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Abstract: Automated tongue segmentation is a critical component of tongue diagnosis, especially in
Traditional Chinese Medicine (TCM), where it has been practiced for thousands of years and is
generally considered pain-free and non-invasive. Therefore, a more precise, fast, and robust tongue
segmentation system to automatically segment tongue images from its raw format is necessary.
Previous algorithms segmented the tongue in different ways, where the results are either inaccurate or
time-consuming. Furthermore, none of them developed a dedicated, automatic segmentation system.
In this paper, we proposed TongueNet, which is a precise and fast automatic tongue segmentation
system. U-net is utilized as the segmentation backbone applying a small-scale image dataset.
Besides this, a morphological layer is proposed in the latter stages of the architecture. The proposed
system when applied to a tongue image dataset with 1000 images, achieved the highest Pixel
Accuracy of 98.45% and consumed 0.267 s per picture on average, which outperformed conventional
state-of-the-art tongue segmentation methods in both accuracy and speed. Extensive qualitative
and quantitative experiments showed the robustness of the proposed system concerning different
positions, poses, and shapes. The results indicate a promising step in achieving a fully automated
tongue diagnosis system.

Keywords: image segmentation; tongue image analysis; deep learning; convolutional neural network;
morphological image processing

1. Introduction

The human tongue is a large and soft piece of flesh found in the mouth and primarily used for
tasting and speaking [1]. Besides its essential functions in the human digestive system, a tongue can
also act as a key region of interest in disease diagnosis using traditional medicines such as Traditional
Chinese Medicine (TCM). Traditional Chinese Tongue Diagnosis (TCTD) [2–7] performs pain-free
and non-invasive disease detection on our human bodies by analyzing the different attributes of the
tongue (e.g., color, shape and texture). This has been practiced for thousands of years. Due to its
convenience and pain-less procedure, Chinese Tongue Diagnosis is widely used and has become
a valuable reference in disease inference. To perform TCTD automatically, a computer-aided tongue
diagnosis system was proposed [8] which contains tongue segmentation as one of the key procedures.
Since any disease diagnosis system makes decisions according to different features from the feature
extraction stage [9–12], the quality of its output is directly related to the segmented tongue image from
the source image. Therefore, it is critical to perform precise and fast tongue segmentation.

Until now, various existing automatic tongue segmentation techniques have been proposed as
part of a more comprehensive system. For example, Bi-Elliptical Deformable Contour (BEDC) [13]
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combines model-based techniques [14] and active contour models [15]. This method achieved relatively
promising segmentation results while its segmentation quality is heavily dependent on some prior
knowledge and is sensitive to the position and initial curves generated from the tongue. To overcome
this, Ning et al. replaced the model-based techniques with a region merging strategy [16] to obtain
coarse segmentation results [17]. They used ACM (Active Contour Models) as the post-processing
step achieving a better segmentation performance compared with BEDC. However, the authors in [16]
also depend heavily on some prior knowledge as the position information of the initial marker
should be manually defined. Inspired by the effectiveness of the region merging strategy, Wu et al.,
designed a combination approach using region-based and edge-based [18] that can further remove the
influences of the surrounding artifacts in the tongue and therefore boosts the segmentation results and
robustness. That being said, this method still shows weak robustness in many different circumstances.
For instance, the segmentation results are poor when tongue poses are irregular (refer to Figure 1e)
and when the tongue is closely surrounded by some lips (see Figure 1h). Moreover, to the best of
our knowledge, none of the previous works [13,16,18–20] have established a dedicated and complete
tongue segmentation system. Rather, they focus on tongue segmentation as part of a subsystem
in TCTD.

The challenges of tongue segmentation are that the characteristics of a tongue are different,
such that it is different to mine common attributes using conventional geometric and iterative image
processing methods. Here, we summarized the tongue images into eight circumstances so that each
image is able to be categorized properly for further analysis. The eight circumstances displayed in
Figure 1 are:

(a) Tongue with an apparent gap in the mouth.
(b) Tongue with abnormal color.
(c) Tongue with abnormal texture.
(d) Tongue with teeth showing.
(e) Tongue with irregular poses.
(f) Tongue not completely protruding.
(g) Tongue with teeth imprints on the edges.
(h) Tongue closely surrounded by the lips.

Figure 1. Samples of tongue in images with different circumstances. (a) sample of tongue with
an apparent gap in the mouth; (b) sample of tongue with abnormal color; (c) sample of tongue with
abnormal texture; (d) sample of tongue with teeth showing; (e) sample of tongue with irregular poses;
(f) sample of tongue not completely protruding; (g) sample of tongue with teeth imprints on the edges;
(h) sample of tongue closely surrounded by the lips.

It can be observed from this figure that more than one circumstance appears in a single
tongue image.
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To handle these challenges, in this paper, we propose a new tongue segmentation system with
a specific segmentation model and a set of procedures (named TongueNet). To dig out common
attributes of tongues in different images, we applied deep learning techniques [21]. In the image
segmentation area, deep learning is widely used. For instance, FCN (Fully Covolutional Nerural
Network) [22] , U-net [23], and Segnet [24] are popular deep learning models. In our proposed
system (shown in Figure 2), there are four procedures including image acquisition, image grey-scaling,
segmentation model prediction, and segmented image extraction. In the image acquisition procedure,
a specially designed image capture device is applied to capture the tongue image of an individual
in a stable environment. To enhance the segmentation performance as well as its efficiency, the
image grey-scaling procedure is designed to obtain a grey-scale image with a dominant color channel.
In the segmentation model, U-net with a morphological processing layer is proposed to overcome the
limitation of the size of the dataset and characteristics of the tongue images. Finally, the segmented
image extraction procedure is utilized to automatically segment the tongue from the raw image and
takes it as the final result. Generally speaking, the following main contributions in this paper are:

1. A dedicated automatic tongue segmentation system is proposed.
2. A deep architecture: U-net with a morphological processing layer is applied.
3. The proposed tongue segmentation system is more precise and much faster than other

state-of-the-art tongue segmentation methods.

This paper is organized as follows: In Section 2, the methodology of the proposed method is
presented with theoretical interpretation and algorithm design. In Section 3, the experiments are to
prove the effectiveness and efficiency of the proposed system. In Section 4, details regarding the design
of TongueNet and its experimental results are fully discussed. In Section 5, we reach a conclusion.

Figure 2. The pipeline of TongueNet. An individual‘s tongue image is first taken as the input.
Figures on the right of each dotted line are the output of each procedure. In the image grey-scaling
stage, the captured image is converted to grey-scale. Next is the segmentation model prediction stage,
where the mask image is predicted. Afterwards, in the segmented image extraction stage, a tongue is
segmented from its raw image. The final output is a segmented tongue image.
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2. Methodology

In this section, we first introduce the basic idea of TongueNet. Next, we present the deep
convolutional neural network architecture applied to the Segmentation Model Predication step in
detail. Afterwards, a newly proposed morphological layer is described.

2.1. Overview of TongueNet

As mentioned above, the pipeline of TongueNet is displayed in Figure 2. The input of the system
is an individual‘s tongue image captured (using a uniquely designed imaging apparatus [8]) using
a special device, while the output of the system is a well-segmented tongue image.

After a raw image showing the lower half of an individual’s face with their tongue protruding
is captured in the first step. The next step takes the captured image and converts it to a grey-scale
image after selecting one channel of the raw image to enhance the tongue domain [13]. The dominant
color analysis of one sample in the dataset is shown in Figure 3. In Figure 3, (a) is a sample selected
from the tongue image dataset, (b), (c) and (d) are the bivariate histograms to describe the different
RGB values coming from the channels of each pixel. The RGB model is a color model which takes
red, blue and green as the primary colors. In the histograms of Figure 3b–d, the color ranges from
deep blue to yellow representing the frequency of pixels in the image. The color bar beside each
histogram displays the relationship between the colors and the pixel frequencies. As can be seen from
the yellow regions (high-frequency regions) of Figure 3b,c, most pixels have a higher red channel value
with a lower blue and green channel value. Meanwhile, (d) shows that the majority of pixels (in the
yellow region) have almost the same number of blue and green values. In the end, this indicates that
the red color is the dominant color of tongue images. Therefore, for all samples, the red channel is
selected since it is the dominant color. Next, the third step is mask prediction. In this step, a grey-scale
image from the previous step is fed into the segmentation model. Afterwards, the model will output
a well-refined mask image, only containing binary information to indicate which pixels belong to the
tongue. Followed by this, the fourth step is tongue image extraction. In this step, the completed tongue
image is extracted from the original raw image according to the mask image. The extracted result is
regarded as the final output of the system.

Figure 3. An example of color analysis to determine the dominant a color. The color bar beside
the bivariate histograms show the relationship between the colors in the histogram and the pixel
frequencies. (a) a sample from the dataset; (b) bivariate histogram of red vs. green; (c) bivariate
histogram of red vs. blue, and (d) bivariate histogram of blue vs. green.

2.2. Network Architecture

Due to its effectiveness and efficiency in medical image segmentation, U-net [23] is applied in this
system to perform tongue mask image prediction. There are three reasons for applying U-net in tongue
image segmentation. First, U-net is sturdy and robust in small-scale datasets. Second, U-net maintains
a good balance between the effectiveness and the efficiency in segmentation, which ensures that the
overall system performs well. Thirdly, U-net does well in both segmentation and localization [25].

The structure and settings of the U-net architecture applied to tongue segmentation are shown
in Figure 4. In this figure, the size of the input is 576 × 768 and the output image is a binary image
of the same size. The green lines between two blocks are the contracting paths which combine
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shallow features (left) with deep features at the same level (right). At the last stage of the network,
a morphological processing layer is appended, to refine the feature map of the previous layer. We will
introduce the principles and details of this morphological processing layer in Section 2.3.

Figure 4. The U-net architecture applied in tongue segmentation. Boxes in yellow are the feature
maps which are combined with the corresponding feature maps after up-sampling (green boxes).
The morphological processing layer is placed at the end of network.

The parameter settings of each layer in the architecture are shown in Table 1, where the size of
the training set is composed of 800 images in total (refer to Section 3.1). To achieve a model with
higher accuracy and less training time, the learning rate is fixed to α = 10−4. Figure 5 shows loss and
accuracy plots on the training set and test set using different learning rates (α = 10−4, 10−5, 10−6, 10−7).
From this figure, we can reach two conclusions as follows:

Figure 5. Accuracy on the training and test sets using different learning rates (α). (a) accuracy with
α = 10−4; (b) accuracy with α = 10−5; (c) accuracy with α = 10−6; (d) accuracy with α = 10−7..
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1. The model achieves its best performance when the learning rate is α = 10−4 (Figure 5a) compared
with α = 10−5 (Figure 5b), α = 10−6 (Figure 5c), and α = 10−7 (Figure 5d).

2. The model with α = 10−4 (Figure 5a) converges faster than others (Figure 5b–d).

Therefore, we select the learning rate α = 10−4 when training the model.

Table 1. Parameter settings of each layer.

Layer Type Kernel Size Number of
Kernels

Input
Dimensions

Activation
Function

1 Convolution2D 3 × 3 64 576 × 768 ReLU
2 Convolution2D 3 × 3 64 576 × 768 ReLU
3 Maxpooling 2 × 2 - 576 × 768 -

4 Convolution2D 3 × 3 128 288 × 384 ReLU
5 Convolution2D 3 × 3 128 288 × 384 ReLU
6 Maxpooling 2 × 2 - 288 × 384 -

7 Convolution2D 3 × 3 256 144 × 192 ReLU
8 Convolution2D 3 × 3 256 144 × 192 ReLU
9 Maxpooling 2 × 2 - 144 × 392 -
10 Dropout 2 × 2 - - -

11 Convolution2D 3 × 3 512 72 × 96 ReLU
12 Convolution2D 3 × 3 512 72 × 96 ReLU
13 Maxpooling 2 × 2 - 72 × 96 -
14 Dropout 2 × 2 - - -

15 Convolution2D 3 × 3 1024 36 × 48 ReLU
16 Convolution2D 3 × 3 1024 36 × 48 ReLU

17 Up-convolution2D 2 × 2 512 36 × 48 -
18 Convolution2D 3 × 3 512 72 × 96 ReLU
19 Convolution2D 3 × 3 512 72 × 96 ReLU

20 Up-convolution2D 2 × 2 256 72 × 96 -
21 Convolution2D 3 × 3 256 144 × 192 ReLU
22 Convolution2D 3 × 3 256 144 × 192 ReLU

23 Up-convolution2D 2 × 2 128 144 × 192 -
24 Convolution2D 3 × 3 128 288 × 384 ReLU
25 Convolution2D 3 × 3 128 288 × 384 ReLU

26 Up-convolution2D 2 × 2 64 288 × -
27 Convolution2D 3 × 3 64 576 × 768 ReLU
28 Convolution2D 3 × 3 64 576 × 768 ReLU
29 Convolution2D 1 × 1 1 576 × 768 ReLU

30 Morphological
processing - 1 576 × 768 -

2.3. The Morphological Processing Layer

Although each tongue in the image is a relatively large and complete object, there are still
inevitable noises around or inside the segmented regions. Furthermore, information like the shape
and texture of a tongue provided by the training data is complicated, which to some extent influences
the prediction of the pixels, especially for ones on the contours or between the border of the lips
and tongue. Therefore, it is difficult to obtain a smooth and noise-free mask in one step. Taking the
difficulties as well as the efficiency into consideration, we propose a morphological processing layer
(MPL) to refine the coarse mask image produced by the network using specifically designed filters.



Appl. Sci. 2019, 9, 3128 7 of 19

We formulate the refinement into a problem that can be described in Figure 6a and define the
tongue region in Definition, where a binary mask M is generated from a grey-scale mask image G
filtered by threshold τ:

M(x, y) =

{
1, G(x, y) > τ,
0, G(x, y) < τ.

(1)

where the threshold τ is calculated according to Otsu‘s method [26].

Definition 1. A connected component C is a set of pixels whose foreground pixel p has a connectivity of
8-connected neighborhoods with an arbitrary pixel q in C.

Definition 2. The segmented tongue region T is the largest connected component in the binary mask image M.

(a) (b)

(c) (d)

Figure 6. The refinement procedure. (a) the mask image with the tongue mask approximately located
at the center. As can be observed, there are noises surrounding the tongue and the tongue is coarse
with a small ’hole’ inside; (b) the mask image after using the morphological reconstruction method
(Algorithm 1); (c) the mask image after using the open operation; (d) the mask image after using the
close image. .

According to Definition 2, a tongue region and is located at the center and is the largest connected
component in Figure 6a. Apparently, there is noise at or close to the corners. Moreover, the main body
of the mask representing the tongue is not smooth. In addition, some inevitable small ’holes’ exist
inside the mask. To address these problems, we propose Algorithm 2.

Generally speaking, there are four procedures in the morphological processing layer as shown
in Figure 7. The input to the morphological processing layer is a binary image generated from the
U-net architecture. In the first procedure, binarization is performed on a coarse result to find all
connected components. The second procedure is ’hole’ filling, where there are three sub-procedures
in this step consisting of reverse image, obtain edges, and morphological reconstruction. After that,
the coarse result is overlapped with the result of ‘hole’ filling. The third procedure is the open
operation, which clears all noise outside the tongue region. The fourth procedure is the close
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operation, which refines the boundary of a tongue region. Finally, the refined result is output from the
morphological processing layer.

Figure 7. The pipeline of the morphological processing layer. The input (Coarse Result) is a binary
image which is generated from U-net. First, all connected components of the Coarse Result
are computed. Then, all ‘hole’ filling procedures (Reverse image, Obtain edges, Morphological
reconstruction) are performed. Next, overlap the Coarse Result with the result of ‘hole’ filling. After that,
the Open operation is performed to clear noise. In the next step, the Close operation is performed to
refine the boundary of the result. Finally, the Refined Result is the output.

First, for the small ’holes’ inside the tongue mask, morphological reconstruction [27] is utilized.
In morphological reconstruction, there are two images, one is the maker image, while the other is the
template image. Morphological reconstruction is a means of applying morphological transformations
to keep the key region defined in the template image via the marker image. Algorithm 1 shows the
details of the morphological reconstruction algorithm.

In the first step, we calculate the reverse image R of a given image I to switch hole region to
foreground and non-hole region to background:

R = 1− I. (2)

Next, we perform edge detection on R, where each pixel belongs to an edge consisting of a point
set E. Then, pixels that do not belong to edges are set to zero and we obtain image L:

L(x, y) =

{
1, L(x, y) /∈ E,
0, otherwise.

(3)

Afterwards, L is a marker image for morphological reconstruction in Algorithm 1. Meanwhile,
we take R as the template image in Algorithm 1. Based on R and L, we perform morphological
reconstruction described in Algorithm 1 on image R to generate image H with the holes filled:

H = MR(R, L, c, t), (4)

where c is the size of structural element, and t is the tolerance to control the iterative reconstruction
operation. The effect of hole filling is shown in Figure 6b. Finally, we overlap the image I and image H:

F = I + H. (5)

Second, to remove the external noise from the tongue image region, we perform the
open operation:

M ◦ f =
⋃
{ fd| fd ⊆ M} , (6)
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where M is the mask image, f is the structural element, and fd represents the origin point in filter f .
The effect of the open operation is shown as Figure 6c. We can find that the noise around the tongue
image region is removed and the tongue image region becomes smoother than ever.

Third, to eliminate the internal noise and irregular edge, the close operation is performed:

M ◦ f =
⋃
{d| fd ⊆W} , (7)

where M is a mask image, f is a structural element, and fd represents the origin point in filter f .
W = {d| fd ∩M 6= φ} represents the results of M dilated by filter f . The effect of the close operation is
shown as Figure 6d. Here, it can be observed that the internal noise is removed.

Algorithm 1: Morphological reconstruction
Input: Template T, Marker L, Size of the structural element r, Tolerance t
Output: Binary Image I

1 Initialize structural element K =

1 · · · 1
...

. . .
...

1 · · · 1


r×r

and image I =

0 · · · 0
...

. . .
...

0 · · · 0


m×n

2 do
3 Ip+1 = (Ip ⊕ K) ∩ T
4 while ∑n

i+1 ∑m
j+1 |I(i, j)− T(i, j)| > t

Algorithm 2: Morphological processing layer
Input: Mask Image M, Threshold γ, Open operation Filter size ρ, Close operation filter size σ

Output: Binary Image G

1 Initialize structural elements: s1 =

1 · · · 1
...

. . .
...

1 · · · 1


ρ×ρ

, s2 =

1 · · · 1
...

. . .
...

1 · · · 1


σ×σ

.

2 Perform global binarization on M using Equation (1) to obtain connected components.
3 Generate binary image R according to Equation (2).
4 Perform edge detection using the prewitt operator, set S as the set of pixels from the edge.
5 Reserve pixels of S in R according to Equation (3).
6 Generating hole-filled image H by using using Equation (4).
7 Overlapping binary mask image I and hole-filled image H according to Equation (5).
8 Perform the open operation using s1 according to Equation (6): O = open(F, s1).
9 Perform the close operation using s2 according to Equation (7): G = close(O, s2).

10 Return G.

3. Experimental Results

In this section, we perform segmentation experiments using our proposed system to demonstrate
its effectiveness and efficiency. First, the dataset used in the experiments is described followed by
a discussion of the experimental setup. Afterwards, qualitative evaluation is performed to directly
show the results on different groups of tongue images to evaluate the quality of the segmentation
results in an intuitive way. Next, quantitative evaluation is carried out using five different metrics
to evaluate the performance of the proposed system in different aspects to prove the superiority
of proposed method in a numerical way. Later on, TongueNet is compared with Floodfill [28] and
Snake [15] as well as a state-of-the-art method entitled Region-based and Edge-based fusion approach
(REF) [18]. Finally, an efficiency comparison is carried out to compute the computation time.
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3.1. Dataset Description

The tongue image dataset contains 1000 samples captured by a device described in [8]. The images
were stored in Bitmap (BMP) format and divided into various classes of diseases. Each image has
RGB channels in the depth of 24 bits. The resolution of each image is 576× 768. Some samples of
the tongue image are displayed in Figure 8. An overview of the dataset is summarized in Table 2.
For the background of each image (in Figure 8), there are a variety of non-tongue artifacts: chin
rest of the capture device, cheeks, nose, lips, along with various teeth. For the foreground of each
image, the tongues are presented in different positions and poses, textures, shapes, and colors.
More information on the dataset can be found in [10].

Figure 8. Samples of tongue image dataset.

Table 2. Overview information of the tongue image dataset.

Size Resolution Format Bit Depth Color Model

1000 576 × 768 Bitmap 24 RGB

There are two steps in the training preparation. First, the dataset is split into two parts: a training
set and a test set. The number of images in the training set and test set is 800, while the number of
images in the test set is 200. Afterwards, each mask of the training set is generated manually using the
labelme [29] annotation tool and then converted into a 576 × 768 bitmap file with two bits of bit depth.
The mask image is a binary image, whose pixels in the foreground are 255 (white), while the pixels
in the background are 0 (black). An overview of the information of the mask set is summarized in
Table 3. The mask images corresponding to the samples in Figure 8 are shown in Figure 9. In Figure 9,
the region in white is the foreground (255), which covers the area of the tongue and draws the contours
precisely. The region in black is the background (0).

Table 3. Overview information of a the mask set corresponding to the tongue images in Figure 8.

Size Resolution Format Bit Depth Color Model

800 576 × 768 Bitmap 2 Binary (255-foreground, 0-background)
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Figure 9. Samples from the mask set corresponding to the tongue images in Figure 8.

3.2. Experimental Setup

The experiments were performed on the 200 test samples from the tongue dataset (refer to
Section 3.1 and Table 2). All experiments were conducted on a PC with a 3.40 GHz Intel Core i7-2600
CPU and 12 GB of RAM. The network architecture is built on a tensorflow 1.13 platform and using
a NVIDIA GEFORCE GTX 1070 Ti graphics card. For the parameters used in training, we set the
learning rate α = 10−4, batch size b = 20, number of epoch N = 100, and applied the Adam
optimizer [30]. In the morphological layer, we set the open operation filter size ρ = 20, the close
operation filter size σ = 5, the filter size in morphological reconstruction r = 3, and the tolerance
t = 0.001.

3.3. Qualitative Evaluation

The qualitative evaluation was performed on various groups of tongue images with different
circumstances to assess the robustness and effectiveness of the proposed system. As mentioned in
Section 1, tongue images can be divided into the following groups: (1) Tongue with an apparent gap
in the mouth, (2) Tongue with abnormal color, (3) Tongue with abnormal texture, (4) Tongue with
teeth showing, (5) Tongue with irregular poses, (6) Tongue not completely protruding, (7) Tongue
with teeth imprints on the edges, and (8) Tongue closely surrounded by lips. Figure 10 shows the
segmentation results of the above groups on some samples from the dataset. The highlighted regions
in each sub-figure are the segmentation results. As can be seen in each group, tongue regions are
segmented precisely by TongueNet under different circumstances, which demonstrates its robustness.
In particular, the edge pixels are predicted well, indicating that TongueNet is capable of handling
various changes on the tongues. Furthermore, the segmented tongue regions are well separated
from its surroundings, such as the lips and teeth. Overall, the proposed TongueNet system achieves
a promising segmentation performance.
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Figure 10. Segmentation results of TongueNet in qualitative evaluation (highlighted). (a) and (b) results
of a tongue with an apparent gap in the mouth; (c) and (d) results of a tongue with abnormal color;
(e) and (f) results of a tongue with abnormal texture; (g) and (h) results of a tongue with teeth showing;
(i) and (j) results of a tongue with irregular poses; (k) and (l) results of a tongue not completely
protruding; (m) and (n) results of a tongue with teeth imprints on the edges; (o) and (p) results of
a tongue closely surrounded by lips.

Figure 11 displays eight pairs of comparison groups with the with the proposed TongueNet
(lowercase) and the results of REF [18] (uppercase). Noticeably, we made comparisons with REF as
it is the most representative and currently the best tongue-oriented segmentation method among
various state-of-the-art methods. From Figure 11a–e,g,A–E,G, it can be observed that TongueNet
exactly segmented the tongue without teeth and lips, while REF failed to produce a clean segmentation.
This clearly shows the superiority and robustness of the proposed method when the surroundings are
complicated. If the color, shape, and texture of the tongue are abnormal, TongueNet can also perform
a smooth segmentation (refer to Figure 11f,F,h,H).
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Figure 11. Comparison of a segmented tongue image from TongueNet (lowercase) and REF (uppercase).

3.4. Quantitative Evaluation

In this sub-section, quantitative evaluation is performed to evaluate the effectiveness of TongueNet
a numerical way. To assess the performance in different aspects, five metrics are utilized, which are
Intersection over Union (IOU) [31] , Pixel Accuracy (PA) [25], Precision [32], Recall [32], and F-score [33].
We first give an introduction to these five metrics. Then, we compare TongueNet and REF under the
metric of IOU, PA, F-score, Precision and Recall on a subset of 20 test samples covering all circumstance
summarized in Section 1 (refer to Figure 1). Then, we provide comparisons between TongueNet
and other state-of-the-art methods by calculating the average value of all test samples. Afterwards,
an efficiency comparison between REF and TongueNet is carried out.

3.4.1. Metrics

For pixels pij in a binary image, pij = 1 means pij belongs to the positive class, and pi,j = 0 means
pij belongs to a negative class. Given a ground truth image G and an image, we predict P. The IOU
metric can be defined as follows:

IOU =
|GR ∩ PR|

|GR|+ |PR| − |GR ∩ PR| , (8)

where GR and PR represent the set of positive pixels in image G and P, |GR| and |PR| represent the
number of pixels in GR and PR. The IOU measures the similarity between a ground truth image and
a prediction image by calculating the number of pixels in the intersection set divided by the number of
pixels in union set excluding the intersection region.

We denote TP, FP, TN, FN as true positive pixels, false positive pixels, number of true negative
pixels and false negative pixels, respectively. The Pixel Accuracy (PA) is defined as follows:

PA =
TP
|P| . (9)

The PA measures the percentage of true positive pixels from all pixels in an image, providing
an overall assessment of prediction.
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Besides the PA, the Precision metric is utilized to measure the accuracy of positive pixels predicted
in P, which is defined as follows:

Precision =
TP

|TP + FP| . (10)

The Recall metric is utilized to measure the degree to which all the positive pixels are
predicted correctly:

Recall =
TP

|TP + TN| . (11)

Based on Precision and Recall, the F-score is calculated, to measure the performance comprehensively:

F− score = 2 · precision · recall
precision · recall

=
2TP

2TP + FN + FP
. (12)

3.4.2. IOU Results on 20 Test Samples

The IOU results of TongueNet and REF are displayed in Figure 12. The proposed TongueNet
achieved an IOU of over 90% on almost all samples with the highest value reaching 96.38%
(the 10th sample). This indicates that most of the pixels in the tongue region were predicted precisely.
Furthermore, TongueNet outperforms REF on all samples with the most significant difference being
33.7% (the 14th sample). To present an overall perspective of IOU, the mean IOU (MIOU) is 93.11% for
TongueNet, while the MIOU of the REF method is 83.1%. In general, more pixels in the tongue region
will be predicted correctly by TongueNet than REF.

Figure 12. IOU comparison of TongueNet (green) and REF (red).

3.4.3. PA Results on 20 Test Samples

The PA comparison of TongueNet and REF on 20 test images is illustrated in Figure 13.
The proposed TongueNet obtained over 97% for all test samples, with the highest being 99.33%
(the 9th sample). This means TongueNet can correctly predict on average over 97% of the pixels from
the images in the test set, indicating that TongueNet holds a high prediction accuracy. Similar to the
IOU results (above), TongueNet also outperformed REF on all test samples, where the mean PA (MPA)
of TongueNet is 98.44%, while the MPA of REF is 96.8%. Thus, it proves that TongueNet has a stronger
ability at pixel prediction.
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Figure 13. PA comparison of TongueNet (green) and REF (red).

3.4.4. F-score, Precision, and Recall Results on 20 Test Samples

The F-score (left), Precision (middle), and Recall (right) between the proposed method and REF
for 20 test images are shown in Figure 14. From the radar charts in this figure, it can be observed that
TongueNet outperforms REF in Precision and Recall on almost all 20 test samples. This reflects the high
reliability as well as the comprehensiveness of tongue region prediction using the proposed method.
Although some Recall values of TongueNet in Figure 14 (right) are lower than REF (the 11th sample
and the 14th sample), the F-score of each test sample is still higher, indicating the general superiority
of TongueNet over REF.

Figure 14. F-score, precision and recall comparison of TongueNet and REF using radar charts.
(left) F-score; (center) precision; (right) recall.

3.4.5. Overall Comparison with Other Segmentation Methods

A comparison with other methods (REF [18], Snake [15], Flood fill [28]) using all 200 test samples
is carried out to ensure adaequate experimentation in proving the effectiveness of TongueNet in
a quantitative way (refer to Table 4). The mean IOU (MIOU), mean PA (MPA), mean F-score (MFscore),
mean Precision (MPrecision), and mean Recall (MRecall) are utilized. The mean value is the average of
all test samples:

Mmetric =
1
n

n

∑
i=1

metric(i), (13)
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where metric(i) represents the ith value of a specific metric and n represents the number of test samples.
The highest value of each metric is marked in bold font.

Table 4. Comparison of TongueNet with other segmentation methods (the significance level β = 0.05)

Methods MIOU (%) MPA (%) MF-score (%) MPrecision (%) MRecall (%)

Snake 69.30± 0.05 93.51± 0.02 81.44± 0.08 83.68± 0.05 83.30± 0.03
Flood fill 44.79± 0.04 90.95± 0.01 59.11± 0.06 89.59± 0.04 44.90± 0.04

REF 83.10± 0.06 96.81± 0.01 92.13± 0.06 88.94± 0.03 93.45± 0.04
TongueNet 93.11 ± 0.02 98.45 ± 0.01 95.38 ± 0.03 98.72 ± 0.02 94.26 ± 0.01

p-value 0.002 0.002 0.010 0.004 0.015

From Table 4, it can be seen that the proposed TongueNet outperforms other methods, especially in
MIOU, which is over 10% higher than others on average, implying a higher accuracy in tongue region
prediction. In terms of MF-score, the gap between TongueNet and other comparison methods range
from 3.25% to 36.27%, indicating the superiority of TongueNet (from a comprehensive perspective way).
As for MPA, MPrecision, and MRecall, the improvements achieved by the proposed method varied
from 1.63–7.50%, 9.13–15.04%, and 0.81–49.36%, respectively. All three of these metrics proved the
superiority of TongueNet not only in reliability and completeness, but also in overall pixel prediction.
In the statistical significance test, we set the significance level to be β = 0.05, where the p-values for
different metrics have been calculated to show the significance difference of TongueNet and REF.

3.5. Efficiency Comparison

The computation time is calculated to evaluate the efficiency of TongueNet. The comparison of
TongueNet and REF is displayed in Table 5. To reflect the computation time, we calculated the average
time consumed per image after applying TongueNet and REF. The results show that TongueNet
requires less than 0.3 s compared to REF, which used 0.302s. The training time of TongueNet is 2435 s.

Table 5. Computation time comparison between TongueNet and REF.

Methods Computational Time (s)

REF 0.302
TongueNet 0.267

4. Discussion

To fully analyze and discuss the details in the methodology and experimental results presented in
the previous sections, we can reach the following inferences:

1. The comparisons above (in the experimental results) show the effectiveness as well as the efficiency
of TongueNet in tongue segmentation with the superiority of robustness in many complicated
circumstances, which makes it a promising tool when integrated with TCTD. The proposed
TongueNet achieves a better segmentation performance compared with other state-of-the-art
methods on both qualitative and quantitative evaluations (refer to Figure 11 and Table 4).
Furthermore, TongueNet uses less computation time compared with REF (see Table 5), indicating a
much faster processing speed.

2. Although TongueNet performs better at segmentation in general, the predictions of the pixels
still need improvement as it is not complete in some occasion in terms of quantitative evaluation.
From Table 4, even if the mean F-score of TongueNet (95.38%) is higher than other methods,
the Recall values of some samples (from the 200 test images) are lower than REF (e.g., the 11th
sample: TongueNet-97.94%, REF-99.77% Figure 14). This indicates indicating that the prediction
of pixels cannot entirely cover all tongue regions. The cause of this is due to a higher loss of the
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boundary in the tongue. Therefore, more focus will be placed at the boundary loss as part of our
future work.

3. The parameters in the morphological layer determine the effectiveness of the refinement as well
as the efficiency of the whole system. Since there are three filters (morphological reconstruction,
open operation and close operation) (refer to Section 2.3) utilized to perform morphological
processing for different purposes, the system sensitivity towards parameters is high. There exists
a trade-off between the effectiveness and efficiency. To overcome the high sensitivity and trade-off,
we fine-tune the system using different parameters and combinations, including the filter kernel
size, type of operator, tolerance of morphological reconstruction, and the global threshold to
generate the binary mask.

5. Conclusions

In this paper, we proposed a precise and fast tongue segmentation system named TongueNet.
The system captures an individual’s tongue image and uses it as input before outputting
a segmented tongue. Within the system, there are four procedures consisting of tongue image
acquisition, image grey-scaling, segmentation model prediction, and segmented image extraction.
To train a powerful prediction model with less data, a fine-tuned U-net is selected as the backbone.
Moreover, a newly proposed morphological processing layer is proposed to perform segmentation
refinement. The experimental results show that TongueNet achieved the highest mean IOU—93.11%,
mean PA—98.45%, mean F-score—95.38%, mean Precision—98.72%, and mean Recall—94.26%
compared with other state-of-the-art tongue segmentation methods. Furthermore, it can accurately
segment tongue images where teeth and lips are present, as well as cases with irregular tongue shapes,
colors, and textures. With a computation time of 0.267 seconds per image, TongueNet has the potential
to be fully integrated as part of any TCTD system.
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Abbreviations

The following abbreviations are used in this manuscript:

TCM Traditional Chinese Medicine
TCTD Traditional Chinese Tongue Diagnosis
BEDC Bi-Elliptical Deformable Contour
FCN Fully Conolutional Neural Network
BMP Bitmap
RGB RGB color model
REF Region-based and Edge-based fusion approach
IOU Intersection over Union
PA Pixel Accuracy
TP True Positive
FP False Positive
TN True Negative
FN False Negative
MIOU Mean IOU
MPA Mean PA
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MPrecision Mean Precision
MRecall Mean Recall
MFscore Mean F-score
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