t)
}
(1 ≤ i, j ≤ Nd) is the Nd ×Nd dimensional consistency weight matrix. Equation (16) can be

explained in matrix form as follows:

g(t + 1) = U(t)g(t), (18)

The purpose of the local average consensus algorithm is to find a suitable consistency weight
matrix U(t), then each node will reach the average value through communicating with neighboring
nodes. The average metropolis weight method can be used to fulfill the above purpose by computing
the updated weight using Equation (19), which can achieve a faster convergence rate and easier
implementation than the metropolis weight method [16]:

Ui j(t) =


2θ

din(i)+din( j) (i, j) ∈ ε

1−
∑

k∈Ci(t) Uik(t) i = j
0 others

, (19)

where θ (0 < θ < 1) is the trade-off factor.

2.3. Distributed MVDR (DMVDR) Beamformer

As the centralized beamformer requires an FC, there are two disadvantages of high energy
consumption and poor scalability. The distributed beamformer is performed through the
communications between a node and its adjacent nodes, which means that only local information
and local processing are used to obtain the same optimal estimated result as Equation (14). Therefore,
the distributed approach is more suitable for WASNs. In distributed beamformers, Equation (14) is
rearranged as follows:

Z = WHY =

(
R−1

nnH

HHR−1
nnH

)H

Y =

∑Nd
i=1 HH

i σ
−2
i Yi∑Nd

i=1 HH
i σ
−2
i Hi

=

1
Nd

∑Nd
i=1 HH

i σ
−2
i Yi

1
Nd

∑Nd
i=1 HH

i σ
−2
i Hi

, (20)

where 1
Nd

∑Nd
i=1 HH

i σ
−2
i Yi and 1

Nd

∑Nd
i=1 HH

i σ
−2
i Hi can be computed by the average metropolis weight

local average consensus algorithm, which means that an FC is not needed to collect the signals of all
the nodes here.

Two initial values of node i are defined, namely Ỹi(0) = HH
i σ
−2
i Yi and Ñi(0) = HH

i σ
−2
i Hi. Then,

Equation (20) can be written as follows:

Z =

1
Nd

∑Nd
i=1 Ỹi(0)

1
Nd

∑Nd
i=1 Ñi(0)

, (21)

Let Ỹave =
1

Nd

∑Nd
i=1 Ỹi(0) and Ñave =

1
Nd

∑Nd
i=1 Ñi(0), Equation (20) can be written as follows:

Z =
Ỹave

Ñave
, (22)

Then, the final purpose of the distributed MVDR (DMVDR) beamformer is to achieve the
average Ỹave and Ñave. Here, we used the average metropolis weight local average consensus

algorithm to fulfill the distributed evaluations of Ỹave and Ñave. Set
~
Y(t) =

[
Ỹ1(t), Ỹ2(t), ···, ỸNd(t)

]T

and
~
N(t) =

[
Ñ1(t), Ñ2(t), ···, ÑNd(t)

]T
as the vector

~
Y and

~
N at iteration t, respectively. According to

Equation (18), estimations of
~
Y and

~
N for each iteration t are given by the following equations:
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~
Y(t) = U(t)

~
Y(t− 1), (23)

~
N(t) = U(t)

~
N(t− 1), (24)

Let Z̃i(t) denote the distributed MVDR output at iteration t, which can be calculated by using the
following equation:

Z̃i(t) = Ỹi(t)/Ñi(t), (25)

2.4. Noise PSD Estimation Algorithm Based on Continuous Spectrum Update

In order to calculate the initial values Ỹi(0) and Ñi(0), the noise PSDσ2
i (k, l) is required. An accurate

estimation of the noise PSD substantially affects the quality of the final output signal in distributed
MVDR beamformers. The matrix of noise PSD is typically estimated by the temporal averaging of part
of the audio with no bird vocalization [10,20,21]. The premise is that the noise PSD does not change
too much with time [21]. However, noises usually vary with time in nature, which makes it a great
challenge to accurately estimate the noise PSD. Compared with the noise estimation algorithm based
on voice activity Ddetection (VAD), the algorithm based on continuous updates is more effective. These
algorithms are usually based on the minimum statistical model, which consider that the point with the
smallest amplitude is the reference value of noise estimation for continuous multiple frames with the
same spectral component [22,23]. Based on this model, the noise PSD can be estimated. However, if
only the current frame is searched, this will cause large residual noise when the noise level rises soon
afterwards [17]. In this section, an improved noise PSD estimation algorithm is proposed to estimate
the noise PSD in each node during IDMVDR. This method learned from the bidirectional search of the
path searching algorithm.

Firstly, the smoothing operation on the power spectrum of the signal of node i is performed:

Si(k, l) = α′Si(k, l− 1) + (1− α′)
∣∣∣Yi(k, l)

∣∣∣2, (26)

where Si(k, l) denotes the smoothed power spectrum, and α’ is the smoothing factor.
Then, the bidirectional search is performed on the smoothed power spectrum. In the same spectral

component, the front and rear frames are searched to find the smallest amplitude:

Simin1(k, l) = min
{
Si(k, l′)

}
, l− Ls + 1 ≤ l′ ≤ l, (27)

Simin2(k, l) = min
{
Si(k, l′)

}
, l ≤ l′ ≤ l + Ls − 1, (28)

where Simin1(k, l) and Simin2(k, l) represent the values of forward and backward searches of node i,
respectively, and Ls is the number of searched frames.

The maximums of Simin1 and Simin2 are taken as the reference values, which can ensure the
reduction of noise when the noise level rises by utilizing the noise reference values of later frames:

Simin(k, l) = max
{
Simin1(k, l), Simin2(k, l)

}
, (29)

Furthermore, the bird vocalization existence probability is calculated. Considering that the
bird vocalization is more susceptible to noise interference in the low-frequency segment, different
discrimination thresholds are chosen for signals with different frequency bands:

Ii(k, l) =
{

1, Si(k, l)/Simin(k, l) > δ(k)
0, Si(k, l)/Simin(k, l) ≤ δ(k)

, (30)

where Ii(k, l) is used to determine whether bird vocalization is present in time-frame l and frequency-bin
k. When the value of Ii(k, l) is 1, it means that bird vocalization is present, otherwise bird vocalization
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is absent. δ(k) is the frequency-dependent threshold determined experimentally. The existence
probability of bird vocalization is further calculated by the following equation:

Pi(k, l) = αsPi(k, l− 1) + (1− αs)Ii(k, l), (31)

where Pi(k, l) is the existence probability of bird vocalization, and αs is smoothing constant.
To quickly adapt to the increasing noise levels, the time–frequency dependent smoothing factor is

computed based on the existence probability of bird vocalization. Then, the noise estimation will be
updated in each frame based on the activity detection of bird vocalization. Let α′i,d(k, l) denote the
time–frequency dependent smoothing factor of node i, it can be calculated by the following equation:

α′i,d(k, l) = αd + (1− αd)Pi(k, l), (32)

where αd is the fixed smoothing factor of α′i,d(k, l).
Let S f (k, l) describe the variation of noise power spectrum, the S f (k, l) of node i is computed by

the following equation:
Si, f (k, l) = Simin1(k, l)/Simin2(k, l), (33)

When the noise power spectrum varies little, Simin(k, l) is used to estimate noise PSD, otherwise the
noise PSD is estimated with the time–frequency dependent smoothing factor α′i,d(k, l). Then, the noise
PSD is estimated through by the following equation:

σ2
i (k, l) =

 Simin(k, l), 1/c < Si, f (k, l) < c

α′i,d(k, l)σ2
i (k, l− 1) +

[
1− α′i,d(k, l)

]∣∣∣Y(k, l)
∣∣∣2, other

, (34)

where the σ2
i (k, l) is the noise PSD of node i, and c is the decision threshold constant.

2.5. The Iterative Procedure of IDMVDR

In summary, the iterative procedures of IDMVDR are listed as follows:

(1) Initialize iteration t to 0, calculate
~
Yi(0) and

~
Ni(0) by using Ỹi(0) = HH

i σ
−2
i Yi and Ñi(0) = HH

i σ
−2
i Hi,

where Hi is obtained by Equation (4), and σ2
i is computed by Equation (34);

(2) Use Equation (15) to compute the degree of each node based on the current topology diagram,
then compute the current consistency weight matrix U(t) by using Equation (19);

(3) In each node, the updated weights U(t− 1), Ỹ(t− 1), and Ñ(t− 1) of itself and its adjacent nodes

are applied to calculate Ỹ(t), Ñ(t) and Z̃(t) by using Equations (23)–(25), then increase t by 1;
(4) Repeat step (3), until the convergence of Z̃i(t).

Significantly, the detailed communication contents between adjacent nodes are only the updated
weights U(t− 1), Ỹ(t− 1) and Ñ(t− 1).

Take a WASN with three nodes as an example, the topology is shown in Figure 2. Here, yellow
dots are the nodes and blue lines denote the communication connections between nodes.Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 18 
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Assuming that the θ of Metropolis is 0.5, then the weight between node 1 and 2 is 1/(2 + 1) = 1/3,
according to Equation (19), and the weight between node 1 and 3 is 1/(2 + 1) = 1/3. The self-weight
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of node 1 is 1 − 1/3 − 1/3 = 1/3 by using Equation (17). Node 2 and node 3 are not connected, so the
weight between node 2 and 3 is 0. The self-weights of node 2 and node 3 are both 1 − 1/3 = 2/3. The
consistency weight matrix U(t) of this WASN is as follows:

U(t) =


1
3

1
3

1
3

1
3

2
3 0

1
3 0 2

3

, (35)

~
Y(t) =

[
Ỹ1(t), Ỹ2(t), Ỹ3(t)

]T
and

~
N(t) =

[
Ñ1(t), Ñ2(t), Ñ3(t)

]T
are the vectors of all nodes’ values

at iteration t respectively. So, for the iteration t + 1,

~
Y(t + 1) = U(t)

~
Y(t) =


1
3

1
3

1
3

1
3

2
3 0

1
3 0 2

3

[Ỹ1(t), Ỹ2(t), Ỹ3(t)
]T

=
[

1
3 Ỹ1(t) + 1

3 Ỹ2(t) + 1
3 Ỹ3(t), 1

3 Ỹ1(t) + 2
3 Ỹ2(t), 1

3 Ỹ1(t) + 2
3 Ỹ3(t)

]T
,

(36)

with
~
N(t),

~
N(t + 1) can be obtained by the same method. As for node 1, its Z̃1(t) can be computed as

follows by using Equation (25):

Z̃1(t + 1) =
Ỹ1(t + 1)

Ñ1(t + 1)
=

1
3 Ỹ1(t) + 1

3 Ỹ2(t) + 1
3 Ỹ3(t)

1
3 Ñ1(t) + 1

3 Ñ2(t) + 1
3 Ñ3(t)

, (37)

The iteration would be executed until the difference between Z̃(t + 1) and Z̃(t) is less than a
given threshold.

3. Comparison and Discussion

In this section, we provide qualitative comparisons between our proposed method and two other
existing audio enhancement methods (DDSB and DMVDR). Both convergence rate and noise reduction
performance were used to conclude the advantages of our proposed method.

3.1. Convergence Analysis

Different network topologies of WASNs will cause different convergence and enhancement
performances. To evaluate the performance of WASNs of different sizes, four WASNs with Nd = 5, 10,
15, and 20 were simulated. All the nodes were distributed in a 50 × 50 m site and the heights were 1 m.
Each node consisted of one microphone. The topologies of four simulated WASNs were randomly
generated. A bird vocalization source was fixed at a point 5 m high. The noise source was randomly
distributed. The topologies of the four simulated WASNs are shown in Figure 3a–d, respectively.
In these figures, yellow dots are the node position of WASNs, dark blue dots are the position of the
bird vocalization source, blue lines denote the communication connections between nodes.

In the simulation experiments, bird audio of a large-billed crow with relatively high signal-to-noise
ratio (SNR) was selected as the clean bird vocalization. Its waveform is shown in Figure 4.

In this section, we only verify the convergence rate of IDMVDR. Before the iterative update of the
node value, the estimation of the noise PSD was completed, so the convergence rate of the distributed
algorithm had nothing to do with the noise type. A white Gaussian signal was chosen as the only
noise source. Each node collected noisy bird audio signals with a sampling frequency of 44.1 kHz. To
guarantee the same conditions for comparison experiments, the input SNR of node 1 was set to 1 dB.

The audio signal was non-stationary, which should be framed and windowed before audio
enhancement. All nodes processed the signals frame by frame, with a frame length of 706 (16 ms), 50%
overlap, and Hanning window. During the noise PSD estimation, the first and second frame signals
were first initialized through setting σ2

i (k, l) = Si(k, l) = Simin(k, l) =
∣∣∣Yi(k, l)

∣∣∣, Pi(k, l) = 0. Then, the
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noise PSD estimation was performed, beginning with the second frame, by equations from Equation
(26) to Equation (34) sequentially, where α′ = 0.8 (in Equation (26)), Ls = 95 (in Equations (28) and
(29)), αs = 0.2 (in Equation (31)), αd = 0.95 (in Equation (32)) and c = 4 (in Equation (34)).
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Considering the characteristics of different kinds of bird vocalization are different, relatively
appropriate decision thresholds for the bird vocalizations were selected. After statistical analysis,
we found that most of the bird vocalizations were in medium and low frequencies. Through lots of
experiments with different kinds of birds, the decision threshold of the medium and low frequency
segment was set to 2, which makes it easier to confirm that the bird vocalization exists and reduce
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the distortion of bird vocalization in medium and low frequency. The upper limit of the medium
frequency was selected as 16.61 kHz, and the corresponding frequency-bin k was 266 and 440. For
the high frequency segment, the decision threshold was set to 5. Thus, the value of δ(k) could be set
as follows:

δ(k) =
{

5, 266 < k < 440
2, other

, (38)

The performance of convergence is the main concern in this section, and only the MSE is introduced
herein as the measurement of differences between source signal and estimated signal, which is shown
as follows [16]:

MSE =
1

LK

∑L

l=1

∑K

k=1

∣∣∣Ẑi(k, l) − S(k, l)
∣∣∣2, (39)

where K denotes the number of frequency bins, L is the number of time-frames, Ẑi(k, l) and S(k, l)
denote the STDFT coefficients of the beamformer output and the desired signal at frequency-bin index
k and time-frame index l, respectively. During the iteration process of IDMVDR, the MSE changes.
When the MSE does not change any more, it represents the convergence of IDMVDR. The criteria for
iteration stop are shown as follows:

MSE(t + 1) −MSE(t) = 10E− 6, (40)

where MSE(t) is the value of MSE at iteration t.
Convergence rate is generally measured by the number of iterations when converging is used [20].

To verify the faster convergence rate of IDMVDR, two other methods, DDSB and DMVDR [9,14,15,20],
were compared in four different WASNs.

For each WASN, only the results of two nodes with maximum and minimum degrees were
analyzed. The MSE variations in WASNs with Nd = 5, 10, 15, 20 are shown in Figures 5–8, respectively,
the corresponding numbers of iterations when converging are shown in Tables 1–4.

When Nd = 5, 10, and 15, as shown in Figures 5–7 and Tables 1–3, the convergence rate of IDMVDR
was relatively faster than that of DMVDR and DDSB. Meanwhile, IDMVDR could converge to a lower
MSE. Moreover, in some cases, the convergence rate of DDSB was faster than DMVDR, but IDMVDR
was always the fastest one.
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Table 1. The numbers of iterations when converging in the WASN with Nd = 5.

Algorithm Node 4 Node 5

DDSB 15 5
DMVDR 11 4
IDMVDR 6 2

Table 2. The number of iterations when converging in the WASN with Nd = 10.

Algorithm Node 1 Node 5

DDSB 35 33
DMVDR 38 30
IDMVDR 19 11

Table 3. The number of iterations when converging in the WASN with Nd = 15.

Algorithm Node 8 Node 5

DDSB 37 28
DMVDR 49 43
IDMVDR 10 6

Table 4. The number of iterations when converging in the WASN with Nd = 20.

Algorithm Node 8 Node 2

DDSB 95 45
DMVDR 64 22
IDMVDR 51 19

When Nd = 20, as shown in Figure 8 and Table 4, the convergence rate of IDMVDR was also
significantly faster than that of DDSB, and the MSE of IDMVDR when converging was far less than
DDSB. The MSE variation curves of IDMVDR and DMVDR almost completely overlap, which means
that the performances were nearly the same. This is different from the above results of Nd = 5, 10, and
15. This might be attributable to the higher node density, which means more nodes can get high SNR
signals, and then the difference between IDMVDR and DMVDR is not obvious.

As for convergence performance, compared with DMVDR and DDSB, IDMVDR was predominant
in all the four WASNs, and the convergence rate of IDMVDR was always the fastest, which means that
less data transmissions were required in IDMVDR, and less energy was consumed to communicate
further with neighboring nodes. Thus, the IDMVDR method can save more energy than DDSB and
DMVDR, which is more suitable for the WASNS with limited energy supply.

3.2. Noise Reduction Performance Analysis

Three different indexes, MSE, SegSNR, and PESQ, were selected as the measurements of the noise
reduction performance. The SegSNR is averaged over all time frames and is given by [15]:

SegSNR =
1
L

∑L

l=1
10log10

∑K
k=1

∣∣∣S(k, l)
∣∣∣2∑K

k=1

∣∣∣Ẑi(k, l) − S(k, l)
∣∣∣2 , (41)

PESQ is the most common and subjective metric for evaluating speech quality, which can be used
in a wide range of end to end measurement applications with live and simulated networks [24]. PESQ
is a more complex metric for capturing a wider range of distortions. Its value varies from −0.5 to 4.5,
and a higher value means the better performance. Here, PESQ was introduced to measure the quality
of enhanced bird vocalization. The detailed calculation method can be seen in [24].
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Also, the four WASNs in Section 3.1 were applied for simulation. One bird vocalization and ten
types of noises were selected as audio sources for each experiment. Here, bird vocalizations were
high SNR, and selected from Freesound [25], xeno-canto [26], or our laboratory. The ten types of
noises contained five independent white Gaussian noise signals and five independent other noise
signals, including three types of noise from the Aurora2 database [27], namely Babble, Restaurant,
and Street. In all the experiments, the input SNR of node 1 was set to 1 dB. Ten experiments with
different audio sources were performed for all three methods, and the final results are the average of
multiple experiments.

Tables 5 and 6 show the MSEs and SegSNRs of the distributed beamformers, respectively. It was
found that the noise reduction performance of IDMVDR was better than that of DMVDR and DDSB,
which means that the proposed PSD estimation algorithm of IDMVDR is more efficient.

Table 5. The noise reduction performance of different Nd in terms of MSE.

WASN of Different Nd DDSB DMVDR IDMVDR

5 −10.74 dB −12.56 dB −13.17 dB
10 −7.49 dB −9.99 dB −11.13 dB
15 −6.63 dB −10.00 dB −11.21 dB
20 −6.89 dB −10.63 dB −10.87 dB

Ave −7.94 dB −10.79 dB −11.85 dB

Table 6. The noise reduction performance of different Nd in terms of SegSNR.

WASN of Different Nd DDSB DMVDR IDMVDR

5 −5.56 dB −5.44 dB −3.05 dB
10 −6.49 dB −6.45 dB −3.31 dB
15 −7.12 dB −6.67 dB −3.24 dB
20 −6.98 dB −6.32 dB −4.67 dB

Ave −6.54 dB −6.22 dB −3.68 dB

Table 7 shows the PESQs of the beamformer’s output. It was observed that the PESQs of the
IDMVDR and DMVDR are obviously better than that of DDSB. This is reasonable, since the MVDR
beamformer generally had better speech quality and intelligibility than the DDSB algorithm when the
noise signals of the microphones were correlated [15]. Meanwhile, the bird vocalization quality of
IDMVDR was slightly better than that of DMVDR.

Table 7. The noise reduction performance of different Nd in terms of PESQ.

WASN of Different Nd DDSB DMVDR IDMVDR

5 1.89 2.47 2.67
10 1.55 2.11 2.50
15 1.56 2.14 2.49
20 1.58 2.18 2.48

Ave 1.65 2.22 2.54

4. Conclusions

In this paper, taking into consideration the highly time-variable noises in nature and the
limited energy, calculation ability, and communication ability of wireless sensor nodes, the IDMVDR
beamforming method for bird audio enhancement in WASNs was proposed. The continuous spectrum
update algorithm was used to estimate the noise PSD, and the average metropolis weight consensus
algorithm was introduced to fasten the convergence rate of each node herein. To validate the advantages
of the proposed method, the audio enhancement experiments in four WASNs with different network
topologies were simulated in MATLAB. Compared with DDSB and DMVDR, the average MSE, SegSNR,
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and PESQ of the enhanced signals obtained by the proposed method were best. Additionally, the
proposed algorithm presented a faster convergence rate, which provides the capability of reducing the
iteration time and communication cost of the network. Thanks to the above better performances, the
proposed IDMVDR method is more suitable for practical utilization in WASNs with variable topology.
Through the proposed method, better quality bird audio files can be achieved in bird audio monitoring,
which is more advantageous for improving the accuracy of bird species identification. However, there
was a simplifying assumption in our current research: only one bird audio source was considered.
In nature, there is always more than one bird singing or vocalizing at the same time. In this complex
situation, we need to do further research on audio enhancement.
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