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Abstract: More than 55% of porcelain insulators installed throughout Korea have exceeded their
service life. Hence, utilities are extremely interested in determining the robustness of insulators in their
systems. In this study, the identification of the peak ranges in the main natural modes by frequency
response analysis, the principal component analysis (PCA) method by feature extraction in the time
and frequency domains for the damage detection of porcelain insulators are investigated; among
these, the PCA method, which utilizes frequency response data, is proposed for defect classification.
The 67 porcelain insulators are secured as specimens from 154 kV transmission towers installed in
various parts of Korea; their main materials are cristobalite and alumina. In these specimens, it is
observed that the three types of damage, such as porcelain damage, cap damage, and internal damage,
are those that are typically found in actual sites. Accordingly, the use of two eigenvectors (moments of
real value and moments of imaginary value) considerably aids in the analysis of principal components.
With the frequency response data, the material and damage types are found to be distinguishable.
The classification accuracy is increased by including the third largest eigenvector (area of real value)
in three-dimensional analysis. By employing frequency response data, the PCA method provides
useful information for assessing the integrity of porcelain insulators; it may be used as basis for future
machine learning applications.

Keywords: porcelain insulator; frequency response analysis; feature extraction; principal component
analysis; damage detection; defect classification

1. Introduction

With the ever-increasing power demand as a result of modern industrial development, high-voltage
transmission lines are required to transmit large amounts of electricity; consequently, this raises the
demand for high levels of insulation for power lines. Moreover, although composite insulators
have been developed in recent years, porcelain insulators remain in use in extremely high-voltage
transmission applications in Korea.

Porcelain insulators are devices for mechanically securing and electrically isolating power lines
in live transmission towers. They perform an important function in determining the reliability of
transmission lines, as well as ensuring that insulation intervals are provided between transmission
towers and transmission lines [1].

Of the total 1,223,538 porcelain insulators (manufactured by foreign companies) used in the 154 kV
transmission lines throughout Korea, approximately 65% or 797,659 have exceeded their 30-year service
life [2]. Although there is no immediate degradation in their insulation performance or mechanical
failure as a result of exceeding their service life, utilities are concerned about aging insulators because
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these assets are key factors in the reliability of the power system. Hence, utilities prefer fast and
accurate methods for detecting insulator defects.

In the past, insulator damage has been primarily investigated from an electrical standpoint;
however, with this approach, mechanical conditions are difficult to measure. For example, one of the
most commonly used methods is the insulation resistance measurement, in which each insulator in the
string is tested by the continuous application of high voltage. With this technique, the resistance of
the insulator is obtained by simply dividing the DC voltage applied to the insulator by the sum of
the charging current and leakage current generated [3]. Another technique that is used by a number
of utilities is based on the principle of electric field measurement. When the insulator has an electric
fault or low level of insulation capacity, the axial and radial distributions along the insulator of
the surrounding electric field produce distortion; the foregoing field condition is then detected and
compared with that of the non-fault standard electric field. If no distinct difference is observed, then
the insulator is judged normal; otherwise, it is deemed defective [4–6].

In order to detect the mechanical defects of insulators, investigation is underway to classify
fault-state by various techniques, such as ultrasonic wave method with contact-type ultrasonic probes [7],
noise measurement method using contactless microphones [8], and temperature measurement method
using infrared cameras [9]. In addition, small damage inside the insulator is detected with high accuracy
using radiation such as CT (Computed Tomography) and MRI (Magnetic Resonance Imaging) [10]. In
recent years, a method of detecting defects in appearance through imaging of an insulator using an
unmanned aerial vehicle (UAV) has been studied [11]. However, most of these methods are significantly
influenced by environmental conditions, such as seasons, weather, illumination, temperature, humidity,
and solar flux [3,12–14]. The use of ultrasonic testing also has its limitations: It is problematic and
time consuming to scan the entire surface [7]; using radiation is a problem in test time and cost, and
there is a high risk in the test method [10]; and using UAV is easy, but it can only detect insulators
breakdown [11].

In this study, the frequency response function (FRF) method is employed to facilitate mechanical
damage measurements and minimize the influence of the surrounding environment in such
measurements. In the field of machinery, frequency response analysis (FRA) using FRF is mainly used
for setting the resonant frequency of automotive frames [15]. In the field of electricity, it is employed in
diagnosing internal abnormalities of the winding and fault of core earths within power transformers to
assess system integrity [16–20]. In the field of civil engineering, FRA is used to estimate the locations
and severities of structural damage as part of structural health monitoring [21].

Based on the FRA used in these various fields, a large amount of data may be involved; accordingly,
it is necessary to reduce the amount of data while retaining the principal characteristics.

The principal component analysis (PCA) method is applied as a technique to test multiple objects
or to analyze numerous results obtained from different locations. PCA has been found effective in
identifying trends in analysis and results involving large amounts of data [22–26].

In this study, three typical types of defects in the porcelain insulators are investigated by PCA.
Frequency response analysis and principal component analysis based on frequency response signals
are presented in order to distinguish the characteristics of intact and damaged insulators from the
collected data.

2. Materials and Methods

2.1. Test Specimen

The main materials of the porcelain insulator used in the experiment are cristobalite and alumina.
In this study, the aim was to identify the damage type of porcelain insulators for cristobalite material. In
addition, the insulators with alumina were used to confirm the possibility of material separation with
cristobalite. A total of 67 specimens were tested: 47 were cristobalite and 20 were alumina. Moreover,
to study damage, 57 were intact specimens, 4 had damaged porcelain, 3 had damaged caps, and 3
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had artificial internal damage as presented in Table 1. Thus, three types of defects were selected for
this study.

Table 1. Classification of specimens according to material and defect.

Category Cristobalite Alumina Sum

Total 47 20 67

Intact 37 20 57

Damage
type

Sub Total 10 - 10

Porcelain Defect 4 - 4

Cap Defect 3 - 3

Internal defect 3 - 3

First, in the case of insulators with damaged porcelain, there were specimens with intentionally
broken discs and others had radial cracks caused by lightning.

Second, if the cap was damaged, then it could be regarded as damage in the bracket because of
persistent fatigue or sudden increase in tensile load.

Third, internal damage in insulators can mimic cracks that can occur inside the porcelain because
of high stresses that cannot be visually confirmed; such cracks are generated during the insulator
manufacturing process or under overvoltage conditions.

2.2. Frequency Response Function (FRF)

The test specimens were manufactured by the NGK insulators, Ltd. in Japan; it is difficult to
verify the exact properties of porcelain and cement because of various variables. Consequently, there is
a limit in verifying the theoretical FRFs. The FRF is calculated by Equation (1) using experimental
data [27]; it is the relationship between the power spectral density, Pxx(f), of the signal measured by the
impact hammer, and the signal cross power spectral density, Pxy(f), measured by the accelerometer:

FRF = Pxy(f)/Pxx(f). (1)

2.3. Principal Component Analysis (PCA)

The principal component analysis is one of the statistical techniques that simplify datasets. This
was proposed by Pearson in 1901 as a problem in geometric optimization to determine a plane that best
fits n-dimensional space in the concept of least squares [23]; it was subsequently proposed by Hotelling
in 1936. In the analysis of the correlation between two sets of variables, the lower independent variables
that determine the variation of the original n variables are called components.

The most modern PCA theory was established as follows. PCA is a linear transformation that
converts data for a new coordinate system. The new variable set, which is the main variable, is a linear
function of the original variable and has no correlation; the largest variance because of data projection
appears in that direction. The first vector has the first largest variance, and the second vector has the
second largest variance [25]. This can be achieved by obtaining a covariance matrix for the entire
dataset and calculating the eigenvectors and eigenvalues of the covariance matrix; thereafter, these are
sorted according to decreasing eigenvalues. The procedure is illustrated in Figure 1 [26]. However,
PCA bias is not always appropriate; actually, a vector with a low variance may be highly predictive.
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Figure 1. Visualized steps in calculating principal component analysis (PCA) space using
covariance matrix.

PCA using the covariance matrix calculation by extracted features, as shown in Figure 1, is
performed as follows [26].

Given that a feature data matrix (X = [x1, x2, . . . , xN]) has a total number of N samples, and xi
represents the ‘i’th sample, calculate the mean of all samples using the following:

µ =
1
N

∑N

i=1
xi. (2)

The deviation (D) is calculated by subtracting the mean (µ) from all samples as follows:

D = {d1, d2, . . . , dN} =
N∑

i=1

xi − µ. (3)

The covariance matrix (Σ) is calculated by the following:∑
=

1
N − 1

D ∗DT. (4)

Calculate the eigenvectors (V) and eigenvalues (λ) of the covariance matrix (
∑

). Thereafter, sort
the eigenvectors according to their corresponding eigenvalues.
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Select the eigenvectors that have the largest eigenvalues, W = {v1, . . . , vk}; the use of selected
eigenvectors (W) could represent the projection space of PCA. All samples could be projected on the
lower dimensional space of PCA (V) by Y = WT

∗ D.

2.4. Test Methods

In order to calculate the FRF experimentally, it is necessary to measure the experimental values
of the impact and response energy. The configuration of the experimental equipment for the FRF
measurement is shown in Figure 2: (a) The impact hammer (PCB 086C03) (PCB Piezotronics, Inc.,
Depew, NY, USA) measures the impact energy in the test specimen; (b) the accelerometer (PCB 208C05)
(PCB Piezotronics, Inc., Depew, NY, USA) measures responses that depend on the test specimen;
(c) signal conditioning (PCB 482C16) (PCB Piezotronics, Inc., Depew, NY, USA); and (d) DAQ (NI
PXIe–6366) (National Instruments Co., Austin, TX, USA) are employed to collect data from the
test apparatus.

The measurement program stores data at a sampling rate of 500 kS/sec using NI LabVIEW
SignalExpress (National Instruments Co., Austin, TX, USA). Here, because the stored data are values
in the time domain, it is transformed into the frequency domain using the MATLAB signal process
toolbox (MathWorks, Inc., Natick, MA, USA), and the FRF is obtained using Equation (1). Through the
obtained FRF, the natural frequency and FRF waveform are analyzed according to the damage types of
porcelain insulators.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 5 of 17 

Select the eigenvectors that have the largest eigenvalues, W = {v1, …, vk}; the use of selected 
eigenvectors (W) could represent the projection space of PCA. All samples could be projected on the 
lower dimensional space of PCA (V) by Y = WT * D. 

2.4. Test Methods 

In order to calculate the FRF experimentally, it is necessary to measure the experimental values 
of the impact and response energy. The configuration of the experimental equipment for the FRF 
measurement is shown in Figure 2: (a) The impact hammer (PCB 086C03) (PCB Piezotronics, Inc., 
Depew, NY, USA)  measures the impact energy in the test specimen; (b) the accelerometer (PCB 
208C05) (PCB Piezotronics, Inc., Depew, NY, USA) measures responses that depend on the test 
specimen; (c) signal conditioning (PCB 482C16) (PCB Piezotronics, Inc., Depew, NY, USA); and (d) 
DAQ (NI PXIe – 6366) (National Instruments Co., Austin, TX, USA) are employed to collect data from 
the test apparatus. 

The measurement program stores data at a sampling rate of 500 kS/sec using NI LabVIEW 
SignalExpress (National Instruments Co., Austin, TX, USA). Here, because the stored data are values 
in the time domain, it is transformed into the frequency domain using the MATLAB signal process 
toolbox (MathWorks, Inc., Natick, MA, USA), and the FRF is obtained using Equation (1). Through 
the obtained FRF, the natural frequency and FRF waveform are analyzed according to the damage 
types of porcelain insulators. 

 
Figure 2. Experimental setup for frequency response function measurement of porcelain insulator. (a) 
Impact hammer; (b) accelerometer; (c) signal conditioner; (d) DAQ; (e) data visualization. 

3. Results and Discussion 

3.1. Basic Experiment Analysis and Results 

In order to select the sensor and impact position, which can grasp the dynamic behavior of the 
porcelain insulator, four experimental conditions were set up, as listed in Table 2; the hammer and 
sensor positions and the FRF results are shown in Figure 3. It was found that the natural mode 
obtained from Type 2 was the most visible, and its average value through the five experiments was 
also the most consistent. 

Table 2. Type according to impact hammer and sensor position. 
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(a) Impact hammer; (b) accelerometer; (c) signal conditioner; (d) DAQ; (e) data visualization.

3. Results and Discussion

3.1. Basic Experiment Analysis and Results

In order to select the sensor and impact position, which can grasp the dynamic behavior of the
porcelain insulator, four experimental conditions were set up, as listed in Table 2; the hammer and
sensor positions and the FRF results are shown in Figure 3. It was found that the natural mode obtained
from Type 2 was the most visible, and its average value through the five experiments was also the
most consistent.
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Table 2. Type according to impact hammer and sensor position.

Type Impact Sensor

Type 1 Porcelain Cap

Type 2 Porcelain Porcelain

Type 3 Cap Cap

Type 4 Cap Porcelain

Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 17 

Type Impact Sensor 
Type 1 Porcelain Cap 
Type 2 Porcelain Porcelain 
Type 3 Cap Cap 
Type 4 Cap Porcelain 

 

Figure 3. Frequency response function (FRF) results according to impact and sensor position. 

In order to ensure data reliability, an accelerometer was installed in the porcelain part; thereafter, 
as indicated for type 2, the side of the porcelain part was struck with an impact hammer. Figure 4 
shows a graph of the frequency response of the mean and five experimental results at the same 
location. 

At frequencies less than 5 kHz, the five experimental and average values agreed. At frequencies 
greater than 5 kHz, the natural frequencies were identical; however, the waveforms among the 
natural modes were slightly different. 

 
Figure 4. FRF results of five experimental and average values. 

After confirming the consistency of experimental results, the frequency response of the intact 
insulator was analyzed. As mentioned above, porcelain insulators used in the 154 kV transmission 

Figure 3. Frequency response function (FRF) results according to impact and sensor position.

In order to ensure data reliability, an accelerometer was installed in the porcelain part; thereafter,
as indicated for type 2, the side of the porcelain part was struck with an impact hammer. Figure 4
shows a graph of the frequency response of the mean and five experimental results at the same location.
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Figure 4. FRF results of five experimental and average values.

At frequencies less than 5 kHz, the five experimental and average values agreed. At frequencies
greater than 5 kHz, the natural frequencies were identical; however, the waveforms among the natural
modes were slightly different.
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After confirming the consistency of experimental results, the frequency response of the intact
insulator was analyzed. As mentioned above, porcelain insulators used in the 154 kV transmission
towers in Korea are combined with cristobalite and alumina materials; thus, basic analysis was
necessary to distinguish between the two materials.

The frequency response of the intact porcelain insulator of the two materials is shown in Figure 5;
four natural modes appeared below 5 kHz, and four appeared between 5 and 10 kHz in both materials.
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In the first mode, the alumina exhibited a frequency of approximately 100 Hz higher than that in
cristobalite; the frequency difference gradually increased in the subsequent modes. Accordingly, the
two materials could be distinguished based on the difference in positions among the natural modes, as
shown by the basic frequency response graph.

Porcelain insulators undergo several manual processes during manufacture that may introduce
uncertainties; uncertainties are also introduced by cement and porcelain materials. Because specimens
are manufactured in different locations, installation sites, and service periods, the natural frequencies
may change. Accordingly, experiments were conducted to set the frequency range of the natural
modes of the intact porcelain insulators before measuring and comparing them with those of
damaged insulators.

Table 3 shows min, max, frequency average, standard deviation values by the peaks of the natural
modes (modes 1–4) of the cristobalite and alumina insulators. It can be observed that there are
differences in the natural mode frequencies among the 15 intact insulators. In the case of cristobalite,
the minimum and maximum differences of 100 and 190 Hz were generated, respectively; for alumina,
the minimum and maximum differences were 80 and 140 Hz, respectively. Similar differences were
observed in natural modes 4–8.

Table 3. Range of natural frequency according to materials.

Mode
Cristobalite Alumina

Frequency,
Min

Frequency,
Max

Frequency,
Average

Standard
Deviation

Frequency,
Min

Frequency,
Max

Frequency,
Average

Standard
Deviation

1 1920 2040 1986 28.0 2100 2180 2141 22.5

2 2880 3000 2937 31.7 3040 3140 3098 24.7

3 3360 3460 3408 32.5 3580 3660 3616 20.9

4 3940 4100 4022 43.1 4280 4420 4350 38.6
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3.2. Frequency Response Analysis Results

A frequency response analysis of damaged cristobalite specimens was conducted to distinguish
between normal and damaged specimens.

In the case of a damaged insulator, the frequency of the natural mode may change because of
change in mass, inner voids, non-adhesion of interface, or cracked porcelain; the magnitude of the
response energy may change because of variation in attenuation. Accordingly, the specimens were
analyzed according to damage type.

The frequency response graphs of intact and defective porcelain insulators are presented in
Figure 6. The frequency response of the damaged and cracked porcelain samples was significantly
different compared with that of the intact sample. The broken porcelain discs (A-1, A-2, A-3) lost
eight natural mode characteristics that were observed in the intact specimens; they dissipated most
of the energy within the 5 kHz frequency. In the porcelain disc with crack (A-4), all natural modes
disappeared, and a new mode occurred at low frequencies. In the case of damaged porcelain, porcelain
disc cracking was judged to have a greater effect on resonance than the broken porcelain disc.
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The frequency response of cap damage shown Figure 7 was maintained in the eight natural modes
observed in the intact frequency response. However, a new mode occurred near the 1 kHz frequency;
this mode appeared in all three cap-damaged specimens. In addition, the second and third modes
moved to a lower frequency, which was found to be significantly outside the original mode range of
the previous set.
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Figure 7. Cap defective samples and FRF results.

The internally damaged specimen was fabricated by placing a normal ceramic insulator in
insulating oil and then applying a commercial frequency voltage. This applied voltage was raised as
quickly as possible to the insulated failure voltage between 175 and 190 kV (minimum and maximum,
respectively) as confirmed by an instrument that measured the voltage [28].

A frequency response graph was plotted for each of the three test specimens that had been
subjected to the commercial frequency voltage test but with no apparent damage to the appearance of
the insulator, as shown in Figure 8.

The FRF of C-1 and C-2 exhibited eight unique modes, a new mode occurred near 1 kHz, and a
second mode moved to a lower frequency. This result is the same as the FRF result of the cap damage
test specimen; it is deduced that the two test specimens were damaged inside the cap.

Different from these two cases, no new mode occurred in the case of C-3 test specimens. However,
the second and third modes moved the most to the lower frequencies, and the mode near the 5 kHz
frequency disappeared. Because the disappearance of the natural mode was similar to that in the FRF
result of porcelain damage, it was expected that considerable damage had occurred inside the porcelain.

In the frequency response graph, several peaks, waveforms, and frequency range analyses of
natural modes were conducted; characteristics such as extinction, generation, and movement of natural
modes were found to vary depending on the type of damage, and internal damage could be estimated
by contrasting their characteristics.
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3.3. Principal Component Analysis Results

The extraction of characteristics for the analysis of the main component was performed from two
perspectives: Time data and frequency response data. As an advantage over the frequency response
data analysis, the time-data analysis does not require energy in the use of the impact hammer [29].

Various characteristics that can be calculated using time data were considered to set up the basic
matrix. The features extracted according to the procedure in Figure 9 were employed in the default
matrix; this means that 11 features were derived for each sample of porcelain insulators.
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The entropy of time data was computed and used as one of the features. Here, entropy pertains to
the Shannon entropy of discrete distribution; it is a measure of the uncertainty or disorder within a
system. A signal that is more chaotic generates a larger value of entropy and vice versa; the entropy
(H) of an entire signal, Xi [x1, x2, . . . , xn], is given by Equation (5):

H = −xii
∑

Xi log(xi). (5)

Skewness measures the degree of asymmetry with respect to the sample mean; in a normal
distribution, skewness is zero. The skewness (S) of a discrete signal, x, is defined by Equation (6):

S =
E(xi − µ)

3

σ3 . (6)

The kurtosis (K) of a discrete distribution function, Xi, measures how peaky the distribution is
with respect to the normal distribution. It is mathematically given by Equation (7):

K =
E(xi − µ)

4

σ4
. (7)

The basic matrix with 11 feature values for each of the 67 samples was first assembled. Thereafter,
the principal component analysis procedure in Figure 1 was followed.

Through PCA, it was found that the vector with the greatest contribution of data variances was
kurtosis (99.74%), second was average (0.15%), and third was skewness (0.10%). The x-axis coordinates
were multiplied by the largest variance, PC1 (kurtosis), and the y-axis coordinates were multiplied
by the second largest variance, PC2 (average); these were two-dimensionally plotted, as shown in
Figure 10.
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The two-dimensional graph analysis of all data using the largest PC1 and PC2 showed that three
out of the four damaged porcelain data exhibited considerable differences from other data in the
negative direction of PC1. However, this two-dimensional classification was ambiguous depending
on the damage of the cap, internal damage, and material. Therefore, the analysis was performed, as
shown in Figure 11, using the third vector for further analysis.
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One set of porcelain damage data that was close to the normal cluster range on a two-dimensional
graph differed in the normal cluster range and z-axis direction; this allowed for differentiation in the
three-dimensional graph. Moreover, it was found that instead of the intact cristobalite data, the intact
alumina data were distributed upward in the z-axis direction. However, cap damage and internal
damage data were still within the normal data distribution.

The principal component analysis using the time data showed that porcelain damage and material
were distinguishable in the three-dimensional graph; however, it was difficult to distinguish between
gold and internal damage. To distinguish between these two, new characteristics were derived and
analyzed from the frequency domain.

The characteristic extraction of frequency response was based on the frequency response data
shown in Figures 6–8. The real and imaginary values were set to be the basic values according to the
procedure in Figure 12; each of the two values extracted five characteristics for a total of 10 features.
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In Figure 12 and Equation (8), area (A) represents the lower area of the frequency response graph
curve; Xi denotes the magnitude at each point of the frequency response data:

A =

∫
f (x)dx =

∑
Xi. (8)

Root mean square (RMS) can be defined for a continuously varying function in terms of an integral
of the squares of the instantaneous values in a cycle:

RMS =

√
1
n

∑n

i=1
X2

i . (9)

The geometrical moment of area is obtained by first dividing the shape of area A into n small
areas; refer to each small random area as ai; hold the arbitrary orthogonal x for this shape, and adjust
the small area ai (xi, yi). The sum of ai × yi for the entire shape is referred to as the primary moment of
section with respect to the x-axis, and is given as follows:

Qx = a1y1 + . . .+ anyn =
∑

(aiyi). (10)

The centroid pertains to the coordinates at which the geometrical moment of area of the cross-section
for the orthogonal coordinate axis is zero at any given section. To obtain the distance from the orthogonal
coordinate axis to the centroid, divide the geometrical moment of area of the section by the area of the
shape, as follows:

x =
Qx

A
. (11)

Because the analysis using time data cannot identify the cap damage and internal damage, an
analysis of the frequency response data limited to cristobalite materials was performed.

Through PCA, the vector with the greatest contribution of data variances was identified as the
moment of real value (98.4%), and the second was the moment of imaginary value (0.10%).

The x-axis coordinates were calculated by PC1 (moment of real value) of the largest variance,
and the y-axis coordinates were calculated by PC2 (moment of imaginary value) of the second largest
variance; these were plotted two-dimensionally, as shown in Figure 13.
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The analysis based on two principal component vectors showed that normal data were clustered
within the range of red ellipse; the damage data showed the following differences. Because porcelain
damage data were located in the negative direction of PC1 and the positive direction of PC2, it was
possible to distinguish these from intact data. Moreover, cap damage data were found to be distributed
in the negative direction of PC2 compared with intact data; hence, it was possible to distinguish these
from intact data.

In the case of internal damage, it was presumed that the interior of the porcelain was damaged
because one data point was located in the negative direction of PC1; it was presumed that the interior of
the cap was damaged because two data points were located in the negative direction of PC2. However,
because one of the cap damage data points was close to the distribution range of normal data, a third
PC vector (area of real value) was employed to perform a three-dimensional analysis, as shown in
Figure 14.
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The three-dimensional graph analysis of the distribution differences between cap damage data
and intact data showed that the former were distributed in the negative direction of PC2 and the latter
in the positive direction of PC3.
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Using the frequency response data, the two-dimensional and three-dimensional analyses of the
newly extracted principal component enabled the distinction among the three types of damage that
were initially set. Data of internal damage could be anticipated as porcelain and cap damage depending
on the distribution location of data.

Finally, principal component analysis was conducted using 67 sets of data to distinguish between
damage and materials as shown in Figure 15. Based on the main component analysis of the total
67 sets of data, it was calculated that the vector with the greatest variance was the moment of real value
(96.70%), and the second vector was the moment of imaginary value (3.29%).

The distribution of cristobalite was the same. Furthermore, data from the intact alumina material
were found to be distributed in the positive direction of PC1 whereas in the cristobalite material there
was a greater variance in PC2.

The PCA results based on the frequency response data using at least two main component vectors
or three main component vectors showed that it was possible to make a distinction between intact and
damaged cristobalite materials and between cristobalite and alumina materials.
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4. Conclusions

Various methods have been applied, such as insulation resistance measurement, field measurement,
temperature measurement, ultrasonic wave method, image analysis, and CT, as conventional methods
for evaluating the integrity of insulators. These methods show high reliability in the assessment
only under certain conditions, and there are significant deviations from the results depending on the
environmental conditions and needs for complicated test equipment. However, the proposed method
has the advantage of being less affected by the surrounding environment and being able to judge
with high sensitivity and accuracy regardless of the types of insulator and damage. However, this
application method also has disadvantages, e.g., it should be applied by proximity to the insulator on
site or by sampling in the laboratory. Furthermore, it requires somewhat complicated interpretation
and an expert to analyze it.

This paper proposes basic FRA, the PCA of time and frequency response data to distinguish
materials and damage type among porcelain insulators. A total of 67 ceramic insulators were collected
from 154 kV transmission towers in various locations, and test specimens were constructed to mimic
three possible defects at the site. Based on the experimental results, the following conclusions can
be drawn:

• Frequency response analysis
The basic frequency response analysis shows that the frequency response function varied

depending on the type of material and whether the insulator was intact or damaged. The frequency
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response of an intact porcelain insulator in cristobalite material was shown in a total of eight natural
modes below 10 kHz; in the case of alumina material, the natural modes were shifted to high frequencies.
Porcelain damage lost some of the natural modes. Cap damage was similar to the intact response;
however, a new natural mode was created in the 1 kHz segment, and the second and third natural
modes were moved to a lower frequency. Internal damage was observed as the disappearance of
natural modes (such as porcelain damage) or the creation of new modes (such as cap damage).

• PCA using time data
Eleven features were extracted using time data. Only porcelain damage was distinguished through

PCA, using kurtosis and average, which are the principal components of a large contribution. With
the use of skewness, porcelain damage and materials could be distinguished; however, there was no
distinction between cap and internal damage.

• PCA using frequency response data
Ten features were extracted using frequency response data. Through the analysis of the

main components, intact, porcelain damage, cap damage, internal damage, and materials were
all distinguishable using the moment of real value with considerable variance and the moment of
imaginary value. If the third vector of the area of real value with a large variance was included, the
distinction became more accurate.

The proposed PCA method requires modification to enhance its accuracy; other optimization
features can be applied to determine the methods required in damage identification. Moreover, it
has to be generalized to be applicable to various cases for easy and fast damage classification. The
foregoing could be areas of future investigations. PCA is expected to perform an important function in
determining damage in porcelain insulators for future machine learning analyses.

Author Contributions: I.H.C., J.A.S., and J.B.K. conceived and designed the experiments; Y.G.Y. and T.K.O.
performed the experiments and analyzed the data; I.H.C. contributed device/analysis tools; Y.G.Y. and T.K.O.
wrote the paper.

Funding: This research was funded by Korea Electric Power Corporation (KEPCO).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Looms, J.S.T. Introduction. In Insulators for High Voltages, 7th ed.; Peter Peregrinus Ltd.: London, UK, 1988;
pp. 1–3.

2. Choi, I.H.; Kim, T.K.; Yoon, Y.B.; Kim, T.Y.; Nguyen, H.T.; Yi, J.S. A Study on the Life-Time Assessment
Ways and Various Failure Types of 154 kV Porcelain Insulators Installed in South Korea. Trans. Electr.
Electron. Mater. 2018, 19, 188–194. [CrossRef]

3. Ostendorp, M. Assessing the integrity and remaining service life of vintage high voltage ceramic insulators.
In Proceedings of the 2003 IEEE 10th International Conference on Transmission and Distribution Construction,
Operation and Live-Line Maintenance, Orlando, FL, USA, 6–10 April 2003; pp. 169–175.

4. Vaillancourt, G.H.; Carignan, S.; Jean, C. Experience with the detection of faulty composite insulators on
high-voltage power lines by the electric field measurement method. IEEE Trans. Power Deliv. 1998, 13,
661–666. [CrossRef]

5. Volat, C.; Jabbari, M.; Farzaneh, M.; Duvillaret, L. New method for in live-line detection of small defects in
composite insulator based on electro-optic E-field sensor. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 194–201.
[CrossRef]

6. Padma, V.; Raghavan, V.S. Analysis of insulation degradation in Insulators using Partial Discharge analysis.
In Proceedings of the 2011 3rd International Conference on Electronics Computer Technology, Kanyakumari,
India, 8–10 April 2011; pp. 110–114.

7. Park, K.C.; Motai, Y.C.; Yoon, J.R. Acoustic fault detection technique for high-power insulators. IEEE Trans.
Ind. Electron. 2017, 64, 9699–9708. [CrossRef]

8. Cherney, E.A.; Amm, D.E. Development and application of a hot-line suspension insulator tester. IEEE Trans.
Power Appar. Syst. 1981, PAS-100, 1525–1528. [CrossRef]

http://dx.doi.org/10.1007/s42341-018-0027-7
http://dx.doi.org/10.1109/61.660958
http://dx.doi.org/10.1109/TDEI.2013.6451358
http://dx.doi.org/10.1109/TIE.2017.2716862
http://dx.doi.org/10.1109/TPAS.1981.316503


Appl. Sci. 2019, 9, 3150 17 of 17

9. Ha, H.; Han, S.; Lee, J. Fault detection on transmission lines using a microphone array and an infrared
thermal imaging camera. IEEE Trans. Instrum. Meas. 2012, 61, 267–275. [CrossRef]

10. Kim, T.Y.; Jeon, S.H.; Lee, Y.J.; Yi, J.S.; Choi, I.H.; Son, J.A.; Choi, C.W. Three-Dimensional Computed
Tomography and Composition Analysis of Porcelain Insulators for 154-kV Power Transmission Lines.
IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 115–119. [CrossRef]

11. Miao, X.R.; Liu, X.Y.; Chen, J.; Zhuang, S.B.; Fan, J.W.; Jiang, H. Insulator Detection in Aerial Images for
Transmission Line Inspection Using Single Shot Multibox Detector. IEEE Access 2019, 7, 9945–9956. [CrossRef]

12. Auckland, D.W.; McGrail, A.J.; Smith, C.D.; Varlow, B.R.; Zhao, J.; Zhu, D. Application of ultrasound to the
inspection of insulation. IEE Proc. Sci. Meas. Technol. 1996, 143, 177–181. [CrossRef]

13. Wong, K.L. Application of the Very-high Frequency (VHF) Method to Ceramic Insulators. IEEE Trans. Dielectr.
Electr. Insulm. 2004, 1, 1057–1064. [CrossRef]

14. Park, J.Y.; Cho, B.H.; Byun, S.H.; Lee, J.K. Development of Robot System for Automatic Cleaning and
Inspection of Live-line Suspension Insulator Strings and Its Application. J. Korean Soc. Precis. Eng. 2007, 24,
66–75.

15. Miletiev, R.; Simeonov, I.; Iontchev, E.; Yordanov, R. Time and frequency analysis of the vehicle suspension
dynamics. Int. J. Syst. Appl. Eng. Dev. 2013, 7, 287–294.

16. Miyazaki, S.; Mizutani, Y.; Taguchi, A.; Murakami, J.; Tsuji, N.; Takashima, M.; Kato, O. Diagnosis Criterion
of Abnormality of Transformer Winding by Frequency Response Analysis (FRA). Electr. Eng. Jpn. 2017, 201,
25–34. [CrossRef]

17. Sano, T.; Miyagi, K. Experimental investigation on FRA diagnosis of transformer faults. IEEJ Trans.
Power Energy 2007, 127, 791–796. [CrossRef]

18. Ryder, S.A. Diagnosing transformer faults using frequency response analysis. IEEE Electr. Insul. Mag. 2003,
19, 16–22. [CrossRef]

19. Christain, J.; Feser, K. Procedures for detecting winding displacements in power transformer by the transfer
function method. IEEE Trans. Power Deliv. 2004, 19, 214–220. [CrossRef]

20. Miyazaki, S.; Mizutani, Y.; Matsumoto, K.; Nakamura, S. On-Site Diagnosis of Transformer Winding by
Frequency Response Analysis. IEEJ Trans. Power Energy 2010, 130, 451–459. [CrossRef]

21. Li, J.C.; Dackermann, U.; Xu, Y.L.; Samali, B. Damage identification in civil engineering structures utilizing
PCA-compressed residual frequency response functions and neural network ensembles. Struct. Control
Health Monit. 2011, 18, 207–226. [CrossRef]

22. Zhang, G.; Tang, L.Q.; Zhou, L.C.; Liu, Z.J.; Liu, Y.P.; Jiang, Z.Y. Principal Component Analysis Method with
Space and Time Windows for Damage Detection. Sensors 2019, 19, 2521. [CrossRef]

23. Pearson, K. On lines and planes of closest fit to systems of points in space. In The London, Edinburgh and
Dublin Philosophical Magazine and Journal of Science, 6th ed.; Taylor and Francis: London, UK, 1901; Volume 2,
pp. 559–572.

24. Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933,
24, 417–441. [CrossRef]

25. Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer Science & Business Media: New York, NY, USA,
2002; pp. 1–27.

26. Tharwat, A. Principal component analysis-a tutorial. IJAPR 2016, 3, 197–240. [CrossRef]
27. Stoica, P.; Moses, R. Introduction to Spectral Analysis, 1st ed.; Prentice Hall: Ann Arbor, MI, USA, 1997;

pp. 52–54.
28. ES (Technical Standards of KEPCO). Testing Methods for Insulators; Korea Electric Power Corporation: Daejeon,

Korea, 2014.
29. Anjum, S.; Jayaram, S.; El-Hag, A.; Naderian, A. Radio frequency (RF) technique for field inspection of

porcelain insulators. In Proceedings of the 2015 IEEE 11th International Conference on the Properties and
Applications of Dielectric Materials (ICPADM), Sydney, NSW, Australia, 19–22 July 2015; pp. 1019–1022.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIM.2011.2159322
http://dx.doi.org/10.1109/TDEI.2018.007553
http://dx.doi.org/10.1109/ACCESS.2019.2891123
http://dx.doi.org/10.1049/ip-smt:19960353
http://dx.doi.org/10.1109/TDEI.2004.1387829
http://dx.doi.org/10.1002/eej.23012
http://dx.doi.org/10.1541/ieejpes.127.791
http://dx.doi.org/10.1109/MEI.2003.1192032
http://dx.doi.org/10.1109/TPWRD.2003.820221
http://dx.doi.org/10.1541/ieejpes.130.451
http://dx.doi.org/10.1002/stc.369
http://dx.doi.org/10.3390/s19112521
http://dx.doi.org/10.1037/h0071325
http://dx.doi.org/10.1504/IJAPR.2016.079733
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Test Specimen 
	Frequency Response Function (FRF) 
	Principal Component Analysis (PCA) 
	Test Methods 

	Results and Discussion 
	Basic Experiment Analysis and Results 
	Frequency Response Analysis Results 
	Principal Component Analysis Results 

	Conclusions 
	References

