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Abstract: Indoor positioning systems (IPS) have been recently adopted by many researchers for their
broad applications in various Internet of Things (IoT) fields such as logistics, health, construction
industries, and security. Received Signal Strength (RSS)-based fingerprinting approaches have been
widely used for positioning inside buildings because they have a distinct advantage of low cost over
other indoor positioning techniques. The signal power RSS is a function of the distance between
the Mobile System (MS) and Access Point (AP), which varies due to the multipath propagation
phenomenon and human body blockage. Furthermore, fingerprinting approaches have several
disadvantages such as labor cost, diversity (in signals and environment), and computational cost.
Eliminating redundancy by ruling out non-informative APs not only reduces the computation time,
but also improves the performance of IPS. In this article, we propose a dimensionality reduction
technique in a multiple service set identifier-based indoor positioning system with Multiple Service
Set Identifiers (MSSIDs), which means that each AP can be configured to transmit N signals instead
of one signal, to serve different kinds of clients simultaneously. Therefore, we investigated various
kinds of approaches for the selection of informative APs such as spatial variance, strongest APs,
and random selection. These approaches were tested using two clustering techniques including
K-means and Fuzzy C-means. Performance evaluation was focused on two elements, the number
of informative APs versus the accuracy of the proposed system. To assess the proposed system,
real data was acquired from within the College of Engineering and Applied Sciences (CEAS) at the
Western Michigan University (WMU) building. The results exhibit the superiority of fused Multiple
Service Set Identifiers (MSSID) performance over the single SSID. Moreover, the results report that
the proposed system achieves a positioning accuracy <0.85 m over 3000 m2, with an accumulative
density function (CDF) of 88% with a distance error of 2 m.

Keywords: Indoor Positioning System; WLAN; C-Means; K-Means; Access Point Selection;
RSS-fingerprint

1. Introduction

A precise real-time indoor positioning system has recently attracted considerable attention
from researchers due to location-aware services, which include patient location monitoring, mobile
advertising, tag tracking, and robot guiding [1–5]. Unlike Global Positioning Systems (GPS), that
require line of sight (LOS) transmission paths, indoor positioning faces many challenges due to
changeable radio propagation environments inside the buildings [6]. Due to walls, celling, movement
of people or furniture, and obstacles inside the buildings, indoor radio propagation is affected by
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multipath fading, shadowing, and delay distortion [7]. In addition to high-accuracy requirements,
indoor position systems should also estimate the position of an object quickly with a light algorithm
and low computational cost.

Many indoor positioning techniques have been promoted such as Wireless local Area Network
(WLAN), Ultrasound, Lighting, Radio Frequency Identification (RFID), and Bluetooth. WLAN-based
indoor positioning systems have been widely employed for IPS without additional cost because
WLAN infrastructures are necessary in large buildings like airports, hospitals, universities,
and museums. Positioning based on RSS can be divided into two models: signal propagation
models, and fingerprint-based location models. The requirements of the first model for indoor
propagation loss is relatively high, so this article focuses on the second model. Although the second
model has been relatively mature, the WLAN-based fingerprinting technique can be considered as an
important technique used to estimate the position of a target.

In general, fingerprinting-based positioning involves two phases: an offline and an online phase [8].
In the offline phase, the area of interest is divided into grid points, which are called reference points
(RPs). Each RPi is labeled by Cartesian coordinates (xi,yi). The MS at each RPi collects the RSS readings
from various APs, which are deployed in the Area of Interest (AOI). In the online phase, the MS records
the RSS vector at an unknown location and pre-matches with the stored RM to determine the closest
RPs to the MS by using Euclidian distance, which is the simplest method to estimate the position of MS.

Fortunately, Wi-Fi users are able to measure the RSS from various APs, which are deployed in
the AOI. Therefore, location fingerprints are typically vectors of RSS of different APs, and the length
of such vectors can be grown to include all the detectable APs in the AOI. Unfortunately, not all
these APs can contribute positively to positioning, the majority of them are redundant. Therefore,
including all these APs in the RSS vector results in superfluous computational costs, and in some cases,
causes a deterioration in the accuracy [9]. Recently, most APs that are deployed in large buildings,
use Multiple Service Set Identifier configurations, which means that each AP is configured to transmit
N signals instead of one signal. MSSID is used in most buildings to advertise different WLANs where
each WLAN has a different class of clients, and each class requires different keys, firewalls, privacy,
and speeds [10]. This technique leads to increasing redundancy in the calculation process and a
decrease in the accuracy of systems when each SSID is considered as a single AP [11].

In addition to the redundancy of APs, the accuracy of fingerprinting-based techniques is severely
affected by the multipath issue and radio interference. Therefore, it is very important for any IPS
designer to know the statistical properties of RSSI signals. Fluctuation in RSS signals due to the
multipath phenomenon is an inherent issue in fingerprinting-based techniques. There are many
solutions to mitigate the effect of a multipath issue in offline and online phases including the use of
Kalman filter, averaging, and histograms [12–14]. The efforts in the online phase required many RSS
time samples to be measured in the same position to reduce the effect of the multipath phenomenon.
This kind of solution causes IPS to be slow and as such, is not appropriate for the tracking process.

The main contributions of this article include: (1) Study the characteristics of Multiple SSID signals
in 2.4 GHz, which can be configured on the same AP. (2) Propose a new algorithm based on MSSIDs to
reduce the effect of multi-path issues by fusing MSSIDs signals, and computational costs by selecting
informative APs. (3) Study the effect of informative AP numbers in K-means and Fuzzy C-means
clustering technique. (4) Compare the proposed system performance with state-of-the-art methods.

The rest of this article is arranged as follows: the related works are reviewed in Section 2. The
fingerprinting technique is illustrated in Section 3. MSSID and the characteristics of MSSID signals
are described in Section 4. The proposed system and measurement setup technique are illustrated in
Sections 5 and 6, respectively. Section 7 shows the results and the discussion. In Section 8, the conclusion
and future work are discussed.
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2. Related Work

In the literature of indoor positioning, there are various taxonomies. However, there is a common
classification, which falls into two separate categories: Radio Frequency (RF)-based techniques,
and non-RF-based techniques, which use another kind of sensors. WLAN, RFID, and Bluetooth are
among the RF-based techniques. Audio, visual, ultra-sonic, Infra-Red (IR), laser sensors, and magnetic
field are considered as non-RF-based methods [15–18]. In this article, we mainly focus on RF-based
techniques. Table 1 reports the main RF techniques that are utilized in indoor positioning.

Recently, many types of research have mainly focused on Wi-Fi fingerprint-based IPS
challenges, such as collecting fingerprinting signals and how these signals are processed through IPS
techniques [19]. Dimensionality reduction is also an important challenge and has been studied through
different techniques.

Table 1. RF Position Techniques [19].

Technique Advantage Disadvantage

Cell of origin Base stations are available and
never move Highly inaccurate

AoA High accuracy Requires additional hardware
ADoA High accuracy Requires additional hardware

ToA High accuracy Requires additional hardware
synchronization issue

TDoA High accuracy Requires additional hardware
synchronization issues

Fingerprinting- based location High accuracy Computational and labor costs

Generally, there is a tradeoff between dimensionality reduction and the accuracy of classifiers [20].
In the online phase, the reduction of computational costs for Wi-Fi fingerprint-based IPS is very crucial
in a real-time tracking system because large data require a long time to be processed. The roaming of a
MS inside the building makes IPS unable to track the MS’s location inside the building. Therefore,
working on designing a light algorithm with low computational cost makes IPS more feasible. In this
section, we review key techniques for positioning, which are used in dimensionality reduction.

Fang et al. [21] proposed a new approach for a Wi-Fi-based location fingerprinting system.
The proposed method transforms RSS signals into Principal Components (PCs) intelligently, such
that the effect of all APs is considered. Instead of the selection of APs, the proposed technique
replaces the RSS of APs by a subset of PCs to improve accuracy and reduce the computational cost
as well. To evaluate the proposed system, a realistic WLAN environment was chosen to conduct the
experimental work. The results exhibit that the mean distance error was eliminated by 33.75% and the
complexity by 40%, as compared to traditional approaches.

Li et al. [22] proposed a novel technique for a WLAN-based location fingerprinting system. In the
offline phase, the AOI was clustered into sub regions by fuzzy C-means and then the useful APs were
selected to minimize the dimension of the fingerprint. In the online phase, the proposed system used
a NN (Nearest Neighbor) method to choose subareas and to compute the coordinate of the target
location by using relative distance fuzzy localization (RDFL) algorithms. The results showed the ability
of the proposed system to reduce calculation time and improve positioning accuracy.

Jiang et al. [23] implemented a WLAN- fingerprinting-based localization method, which is based
on selecting the important APs. The APs with the strongest RSS power were selected as the informative
APs. The results showed that the proposed system exhibits superior performance as compared with
traditional techniques.

Abusara et al. [24] modified a method, called Fast Orthogonal Search (FOS) method, to determine
the singularity of RSS values, which are measured from various APs at each location point. In order to
evaluate the modified FOS method, two important factors were taken into consideration, the amount



Appl. Sci. 2019, 9, 3137 4 of 22

of reduction, and the accuracy of IPS. The results with real RSS values measurement show that the
modified FOS performance is better than the traditional FOS implementation.

Chen et al. [25] presented a novel algorithm, which is called a clustering and Decision Tree-based
method (CaDet) for intelligent selection of APs in indoor positioning. CaDet is a union of information
theory, clustering analysis, and a decision tree algorithm. By using machine-learning techniques,
the results showed that CaDet is capable of selecting an informative small combination of APs to detect
the user’s location with high accuracy, as compared with traditional techniques.

Kanaris et al. [26] proposed a novel technique for indoor localization based on the cooperation
between IEEE802.11 infrastructure and Bluetooth Low Energy (BLE). BLE is used to confine the location
of the user within a specific subarea that means coarse localization. A new K-Nearest Neighbors
(K-NN) algorithm is utilized to estimate the final user’s location. Due to the use of a fragment of
the initial fingerprint dataset, the results exhibit that the proposed system achieves fast positioning
estimation and improves the accuracy of the proposed system as well.

Feng et al. [27] implemented a novel approach based on compressive sensing (CS) theory and
selection APs to obtain high accuracy. The theory of CS is applicable for accurate IPS using RSS-based
fingerprinting due to the location sparse nature on the map. There are two stages for finding the
location of a user. The first stage is achieved by an Affinity propagation clustering method to reduce
the computational cost and increase accuracy as well. In the second stage, fine positioning is applied
by using the compressive sensing theory. Random and strongest APs selection were used in this article.
The results show that the proposed system leads to robust enhancement in positioning accuracy and
complexity over traditional fingerprinting techniques.

Sanchez et al. [28] proposed an indoor localization methodology based on data fusion and feature
transformation. The methodology is formed by four phases: dataset building, feature fusion, feature
transformation, and classification. Dataset consists of RSS from Wi-Fi AP, orientation from a compass,
and simulated RSS from simulated Light Emitting Diode (LED) lamps. Principal Component is used to
reduce dataset dimensionality and improve computational performance of system. The results exhibit
that the proposed system considerably reduces overall computational cost and provides an acceptable
location accuracy.

Lopez et al. [29] proposed a refinement cycle for an indoor positioning system based on
dimensionality reduction techniques. Several dimensionality reduction techniques have been utilized
to different datasets such as Principal Component Analysis (PCA), Linear Discrimination Analysis
(LDA), and t-Stochastic Neighbor Embedding (t-SNE). Two different visualization methods are defined
to obtain graphical information about the quality of the radio map in terms of overlapping areas
and outliers. The proposed system is evaluated by two kinds of data: dataset, which is measured
by the research group, and standard data. In general, the results show that there are some useful
configurations which can be used to perform the refinement process.

3. Fingerprinting-Based Technique

Because of the unavailability of appropriate radio signal propagation models for indoor
environments, fingerprinting-based location techniques became popular with RADAR [30]. RADAR is
the first fingerprinting-based positioning system, which was developed by Microsoft. Fingerprinting
is a scene analysis method in which location in the environment is associated with a unique signal
parameter. In this article, RSS of different APs, which are deployed for network services, is used
as feature location. In general, the fingerprinting-based technique is divided into two methods:
probabilistic and deterministic methods [31]. In this article, the deterministic method is utilized
because it does not require many RSS measurements [32]. This technique is performed into two phases:

• Offline phase: During this phase, the area of interest (AOI) is partitioned into grid points which
are called reference points (RP). Each RP is labeled on the map by Cartesian coordinates (xi, yi).
The RSS of various APs are recorded for a specific time period (KT), where K is an integer number
which represents the number of samples that are taken at each RP, and T is a time period to



Appl. Sci. 2019, 9, 3137 5 of 22

record the value of RSS at RP. The fingerprint, ϕi, j, of RPj is generated by taking the average of

the RSS signal values from APi for KT period where, ψi, j =
1
K

∑K
a=1ψi, j(aT) | a = 1, 2, . . . . . . , K .

Therefore, the radio map (RM) of the AOI is created by cardinality of the fingerprints, as shown in
Equation (1):

ψ =


ψ1,1
ψ2,1,

ψ1,2
ψ2,2

· · ·
ψ1, M
ψ2,M

...
. . .

...
ψL,1 ψL,2 · · · ψL, M

 (1)

where, L and M represent a number of APs, and a number of RPs in the AOI, respectively.

Althogh the fingerprinting-based technique is an easy method to implement, this method has
many challeges that should be considered when it is done practically. Establishing a site survey RM is
normally a labor-intensive task. However, there are many methods for enhancing the efficiency of the
offline phase. These methods are based on Compressive Sensing (CS) theory [27,33,34] to reconstruct
the RM from a small number of RSS measuremnets instead of survying the entire AOI. Also, a divesity
of MS arises an an important challenge for IPS designers. Most of the existing research assumes that
the collecting of fingerprints of a radio map and online measurements are achieved in the same device.
Practically, this assumption is not true because the training device, which is used to build the radio
map during the offline phase, may be different from the positioning device used during the online
phase. These result in different signal strength patterns across the devices, which could degrade the
accuracy of the positioning system [35]. Hence, the problem of signal pattern variation across diverse
devices should be considered when designing positioning systems.

• Online phase: In this phase, the MS at unknown location records V = (RSS1, RSS2, . . . RSSL)
from different APs in the AOI. This vector V is pre-matched with a RM which is created in the
offline phase to determine the MS’s location. Figure 1 shows the two phases which are used to
estimate MS’s location. The Euclidean distance between V and all RP vectors in the RM utilized to
determine the estimated position, as shown in Equation (2):

Dj = ‖V −ϕ j‖ (2)
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The signal distance vector, Dj, is sorted in ascending order. The first K RPs, which have the
smallest signal distance, are selected to determine the position of MS, p̂ = 1

K
∑K

i=1 pi, where pi represents
the positions of K RPs. The reciprocal of distance, Dj, can be utilized as weights to determine the MS’s
location. This method is called weighted-KNN, where the estimated position, p̂, is computed as shown
in Equation (3):

p̂ =

∑K
i=1

1
Di pi∑K

i=1
1

Di

(3)

4. Multiple Services Set Identifier (MSSIDs) Technique

In the past, a number of separated APs were required to present a multiple services network
in a specific area to deploy for Wi-Fi users. Each AP advertises single SSID on a specific frequency
channel. The raising number of APs in a particular area leads to a channel congestion issue. As a result,
the Wi-Fi service will be inefficient.

Recently, most of the APs are configured to work with MSSID and feature simultaneously, as shown
in Figure 2. MSSID services advertise various SSIDs within one AP instead of a group of separated
APs [10]. This configuration is commonly used to advertise various networks for various kinds of
users, where each kind of user requires different settings to each SSID, such as firewall, key, bandwidth,
privacy, and security. MSSIDs’ technique uses the same frequency channel. In order to avoid a collision
or frame loss, MSSIDs utilizes a Clear Channel Assessment (CCA) protocol [36]. This protocol is used
to investigate the channel state and whether it is used by another SSID. The channel is utilized by
another SSID when the channel is clear. Therefore, the probability that all SSID signals are affected by
the fading issue will be low [11]. In this article, we use this benefit to mitigate the variation of RSS
signals by using a fusion approach for MSSIDs’ signals.
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4.1. Mathematical Model of MSSID

This research aims to reduce the calculation cost of the MSSID-based indoor positioning system
and increase the performance of IPS as well. Accordingly, N RMs (Ψ1, Ψ2, . . . , and ΨN) are generated
as in Equations (4)–(6):

Ψ1 =


SSID1,1,1

SSID2,1,1

SSID1,2,1

SSID2,2,1
· · ·

SSID1,M,1

SSID2,M,1
...

. . .
...

SSIDL,1,1 SSIDL,2,1 · · · SSIDL,M,1

 (4)
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Ψ2 =


SSID1,1,2

SSID2,1,2

SSID1,2,2

SSID2,2,2
· · ·

SSID1,M,2

SSID2,M,2
...

. . .
...

SSIDL,1,2 SSIDL,2,2 · · · SSIDL,M,2

 (5)

ΨN =


SSID1,1,N

SSID2,1,N

SSID1,2,N

SSID2,2,N
· · ·

SSID1,M,N

SSID2,M,N
...

. . .
...

SSIDL,1,N SSIDL,2,N · · · SSIDL,M,N

 (6)

where, L and M represent a number of deployed APs, and a number of RPs in the AOI, respectively.

4.2. Time Samples of MSSID

RSS-based fingerprinting approaches have been widely used for indoor positioning. The behavior
of RSS signals plays an important role in determining the characteristics and nature of location
fingerprints, which are recorded in RM. The RSS is a function of the distance between AP and the user
who receives this signal, and it is mainly affected by the multi-path issue [37]. 5000 RSS samples were
taken at a specific location from AP with 5 SSIDs under the line-of-sight condition. The behavior of
MSSID RSS at a specific location is shown in Figure 3, where 5 SSIDs (SSID1, SSID2, . . . , SSID5) are
configured on the same AP. Figure 3 clearly shows the effect of the multi-path issue on these signals.
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4.3. Time and Spatial Correlation Coefficients of MSSIDs’ Signals

The behavior of N SSIDs’ signals on the same physical AP is nearly identical to the deployment of
N individual APs. In order to investigate the independency of these signals and the similarity over the
AOI, Tables 2 and 3 illustrate the time correlation coefficients of SSIDs’ signals at a specific location,
and the spatial correlation coefficients over the AOI, respectively. In Table 2, the time correlation
coefficients are

∣∣∣Cij
∣∣∣ < 0.05, meaning all these signals are independent and its behaviors are similar to

the behavior of 5 separated APs.
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Table 2. The time correlation coefficient between MSSIDs’ signals at a certain point.

SSID SSID1 SSID2 SSID3 SSID4

SSID2 0.021 - - -
SSID3 0.000 0.013 - -
SSID4 0.012 –0.01 0.045 -
SSID5 –0.012 0.007 0.029 0.012

Table 3. The spatial Correlation coefficient between MSSIDs’ signals over AOI.

SSID SSID1 SSID2 SSID3 SSID4

SSID2 0.98 - - -
SSID3 0.95 0.98 - -
SSID4 0.94 0.98 0.95 -
SSID5 0.97 0.96 0.97 0.94

Table 3 shows the spatial correlation coefficient over the AOI. We can see that these values over
the AOI are close to 1, meaning that all SSIDs’ signals which are deployed on the same AP have a
similar spatial power distribution. Furthermore, Figure 4 shows the heat map for two APs, each with
three SSIDs in different locations on the AOI. From Figure 4 it can be seen that MSSIDs’ signals have
the same fingerprinting on the map. Therefore, the use of MSSID signals leads to an increase in the
redundancy of these signals and a degradation of the IPS’s performance.
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4.4. Path Loss of MSSIDs RSS Signals

The RSS signal value decreases with distance, d, according to the function of the logarithm-distance
path loss model [38]. Figure 5 shows the behavior of MSSIDs’ signals and the mean of these signals
versus distance d. The behavior of the mean of MSSIDs is close to the path loss model with path loss
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exponent (n = 3.5). The fusion of MSSIDs’ signals by averaging them contributes to mitigating the
effect of the multipath issue. Table 4 illustrates that the standard deviation of the RSS signal decreases
with distance d. In addition, the standard deviation of the mean of MSSIDs is less than individual
signals of MSSIDs.

Table 4. The Standard Deviation of MSSID signals versus distance (m).

No. SSID L1 = 2 m L2 = 10 m L3 = 20 m

SSID1 5.1 3 2.2
SSID2 5.5 2.8 2.4
SSID3 4.6 2.7 2.1

MSSIDs 2.6 1.5 1.4
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Most researchers consider each RSS signal to be transmitted from a certain single AP with a unique
Media Access Control (MAC) address. MSSID signals have a unique MAC address for each one but
they are transmitted from the same AP. This article fills in this gap by investigating the behavior of
MSSID signals and designing a classifier based on these signals to improve the performance of IPS.

5. Computational Cost Reduction Methods

In an indoor location system, eliminating redundant APs not only reduces the computation time
of fingerprinting processing, but also enhances the accuracy of IPS. The WLAN-based fingerprinting
technique has built RM for the AOI, where each vector in the RM comes from measuring the RSS of
multiple APs, which are deployed in the AOI. To provide wireless network services for large buildings,
a large number of APs are equipped. Nevertheless, all these APs contribute positively to the positioning
accuracy where the majority are redundant. Therefore, including all detected APs in fingerprinting
vectors leads to a confusing IPS [22]. In addition, the resources, which are equipped on MS, limit even
the IPS use of the server’s assistance to find the user’s location. There are many techniques to reduce
the computational costs for an IPS.

5.1. AP Selection Methods

To ensure high Wi-Fi quality in most large buildings, a large number of APs are deployed.
This large number, L, of APs is greater than what is required to perfectly achieve indoor positioning
estimation. The use of all APs leads to excessive redundancy and possible biased estimation. Thus,
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choosing the informative APs as a subset of L is efficient for reducing computation time and increasing
the accuracy of IPSs. In this article, various kinds of AP selections, such as strongest, random, and stable
APs, are investigated.

5.1.1. Strongest APs

The benefit of selecting the highest power APs is to provide a high probability of coverage over
time. In the online phase, the strongest technique is achieved by selecting K subset of L APs with the
highest power readings from the online RSS vectors, where K < L. The K subset APs with the highest
power readings is created by sorting the online RSS vectors in descending order, then choosing the
top L subset APs [39]. Accordingly, the indices of fingerprints on the RM are sorted to determine the
location of MS.

5.1.2. Fisher Criterion

In this technique, the statistical properties of RM fingerprints are exploited during the offline phase
to choose the informative APs for positioning [40–42]. The time stabilization and spatial discrimination
of each AP across RPs are computed and sorted in descending order. A score is assigned for each AP
separately as Equation (7):

ζi =

∑M
j=1 (ψ

i
j −ψ

i
)

2

1
T−1

∑T
l=1

∑M
j=1 (r

i
j(tl) −ψ

i
j)

2 , i = 1, 2, . . . . . . , L (7)

where, ψ
i
= 1

M
∑M

j=1 ψ
i
j, r represents an instantaneous vector at each RP, M represents a number of RPs

in the RM, and T represents a number of time samples at each RP.

5.1.3. Random Combination

The above two methods select informative APs according to different criteria, but in this method,
the selection of informative AP does not consider the behavior of APs in time or special domains. The
random scheme selects K APs randomly of L APs, and RM is changed to indices of the RSS measured
vector accordingly [43]. As a result, this method needs less computation complexity during the online
phase, and it does not need a large number of RSS time samples.

5.1.4. Stable AP Method

This metric is based on the behavior of APs in a time domain. The APs with the highest time
variance over the AOI are excluded. In the offline phase, K APs with low time variance over the AOI
are selected from L APs. In the online phase, the measured vector, V, is sorted accordingly to determine
the MS’s position. The stability of APs ζi can be calculated as shown in Equation (8):

ζi =
1

T − 1

∑T

l=1

∑M

j=1
(ri

j(tl) −ψ
i
j)

2
(8)

In the literature, we can find other techniques for the selection of Aps, such as Bhattacharyya
distance, Information Potential (IP), Information Gain (Info-Gain), Entropy Maximization, and Group
Discrimination (GD) [22].

5.2. Clustering Techniques

The computational cost for determining a position is directly proportional to the number of RPs.
Therefore, a coarse positioning is introduced in the online phase to confine the positioning process
within a small area. The clustering process is achieved in an offline phase where the RPs of the AOI are
classified into small groups which are named clusters. Each cluster has a representative which is called
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an exemplar to represent RPs subset of cluster in an online phase. In this article, K-means and fuzzy
C-means are discussed in detail.

5.2.1. K-Means Clustering

In general, the K-means clustering method divides the AOI into subareas to confine the location
process within a small area instead of an entire area [44]. Therefore, the computational cost is divided by
K, where K represents the number of clusters. In this technique, the center point of a cluster is determined
by minimizing the signal distance between exemplar Cj and the members of the same clusters.

Given a set of input patterns, X =
(
x1, . . . , x j, . . . ., xM

)
, where M represents number of FP, and xj =(

x j1, . . . . . . , x jL
)
∈ RL, we have C = (C1, . . . . . . ., Ck) K ≤ M exemplars for AOI. By minimizing an

objective function, J, in this case a squared error function, the objective function is given in Equation (9):

J =
K∑

j=1

M∑
i=1

‖r j
i −C j‖

2 (9)

where, ‖r j
i −C j‖ represents a measured distance between data points r j

i and exemplar of cluster C j, it is
an indicator of the distance of the n data points from their respective cluster centers. Figure 6 shows
the distribution of FPs on K clusters C = (C1, . . . . . . ., Ck). The steps of K-means are summarized in
Algorithm 1.

Algorithm 1. K-means clustering

Input:
Reference Points of Area of Interest (RM), K (number of clusters)

Output:
Exemplars vectors C = (C1, . . . . . . ., Ck), each RP is designated to a certain cluster

Mechanism of K-means

1- Initialize K centroid points
2- Compute the distances between RPs and centroids.
3- Assign each RP to a cluster.
4- Compute the cluster centroid again when all RPs are assigned,
5- Repeat steps 2, 3, and 4 until there is no change for each cluster.
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5.2.2. Fuzzy C-Means Clustering

Unlike the K-means clustering technique, the membership of each RP is not crisp in the fuzzy
C-means clustering approach [45]. Fuzzy C-means clustering can be divided using AOI into K subsets
as shown in Figure 7 with clustering centers C = (C1, . . . , Ck) ε RM that verify the minimum cost
function, which is a sum of the squared error between the RP’s fingerprint and the clustering center.
Its formula is given in Equation (10) as follows:

Jm =
M∑

i=1

K∑
j=1

um
ij d

2
i j , 1 ≤ m < ∞ (10)

where, m is greater than 1, and ui j is the degree of membership of RPi in the cluster j, and
∑K

i=1 ui j = 1.
The di j = ‖xi − c j‖

2 represents the Euclidean distance between the PRi fingerprint and the vector of
cluster center Cj. The value of ui j is randomly chosen between (0–1). Fuzzy partition is achieved
through an iterative optimization shown in Equation (10). In order to find ui j and Cj, the Equation (11)
and Equation (12) should be applied:

ui j =
1∑K

k=1

(
‖xi−c j‖

‖xi−ck‖

) 2
m−1

(11)

c j =

∑M
i=1 um

ij .xi∑M
i=1 um

ij

(12)

The iteration will be stopped when maxi j =
(∣∣∣ui j

(k+1)
− ui j

(k)
∣∣∣) < ε, where ε is a criterion value

which falls in between (0–1), and k is the iteration steps.
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6. The Multiple SSID-Based Proposed System

In this article, we propose a dimensionality reduction technique in a multiple service set
identifier-based indoor positioning system. The main contribution of this article is to reduce the effect
of the multipath phenomenon by fusing the MSSID-based fingerprinting and computational cost as
well. The proposed IPS framework is presented in the block diagram, as shown in Figure 8. We
have two phases: the offline phase and the online phase. We can describe the steps on each phase as
summarized in Algorithm 2.

In the offline phase, fusion is the first step in the proposed system where the vectors of MSSID are
fused to reduce the effect of the multipath problem and computational costs as well. In the second step,
AOI is clustered into small subareas to confine the location of users by specific region. A maximum
spatial variance AP selection is applied on each cluster to find the best joint combination of APs at each
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cluster. Therefore, there is a certain combination of APs at each cluster, Pi for Ci is used in the online
phase to verify minimum computational costs as well as distance error.

In the online phase, the clustering technique reduces the positioning process time where the fused
vector V is pre-matched with q exemplars of clusters Ci to find the closed cluster. The suitable pattern
of APs is chosen correspondingly with assigned cluster Cj. The final estimated position is calculated in
the last stage by using the NN approach.

The robustness of the proposed MSSID-based IPS comes from utilizing a fingerprinting approach
where most of the indoor positioning systems based on RSS signals used fingerprinting-based systems
due to unpredictable behavior of the RSS in an indoor environment. Unlike traditional fingerprinting
systems, which use a single SSID at each AP, the proposed system uses MSSIDs at each AP to mitigate
the effect of the multipath issue, which is noticed in an indoor environment. Therefore, designing
the proposed system with low dimensionality due to fusing MSSID RM and AP selection makes the
proposed system more applicable on limited MS resources.

Algorithm 2. The algorithm of the proposed system.

Stage No. 1 (Fusion):

Ψ = 1
N

N∑
i=1

Ψi

Stage No. 2 (Clustering):

Clustering Ψ into small subset (Fuzzy C-Means, K-Means)
Stage No. 3 (AP Selection):

Selecting APs pattern for each cluster (Random, Strongest, Spatial Variance)
——————————————————————————————-
The proposed system Algorithm (ONLINE PHASE)
Stage No. 1 (Fusion):

V =
1
N

N∑
i=1

Vi

Stage No. 2 (Clustering):

Apply coarse Positioning by assigning closed cluster
Stage No. 3 (AP selection):

Choose appropriate AP pattern at assigned cluster.
Stage No. 4 (position Estimation):

Find final estimated position (xo,yo).
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7. The Experiment

To validate the proposed system merits, we used real RSS data. This data was collected from
CEAS and Waldo library at Western Michigan University to investigate the behavior of MSSID signals
and validate the proposed system. All APs which are used in the AOI have worked with MSSIDs with
an Industrial, Scientific, and Medical (ISM) band (2.4 GHz). The designated AOI at CEAS is a good
environment to validate the proposed system because it has long corridors and classrooms with large
study lounges. The AOI was divided into 117 RPs with a spacing of (2 m × 2 m) and a total area of
3000 m2, as shown in Figure 9. Each RP was labeled by a Cartesian coordinate (xi, yi). The wireless Net
View program was installed on a Toshiba Satellite laptop, which has an Intel wireless-N7260 adapter
to record the vector of RSS values from various APs with a 1 sec period. Each RP was created from
200 RSS time samples from various directions (0◦, 90◦, 180◦, and 270◦) to mitigate the body presence.
100 different locations were chosen randomly on the AOI to evaluate the proposed system. At each
selected location, 200 samples (20,000 TPs) were collected with different orientations to verify the
validation of the proposed system.
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8. Results and Discussion

In this section, the proposed system is investigated with two types of clustering techniques:
K-means, and Fuzzy C-means.

8.1. K-Means Clustering Results

Figure 10 shows the performance of the proposed system when K-means clustering is applied for
single SSID and multiple SSIDs. The outliers issue is clearly seen in the single SSID. Although the
FPs come from averaging 200 RSS samples, the clustering of FPs with MSSIDs is more stable, and it
is similar to the RPs’ spatial distribution. Figure 11a shows the CDF of distance error for MSSIDs as
compared to a single SSID at q = 10 (number of clusters). It is clear that the performance of MSSIDs
outperforms the behavior of a single SSID. Figure 11b shows the average error of MSSID and single
SSID for various values of q. The mean of the distance error is increased slightly with the increasing



Appl. Sci. 2019, 9, 3137 15 of 22

number of clusters. The number of APs is 34 for both experiments, and all results are considered
without APs reduction.
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8.2. Selection of APs with K-Means

Three kinds of approaches to the selection of APs were conducted on each cluster at the same
time: random, strongest, and maximum spatial variance. Figure 12 shows the CDF of error for the
selected approaches with q = 20, and AP reduction is 50% (number of APs = 17). The maximum spatial
variance exhibits superior performance as compared with the other selected APs approaches.

Furthermore, the performance of the maximum spatial variance with 17 APs (50% reduction)
is similar to the performance of all APs (34 APs). This confirms previous work [11]. We found the
redundancy of MSSID occurred when SSIDs were exploited in the same fingerprinting vectors.

Table 5 summarizes the accuracy of the proposed system with various kinds of selection APs. The
selection of informative APs leads to a reduction in computational cost of 50%, as well as the reduction
that comes from the clustering technique. The performance of the K-means-based proposed system
with various values of q (number of clusters) is illustrated in Figure 13. As we can see in the figure,
the average error is decreased when the number of informative APs is increased. The maximum spatial
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variance selection AP exhibits a superior performance when compared to the strongest and random
APs selection with various values of q (q = 10, and q = 20).

Table 5. The mean distance error of the K-means-based proposed system versus a single SSID.

Selection Technique Strongest APs
50% Reduction

Random APs
50% Reduction

Max. Spatial Var.
50% Reduction Whole APs

Single SSID 1.33 m 1.6 m 1.14 m 1.08 m

Multiple SSIDs 1.11 m 1.36 m 0.9 m 0.86 m
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8.3. Fuzzy C-Means Results

The same methodology that is used with K-means is applied with the Fuzzy C-means method.
Figure 14 shows the performance of Fuzzy C-means clustering, where Figure 14a shows the CDF of
distance error for MSSIDs as compared to a single SSID at q = 10 (number of clusters), and the value
of membership, which is issued by C-means, is (m = 1.8). It is clear that the performance of MSSIDs
outperforms the behavior of a single SSID. Figure 14b shows the average distance error of MSSIDs and
a single SSID for various values of q. From Figure 14b, we can see that the mean of error is increased
slightly with the increasing number of clusters. The number of APs is also 34 APs for both experiments.
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8.4. Selection of APs with Fuzzy C-Means

In this experiment, three types of selection APs approaches were also conducted on each cluster
at the same time: random, strongest, and maximum spatial variance. Figure 15 shows the CDF of
distance error for the selection approaches with q = 20, and AP reduction is 50% (number of APs = 17).
The maximum spatial variance exhibits superior performance as compared with the other selected APs
approaches. In addition, the performance of maximum spatial variance with 17 APs (50% reduction)
is similar to the performance of all APs (34 APs). Table 6 summarizes the accuracy of the proposed
C-means-based system with various kinds of selection APs.
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50% Reduction Whole APs

Single SSID 1.32 1.51 1.06 1.01
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Figure 16 shows the comparison between C-means and the proposed K-means-based system with
maximum spatial variance selection AP. The C-means clustering-based system performance exhibits a
slight improvement in accuracy. The reason is the average number of FPs at each cluster in C-means is
more than the average number of FPs in K-means.Appl. Sci. 2019, 9, x 19 of 22 
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Figure 17 shows the compression between the proposed system and traditional technique that
considers each SSID as a single AP. The superior performance of the proposed system with 17 SSID
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selection versus the traditional technique performance is clear. The MSSID-based technique selects 17
SSIDs (17 distinct APs), while the traditional technique selects 17 SSIDs, which means approximately 6
distinct APs (each AP transmits 3 SSIDs). The shortcoming of the traditional technique comes from
exploiting the similar SSIDs in the same fingerprinting vector.
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Table 7 summarizes the percentage of calculation reduction versus the number of SSIDs when q =

20. Choosing informative APs leads to a reduction in computational costs as well as the reduction that
comes from fusing and the clustering technique.

Table 7. The Calculation reduction of positioning process versus number of SSIDs.

No. SSIDs Distance Error (m)
Traditional (K-Means)

Distance Error (m)
Proposed (C-Means) Calculation Reduction %

10 1.1 1.07 17%
17 0.9 0.84 12%
22 0.87 0.84 10%
28 0.85 0.83 5%
34 0.86 0.82 0%

9. Conclusions and Future Work

Indoor localization is an active and noble research area for its numerous applications in various
areas of our daily lives. Within indoor environments, tracking people and localizing objects have
become a necessity and thus motivates many researchers to tackle the challenges of IPS. In this article,
the dimensionality reduction of MSSID’s RM has been proposed. Reducing the computational cost
of IPS is very important for real-time system applications because large data require a long time to
be processed. The reduction comprises three parts: first, clustering AOI into subareas to confine
the location process into a subset of RPs. Second, fusing N RM of MSSIDs to create a delegate RM,
which is used to present N RM of MSSID in the positioning process. Third, the use of a maximum
spatial variance to select the most informative APs. The proposed system is designed according to the
behavior of MSSID signals in time and spatial domain. Fusing RM of MSSID mitigates the outlier’s
issue, which is created due to the multi-path phenomenon. The results show that the fusion of N RM of
MSSID in both phases mitigates the effect of the fading issue and minimizes the length of fingerprinting
vectors by using the maximum spatial variance selection APs. In addition, the results exhibit the ability
of maximum spatial variance selection APs technique to enhance the precision of IPS and reduce the
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computational costs as well. Light algorithm approaches such as the proposed system are feasible for
real-time tracking because the positioning process requires only a few calculations in the online phase
to find the location of MS.

Future work will include several tasks to extend the current proposed system. First, the behavior
of the mean of MSSIDs signals is close to path loss, as shown in Figure 5, because averaging the
MSSIDs’ signals contributes to mitigating the effect of the multipath issue. Accordingly, it might be
possible to use the fused MSSIDs’ RSS-based path loss model to determine the user’s location. In this
case, knowing the coordinates of APs in the AOI is sufficient to determine the user’s location without
creating a radio map, which requires more time and labor costs.

Second, it can be very fruitful to investigate the use of the 2.4 GHz and 5 GHz bands simultaneously
with MSSID that are deployed on the same AP to enhance the WLAN-based IPS. The coverage area
of 5 GHz is smaller than 2.4 GHz [46]. Therefore, we can use 5GHz for coarse positioning and the
2.4 GHz for fine positioning.
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