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Abstract: Recently, a lot of efforts have been devoted to developing more precise Modal Parameter
Estimation (MPE) techniques. This is explained by the necessity in civil, mechanical and aerospace
engineering of obtaining accurate estimates for the modal parameters of the tested structures, as well
as of determining reliable confidence intervals for these estimates. The Non-linear Least Squares (NLS)
identification techniques based on Maximum Likelihood (ML) have been increasingly used in modal
analysis to improve precision of estimates provided by the Least Squares (LS) based estimators when
they are not accurate enough. Apart from providing more accurate estimates, the main advantage of
the ML estimators, with regard to their LS counterparts, is that they allow for taking into account not
only the measured Frequency Response Functions (FRFs) but also the noise information during the
parametric identification process and, therefore, provide the modal parameters estimates together
with their uncertainties bounds. In this paper, a new derivation of a Maximum Likelihood Estimator
formulated in Pole-residue Modal Model (MLE-PMM) is presented. The proposed formulation is
meant to be used in combination with the Least Squares Frequency Domain (LSCF) to improve
the precision of the modal parameter estimates and compute their confidence intervals. Aiming at
demonstrating the efficiency of the proposed approach, it is applied to two simulated examples in
the final part of the paper.

Keywords: modal analysis; system identification; modal identification; maximum likelihood;
frequency domain; confidence intervals; modal parameters; pole-residue modal model

1. Introduction

Over the last years a lot of efforts have been spent in developing more accurate modal parameter
estimation techniques. The outcome of these efforts are the development of precise and robust
estimators, as, for instance, the poly-reference Least Squares Complex Frequency Domain (pLSCF) [1,2]
formulated in frequency domain and the Stochastic System Identification (SSI) algorithms developed to
estimate the modal parameters from the measured responses [3]. Initially formulated for input-output
systems and also known by its commercial name PolyMAX [2], the pLSCF was afterwards extended to
output-only systems [4]. One of the main advantages of this technique is the possibility of creating
clear stabilization diagrams, since the physical poles tend to stabilize faster over the identified model
orders when compared to other Modal Parameter Estimation (MPE) algorithms, as, for instance,
the poly-reference Least Squares Complex Exponential (pLSCE) (also known as LSCE-Prony) [5].
Later on, the capability of estimating confidence intervals for modal parameter estimates was added
both to the LSCF [6] and pLSCF [7] estimators, as well as to the SSI [8–10] technique.
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Recently, new improvements were added to the estimation with the pLSCF algorithm to overpass
the loss of precision and robustness observed when dealing with very noisy Frequency Response
Functions (FRF)s and poorly excited modes [11–13]. It is verified that, under these circumstances,
the algorithm is not so robust and tends to underestimate the damping ratios. This new variant of
the algorithm consists of a 2-step approach which was developed to address these issues [14]. In fact,
this approach consists of a combination of two different estimators, for example, the pLSCF and the
poly-reference Maximum Likelihood Estimator in Modal Model formulation (pMLE-MM) [12,14–17]
used in a final step of the identification process to increase the precision of the estimates provided by
pLSCF as well as to compute the uncertainties bounds on the estimated modal parameters.

The combination of these two estimators enhances the MPE by taking advantage of the specific
features of each one of them, as for instance, the fast and clear stabilization diagrams provided by
the pLSCF and the precision and numeric stability of the pMLE-MM to improve the accuracy of the
identified modal parameters and estimate their confidence intervals. More recently, new improvements
were added to the combined pLSCF-pMLE-MM by imposing identification constraints based both
on the assumption of reciprocity of the identified modal model and of normal (real) mode shape
vectors [18]. In this paper, a new ML Estimator (MLE) formulated in Pole-residue Modal Model
(MLE-PMM) is proposed to improve the accuracy of the modal parameters estimated with the Least
Squares Complex Frequency (LSCF) [1]. Similarly to the combined pLSCF-pMLE-MM, the idea of
using the MLE-PMM in combination with the LSCF estimator is to retain and improve multi-reference
information provided by the latter in a Non-linear LS sense (NLS) with the former. Similarly to the
non-linear optimization technique described in Reference [19], the proposed ML-based approach is
formulated with the modal model in pole-residue form.

The innovative characteristics of the latter with regard to the former, however, are related to the
fact that: (1) both the FRFs and the noise information are taken into account in the modal parameter
estimation and, therefore, apart from providing the modal parameter estimates the technique also
provides the uncertainties on the estimated modal parameters; (2) the initial values can be calculated
by the LSCF estimator that gives good starting values in easy way by means of a clear stabilization
chart and (3) the optimization is done by using an advanced technique that enlarges the convergence
region and prevents the algorithm from converging to local minima. The paper is basically divided in
three parts. The LSCF identification technique and the Least Squares Frequency-Domain (LSFD) [20]
estimator in pole-residue modal model with upper and lower residual terms are briefly described
in the first part. Next, the novel MLE-PMM is derived in the the second part and, finally, in the
last part of the paper, the implementation of the MLE-PMM herein proposed is evaluated, both in
terms of accuracy of the modal parameter estimates and precision of the predicted confidence bounds,
using two simulated examples.

2. Structure of the Combined LSCF-MLE-PMM

The ML-based technique proposed in this paper optimizes the invariants of the Pole-residue
Modal Model iteratively and, therefore, it requires a good starting guess to assure convergence over the
performed iterations. Though the model parameter estimates provided by any LS estimator can be used
as starting guess, some particular advantages are obtained if the ML-based estimator described in the
second part of the paper is combined with the LSCF identification technique formulated in Common
Denominator Model (CDM). These advantages include: (1) the fact that the Pole-residue Modal Model
and the CDM are closely related and, therefore, the LS multi-reference information provided by the
LSCF estimator can be retained and iteratively optimized by the MLE-PMM; and (2) the possibility
of combining the ML Estimator formulated in CDM (MLE-CDM) [21] with the LSCF estimator to
improve even more the accuracy of the LSCF estimates used as starting guess.

The identification process with the combined LSCF-MLE-PMM consists basically of the following
steps: (1) primary identification of the physical poles with LSCF estimator from the measured FRFs and
estimation of the corresponding modal residues together with the lower and upper residuals with the
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Least Squares Frequency Domain (LSFD) estimator [20]; and (2) optimization of the model parameters
provided both by the LSCF and LSFD estimators and estimation of their respective uncertainty bounds
with the MLE-PMM in the final step of the identification process. The second step of this combined
technique is derived in this paper and consists of the novel ML-based estimator itself. The chart flow
of the identification process with the combined LSCF-MLE-PMM is shown in Figure 1.

Measured FRF and Noise Std

LSCF Identification

LSFD Estimator

Modal Residues

ML-PMM Estimator

optimized modal parameters together
with their uncertainty bounds

Combined LSCF-MLE-PMM

Poles

First step: identification of the natural frequencies and 

damping ratios with the LSCF technique, and modal 

residuals with the LSFD estimator 

Second step: optimization of the modal parameter 

estimates and direct estimation of their confidence 

bounds 

Figure 1. Chart flow of the identification with the combined LSCF-MLE-PMM .

2.1. Modal Identification with the LSCF and LSFD Estimators (1st Step)

This step aims at estimating the poles corresponding to the natural frequencies and modal
damping ratios of the tested structures with the LSCF technique. This estimation is normally carried
out by means of stabilization charts constructed by identifying models with increasing order. Once the
poles are identified, they are subsequently used by the LSFD technique to estimate the modal residues
in a LS sense. For completeness, a brief description of both techniques used in the first step of the
identification process with combined LSCF-MLE-PMM is presented in following subsections.

2.1.1. The LSCF Estimator

The first derivation of the LSCF aimed at identifying input-output systems using the measured FRFs
as primary data [5,20]. Afterwards, this derivation was extended to the identification of output-only
systems [22]. This technique estimates the invariants of the Common Denominator Model which is
assumed to represent the measured FRFs and is given by

Ĥk(Θ, ω) =
Nk(Θ, ω)

d(Θ, ω)
, k = 1, 2, · · · , No Ni (1)
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where Ni and No denote the number of inputs and outputs, respectively, with the numerator matrix
Nk(Θ, ω) and the denominator scalar d(Θ, ω) given, respectively, by

Nk(Θ, ω) =
n

∑
r=0

βkrΩr(ω), (2)

and

d(Θ, ω) =
n

∑
r=0

αrΩr(ω) (3)

In Equations (2) and (3) the parameters Ωr(ω) = zr represent discrete-time polynomial base,
with z = e−jω∆t denoting the z-domain variable, ∆t the sampling time and ω the circular frequency.
The coefficients αr and βkr in Equations (2) and (3) are the unknown invariants to be estimated.
Detailed discussion about the LSCF technique can be found in several publications and, therefore, it is
not discussed in the context of the present paper. Further details about the implementation of this
estimator can be found, for instance, in References [5,20,22].

2.1.2. The LSFD Estimator

The LSFD is a technique commonly used in frequency-domain modal analysis to estimate the
modal residues and to model the influence of the out-of-band modes in the frequency band of interest.
When the poles are known a priori, these parameters can be estimated in a LS sense with the following
pole-residue modal model with upper and lower residual terms

H(ω) =
Nm

∑
m=1

[Res]m
jω− λm

+
[Res]∗m

jω− λ∗m
+ a(ω) [LR] + b(ω) [UR] (4)

where H(ω) ∈ CNo×Ni is the modelled FRF matrix; No, Ni and Nm denote, respectively, the number
of outputs, the number of inputs and the number of vibration modes; λm ∈ C and [Res]m ∈ CNo×Ni

stand for the pole and modal residue corresponding to the mth vibration mode; LR, UR ∈ CNo×Ni are,
respectively, the lower and upper residuals used to model the influence of the out of band modes in
the considered frequency band and a and b are scalars defined according to the measured quantity
(i.e., displacement, velocity or acceleration) and to the type of analysis performed (i.e., Experimental or
Operational Modal Analysis (EMA or EMA)) in Table 1 [4]; and the operator (•)∗ denotes the complex
conjugate and j =

√
−1 the imaginary unit. The poles λm occur in complex-conjugated pairs and are

related to the eigenfrequencies ωnm and damping ratios ξnm as

λm, λ∗m = −ωnm ξnm ± j
√

1− ξ2
nm ωnm (5)

where ωnm = 2π fnm , with fnm representing the natural frequencies of each mode. An extended
description of the LSFD estimator formulated in Pole-residue Modal Model is found in Appendix A.

Table 1. Definition of the scalar functions, a(ω) and b(ω), of the lower and upper residual matrices,
LR and UR, according to the type of the measured output and to the analysis performed

Output Quantity FRFs Full Spectra Half Spectra

a(ω) b(ω) a(ω) b(ω) a(ω) b(ω)

Displacement
1

(jω)2 1
1

(jω)4 1
1

jω
jω

Velocity
1

jω
(jω)

1
(jω)2 (jω)2 1

(jω)
jω

Acceleration 1 (jω)2 1 (jω)4 1
(jω)

jω
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2.2. The MLE-PMM (2rd Step)

Once the poles are estimated with the LSCF technique and the modal residues with the LSFD
algorithm, these parameters can be optimized by means of the ML estimator formulated using the
Modal Model in Pole-residue form. The idea behind the MLE-PMM algorithm is to optimize the initial
modal parameters given, for instance, by the LSCF and the LSFD estimators by adjusting these values
so that FRF equation in Pole-residue Modal Model (4) is fitted to the measured FRF. Compared to
the LS-based approaches with uncertainty estimation capabilities, the ML-based algorithms have the
advantage of taking into account both the measured FRFs and the noise information at once during
the parametric identification process and thus, apart from providing the more accurate estimates for
the modal parameters, they also allows for computation of confidence intervals for these estimates
directly from the Fisher information matrix.

Furthermore, the ML approach herein introduced is formulated in continuous-time with the
Pole-residue Modal Model, meaning that it does not suffer from numerical ill-conditioning which is
a well-known identification problem of the rational fraction polynomial models in Laplace domain.
The optimization of the starting parameters with the MLE-PMM is accomplished by minimizing the
following (negative) log-like cost function

l(Θ)ML-PMM =
No Ni

∑
k=1

N f

∑
f=1

∣∣∣Ek(Θ, ω f )
∣∣∣2 (6)

with Ek(Θ, ω f ) denoting the equation error given as follows:

Ek(Θ, ω f ) =

∣∣∣Ĥk(Θ, ω f )− Hk(ω f )
∣∣∣

σHk(ω f )
(7)

where Hk(ω f ) and σHk(ω f )
are, respectively, the measured FRF and its standard deviation

and Hk(Θ, ω f ) is the modelled FRF; k (k = 1, 2, · · · , No Ni) denotes any of the No Ni elements of
the measured and estimated FRF matrices; N f represents the number of frequency lines and ω f = 2π f
the angular frequency evaluated at frequency line f . The parameter Θ is a column vector containing
the invariants of the pole residue model to be optimized by the ML algorithm and is given as follows

Θ =
[
θ1 θ2 · · · θNo Ni θλ

T
]
∈ R1×(2Nm+4)(No Ni)+2Nm (8)

with

θk =

[
Re ([Res]1k) · · · Re ([Res]Nmk) Re ([LR]k) Re ([UR]k) · · ·
· · · Im ([Res]1k) · · · Im ([Res]Nmk) Im ([LR]k) Im ([UR]k)

]
∈ R1×(2Nm+4) (9)

and
θλ =

[
fn1 · · · fnNm

ξn1 · · · ξnNm

]
∈ R1×2Nm (10)

The ML estimates of the invariants of the modal model is given by minimizing the cost function (6)
with respect to parameter Θ. Similarly to the MLE formulated in Commom Denominator Model
(MLE-CDM) described in Reference [21], this minimization is accomplished by means of a Gauss-Newton
optimization algorithm combined with Levenberg-Marquardt approach to guarantee a continuous
reduction of the cost function over the performed iterations. In case of real coefficients, each Gauss-Newton
iteration is performed in two steps:

1. Solve the normal equations

Re
(

JH
i Ji

)
(∆Θi) = −Re

(
JH
i Ei

)
for ∆Θi (11)
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2. Compute an update of the previous solution

Θi+1 = Θi + ∆Θi (12)

with Ei = E(Θi) representing the equation error, Ji = ∂E(Θi)
∂Θi

the Jacobian matrix and ∆Θi the
perturbation on the parameters Θ evaluated at the ith iteration. The error equation or so-called
residual vector is given by

E(Θi) =


E1(Θi)

E2(Θi)
...

ENo Ni (Θi)

 ∈ CN f No Ni×1, Ek(Θi) =



Ĥk(ω1,Θi)−Hk(ω1)
σHk(ω1)

Ĥk(ω2,Θi)−Hk(ω1)
σHk(ω1)

...
Ĥk(ωNf

,Θi)−Hk(ωNf
)

σHk(ωNf
)


∈ CN f×1, k = 1, 2, · · · , No Ni (13)

and the Jacobian matrix by

J =


Y1 0 · · · 0 X1

0 Y2 · · · 0 X2
...

...
. . .

...
...

0 0 · · · YNo Ni XNo Ni

 (14)

with Yk ∈ CN f×2(Nm+2) containing the derivatives of the equation error (13) with respect to the real
and imaginary parts of the kth element of the residue matrices [Res]r and to the real and imaginary
parts of the kth element of the upper and lower residual terms, [LR] and [UR]; and Xk ∈ CN f×2Nm

the derivatives with respect to the natural frequencies and damping ratios. The entries Yk and Xk are
computed, respectively, by

Yk =

 ∂Ek(Θ)
∂Re([Res]1k)

· · · ∂Ek(Θ)

∂Re([Res]Nmk)
∂Ek(Θ)

∂Re([LR]k)
∂Ek(Θ)

∂Re([UR]k)
· · ·

· · · ∂Ek(Θ)
∂Im([Res]1k)

· · · ∂Ek(Θ)

∂Im([Res]Nmk)
∂Ek(Θ)

∂Im([LR]k)
∂Ek(Θ)

∂Im([UR]k)

 (15)

and
Xk =

[
∂Ek(Θ)

∂ fn1

∂Ek(Θ)
∂ fn2

· · · ∂Ek(Θ)
∂ fnNm

∂Ek(Θ)
∂ξn1

∂Ek(Θ)
∂ξn2

· · · ∂Ek(Θ)
∂ξnNm

]
(16)

with the partial derivatives in each entry computed according the expressions found in Appendix C.
By taking advantage of the block structure of the Jacobian matrix, the normal Equation (11) are
rewritten as follows

R1 0 · · · 0 S1

0 R2 · · · 0 S2
...

...
. . .

...
...

0 0 · · · RNo Ni SNo Ni

S1
T S2

T · · · SNo Ni
T ∑No Ni

k=1 Tk





∆θ1

∆θ2
...

∆θNo Ni

∆θλ


= −



Re
(
YH

1 E1
)

Re
(
YH

2 E2
)

...

Re
(

YH
No Ni

ENo Ni

)
∑No Ni

k=1 Re
(
XH

k Ek
)


(17)

with
Rk = Re

(
YH

k Yk

)
∈ R2(Nm+2)×2(Nm+2)

Sk = Re
(

YH
k Xk

)
∈ R2(Nm+2)×2Nm

Tk = Re
(

XH
k Xk

)
∈ R2Nm×2Nm
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2.2.1. Fast Estimation of the Perturbations on Modal Parameters

From Equation (17), the perturbation on the coefficients ∆θk (i.e., the perturbations on the real and
imaginary parts of the modal residues and on the real and imaginary parts of the upper and lower
residuals) can be written as a function of the perturbation on the poles, ∆θλ, as

∆θk = −R−1
k

(
Re
(

YH
k Ek

)
+ Sk∆θλ

)
(18)

By making use of Equation (18), the perturbations ∆θk can eliminated from the normal
Equation (17), yielding

( Nk

∑
k=1

Tk − ST
k R−1

k Sk

)
∆θλ =

No Ni

∑
k=1

ST
k R−1

k Re
(

YH
k Ek

)
− Re

(
XH

k Ek

)
(19)

or in a more compact form
M1∆θλ = M2 (20)

with

M1 =
No Ni

∑
k=1

Tk − ST
k R−1

k Sk,

M2 =
No Ni

∑
k=1

ST
k R−1

k Re
(

YH
k Ek

)
− Re

(
XH

k Ek

) (21)

This elimination decreases the memory, as well as the time required to run the algorithm. As for
the MLE-CDM [21], an efficient implementation of the MLE-PMM is only possible if the variances are
taken into account in the cost function (6). Also, because it uses the noise information as a weighting
in its cost function, the MLE-PMM can handle measurements with a large dynamical range. Once the
perturbations on the natural frequencies and damping ratios are calculated by means of Equation (19),
then perturbations on the modal residues and on the upper and lower residuals are computed using
Equation (18).

It is worth highlighting that, although the derivation of the reduced normal equations as in
Equation (20) follows a strategy similar to those in References [1,14], the resulting system of equations
is different. This follows from the fact that the system of equations represented by Equation (20) is
formulated with the Pole-residue Modal Model with upper and lower residuals (4). The derivation of
the reduced normal equations as in Equation (21) is described in Appendix B.

2.2.2. Estimation of the Covariance of the Measured FRFs

The estimation of the uncertainty bounds on the identified modal parameters is only possible
if the variance of the noise is taken into account in the cost function (6). In the formulation of the
MLE-PMM proposed in this paper, it was considered the following assumptions for the estimation of
this variance [7]:

• the noise on the measured FRFs is circular complex normally distributed;
• the noise on the measured FRFs is zero-mean valued;
• the noise on the measured FRFs is uncorrelated over the frequencies; and
• the noise on the measured FRFs is uncorrelated over the outputs.

The estimation of this variance depends on the estimator used in the non-parametric estimation
of the FRFs. If the H1 and H2 estimators are used to estimate the FRFs, the variance can be computed
from the coherence function [22]. In case of Single Input Multiple Output (SIMO) systems, the variance
of the H1 FRF estimator can be calculated by [23]
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σ̂2
Hoi

=
1

Nb

(
1− γ2

oi
γ2

oi

)
|Hoi|2 (22)

where Nb is number of time data segments used to estimate the FRF and γ2
oi is the coherence function.

This function is commonly used in EMA to indicate how the output is correlated with the input.
The closer to one this function is, the more the outputs are influenced by the inputs. On the other hand,
the closer to zero it is, the more the outputs are contaminated by noise. Assuming Multiple Input
Single Output (MISO) and Multiple Input Multiple Output (MIMO) systems with noise uncorrelated
over outputs, the covariance matrix of the oth row of the FRF matrix is given by [22]

Cov
(

Ho(ω f )
)
=

1
Nb

(
1−mγ2

o(ω f )
)

Ŝyoyo Ŝ−1
uu (23)

where γ2
o(ω f ), Ŝyoyo and Ŝuu are the multiple coherence function, the autopower spectrum of the

output and the autopower spectrum of the input, respectively, with the subscript yo denoting the DFT
spectrum of a single measured output.

2.2.3. Convergence of the ML Algorithm

The MLE-PMM algorithm optimizes iteratively the starting estimates provided by the LSCF.
This is accomplished by setting a maximum number of iterations and a value for the relative
error between two consecutive iterations of the ML-PMM algorithm (i.e., |l(Θi+1)− l(Θi)| /l(Θi),
with l denoting the cost function to be minimized and i the iteration number). In order to avoid
local minima and enlarge the convergence region of the Gauss-Newton algorithm, the following
Levenberg-Marquardt form of Equation (11) should be used [23] to ensure that the cost function
decreases during the performed iterations(

JH
i Ji + λLM(JH

i Ji)D

)
= −∆Θi JH

i Ei (24)

Increasing the Levenberg-Marquardt parameter λLM in Equation (24) forces the cost function
to decrease but reduces the convergence speed. Normally λLM = 0 is used as an initial value and
then it is adapted in every iteration according to the variation of the cost function. If the cost function
increases, the value of parameter λLM is increased, otherwise, it is decreased [22].

2.2.4. Estimation of the Uncertainty Bounds

One of the main advantages of the ML-based algorithms is the possibility of estimating the
confidence intervals for the identified modal parameters using the noise information measured together
with the FRFs during the vibration tests. As shown in Reference [24], a good approximation of the
covariance of the ML parameters ΘMLE−PMM is obtained by

Cov([Res] , [LR] , [UR] , λ) '
[
2Re

(
JH
l Jl
)]−1

(25)

with Jl standing for the Jacobian matrix evaluated in the last iteration of the Gaussian-Newton algorithm.
By taking advantage of the structure of the Jacobian matrix and using the matrix inversion lemma [25],
the covariance of the natural frequencies and damping ratios can be estimated independently from the
covariance of the modal residues and from the covariance of the lower and upper residuals, as follows

Cov( fn, ξn) '
1
2

M−1
1 (26)

The advantage of the parametrization used in Equation (8) is that, since all the linearization is
implicitly performed during the computation of the Jacobian matrix, the variances of the natural
frequencies and damping ratios are computed directly from the reduced normal matrix, M1. Therefore,
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the use of additional linearization formulas is avoided if one is only interested on these variances.
However, if one is also interested on the variances of the real and imaginary parts of the poles,
they need to be linearised around Cov( fn, ξn) by means of the following linearization formulas

Var(Re (λm)) ' 4π2

{
fnm

ξnm

}T

Cov( fnm , ξnm)

{
fnm

ξnm

}

Var(Im (λm)) ' 4π2(1− ξ2
nm)

{
1

− fnm ξnm
1−ξ2

nm

}T

Cov( fnm , ξnm)

{
1

− fnm ξnm
1−ξ2

nm

} (27)

The covariance of the modal residues and the upper and lower residuals are estimated by

Cov([Res]k , [LR]k , [UR]k) '
1
2

(
R−1

k + R−1
k Sk M−1

1 SH
k R−1

k

)
(28)

Once the covariances of the real and imaginary parts of the modal residues are computed,
the covariance of the mode shapes and of the modal participation factors are estimated by following
the procedure described in Reference [26].

2.2.5. Logarithmic MLE-PMM

Another variant of the proposed MLE-PMM can be derived by minimizing the following “log-like”
cost function

l(Θ)logML-PMM =
No Ni

∑
k=1

N f

∑
f=1

∣∣∣Elog
k (Θ, ω f )

∣∣∣2 (29)

where Elog
k (Θ, ω f ) ∈ C1×No Ni N f is the logarithmic equation error given by

Elog
k (Θ, ω f ) =

log(Ĥk(Θ, ω f ))− log(Hk(ω f ))

σ
log
Hk(ω f )

(30)

with σ
log
Hk(ω f )

denoting the standard deviation of the kth element of logarithmic FRF matrix. The relationship

between this standard deviation and the measured one is given by

σ
log
Hk(ω f )

=
σHk(ω f )∣∣∣Hk(ω f )

∣∣∣ , k = 1, 2, . . . , No Ni. (31)

which is a measure of the noise-to-signal (power) ratio of a complex logarithmic function [27].
The strategy used to minimize the cost function (6) can be employed to Equation (29) and the partial
derivatives of the logarithmic error Equation (30) with respect to the invariants of the pole-residue
modal model are computed with the expressions presented in Appendix D.

3. Simulated Data Analysis

In order to validate the proposed implementation of the MLE-MM, two examples are analysed.
The first consists of a simulated EMA of a five-DOF system and the second corresponds to a lattice
tower structure with two pairs of closely spaced modes. In these analyses, the modal parameters
together with their uncertainty bounds were estimated using the new MLE-PMM introduced in
Section 2.2. The results obtained for both examples are presented in following subsections.

3.1. Five-DOF System

The first example used to validate the ML-based approach discussed in Section 2.2 is illustrated
in Figure 2. This system was used in Reference [28] to compare different modal parameter estimation
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techniques in terms of their sensitivity to statistical errors. It is composed by 5 masses supported by
cantilever beams and connected among themselves by arch springs. The exact natural frequencies,
damping ratios and modal masses of the system are given in Table 2, whereas the real modes are
shown in Table 3. These properties were used to generate the FRFs used in simulated EMA.

1 2 3 4 5

discrete

masses

arch springs

x

y

z

cantilever

beams

Figure 2. Five-DOF system connected with arch springs [28].

The system was excited by a white Gaussian noise at masses 1 and 2 and the responses were
measured at all DOFs, resulting in FRF matrix with two columns and five rows. These FRFs were
calculated in the frequency range of 0–80 Hz with a resolution of 0.1 Hz. Afterwards, a colored noise
was introduced in the FRF matrix with a standard deviation of 10%. The noise was added to the real
and imaginary parts independently and was calculated as a percentage of the absolute value of the
FRF at each frequency line. This was achieved by adding a complex random number to the FRF at
each frequency line. This number was computed so that its amplitude is a random number of a normal
distribution and its phase is an uniform random number between 0 and 2π [13].

Table 2. Eigenfrequencies, damping ratios and modal masses of the five-DOF system.

Mode fn [Hz] ξn [%] mi [Kg]

1 26.06 2 2.52
2 36.84 2 2.97
3 51.47 2 0.90
4 56.21 2 1.09
5 62.60 2 1.05

Table 3. Real modes of the five-DOF system.

DOF/Mode 1 2 3 4 5

1 0.7147 1.0000 −0.0911 −0.9230 −0.6083
2 0.7166 0.9999 −0.1493 1.0000 −0.1937
3 0.7981 0.2257 0.1554 −0.1518 1.0000
4 0.8518 −0.5166 1.0000 0.1231 −0.3936
5 1.0000 −0.8590 −0.5860 0.0196 −0.2041

The exact and noisy element(1,1) of the FRF matrix and the corresponding “exact” standard
deviation of the noise are shown in Figure 3a. A set of 5000 FRFs with 800 frequency lines contaminated
with noise was generated to perform Monte Carlo simulations in order to assess the efficiency of
the proposed MLE-PMM. The modal parameters of each dataset were identified with the LSCF and
LSFD estimators and then used as starting values to be optimized by the MLE-PMM algorithm.
The identification of each dataset was performed using the full frequency band, that is, with no upper
and lower residual terms. Though 1000 Monte Carlo simulations would be more than enough to assess
the robustness of the MLE-PMM, a higher number of realizations were performed, in this particular
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simulation example, to also verify its efficiency in predicting the 95% elliptical confidence regions.
A typical stabilization diagram constructed with the LSCF method from the noisy FRF is shown in
Figure 3b.
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Figure 3. Element(1,1) of the FRF matrix contaminated with 10% noise: exact (black line) and noisy
(red line) FRF, noise standard deviation (green line) and exact natural frequencies (vertical lines) (a);
and stabilization diagram (with ‘◦’ denoting a pole with stable frequency and damping and ‘+’ a pole
with stable frequency only) constructed with the LSCF estimator by identifying common denominator
polynomial models with order ranging from 1 to 50 (b).

As a final step of the identification process, 10 iterations of the MLE-PMM were performed to
optimize the modal parameters of each Monte Carlo dataset and estimate their sample standard
deviations. The variation of the LSCF and MLE-PMM estimates for the 3rd and 5th natural frequencies
and damping ratios over the Monte Carlo simulations are shown in Figures 4 and 5, respectively.
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Figure 4. Monte Carlo simulation results for the 3rd identified natural frequency (a) and damping
ratio (b): exact quantity (solid black line), LSCF estimates (blue dots) and MLE-PMM estimates after
10 iterations (red dots).
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Figure 5. Monte Carlo simulation results for the 5th identified natural frequency (a) and damping
ratio (b): exact quantity (solid black line), LSCF estimates (blue dots) and MLE-PMM estimates after
10 iterations (red dots).
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Analyzing these figures, one verifies that, while no changes can be visually perceived for the
estimated natural frequencies with regard to their exact counterparts, a significant improvement in
accuracy of the damping ratio estimates after the optimization with MLE-PMM is clearly visible.
This conclusion is corroborated by the results presented in Table 4 where the results obtained from the
Monte Carlo simulations are compared in terms of mean relative bias error.

Table 4. Monte Carlo simulation results obtained from the simulated EMA of the five-DOF system:
mean natural frequencies and damping rations and their respective relative bias error computed from
the LSCF estimates and from the estimates obtained with the MLE-PMM technique after 10 iterations.

Mode

LSCF Estimates MLE-PMM Estimates (10 Iterations)

µ f̂n
Rel.Bias µξ̂n

Rel.Bias µ f̂n
Rel.Bias µξ̂n

Rel.Bias
(Hz) (% ×103) (%) (% ×102) (Hz) (% ×103) (%) (% ×102)

1 26.0603 1.129 2.0449 2.246 26.0600 0.152 1.9998 0.011
2 36.8404 1.131 2.0317 1.585 36.8398 0.425 1.9999 0.004
3 51.4715 2.927 2.0685 3.423 51.4702 0.337 2.0005 0.025
4 56.2125 4.378 2.0274 1.370 56.2100 0.042 1.9999 0.004
5 62.6006 0.934 2.0275 1.373 62.6001 0.216 2.0000 0.002

One of the main advantages of the MLE-PMM approach herein proposed with regard to the
optimization technique described in Reference [19] is that the former takes into account not only the
FRFs but also the noise information as primary data and, therefore, apart from the modal parameter
estimates, it also predicts the uncertainties on theses estimates. In order to illustrate this capability, the
standard deviations of the natural frequencies and damping ratios predicted after 10 iterations of the
proposed MLE-PMM for the 3rd and 5th modes in each Monte Carlo run are compared to the respective
sample standard deviations in Figures 6 and 7. In these figures, the results obtained with the proposed
MLE-PMM are also compared to those from the MLE-MM described in Reference [14]. Similarly to
the MLE-PMM, the optimization of the pLSCF estimates with the MLE-MM was also performed with
10 iterations in each Monte Carlo run. It is clear from Figures 6 and 7 that the standard deviations
provided by the proposed MLE-PMM are in very good agreement both with their corresponding
sample standard deviations and with standard deviation obtained with MLE-MM.

The estimates for the damping ratios obtained after 10 iterations of the MLE-PMM in each Monte
Carlo run are plotted as a function of the corresponding natural frequency estimates in Figure 8.
Also, in this figure, the ‘classical’ 95% confidence ellipses calculated both with the sample covariance
and the mean covariance computed from the estimates obtained with Equation (26) over 5000 Monte
Carlo runs are shown. It is clearly seen from such figure that not only the shape of the uncertainty
regions defined by the damping ratio and natural frequency estimates but also the estimated 95%
confidence ellipses are in good agreement with the corresponding sample covariance ellipses.
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Figure 6. Monte Carlo simulation results for the five-DOF system example with 10% noise: sample
standard deviation of the natural frequencies (a) and damping ratios (b) estimated for the 3rd mode
both with the MLE-PMM and MLE-MM [14] and their corresponding standard deviation estimates
obtained after 10 iterations.



Appl. Sci. 2019, 9, 3120 13 of 26

1000 2000 3000 4000 5000
Monte Carlo run

0

0.005

0.01

0.015

0.02

S
ta

nd
ar

d 
D

ev
ia

tio
n 

of
 th

e 
5

th

N
at

ur
al

 F
re

qu
en

cy
 [H

z]

Predicted std (MLE-PMM)

Predicted Std (MLE-MM)

Sample Std (MLE-PMM)

Sample std (MLE-MM)

(a)

1000 2000 3000 4000 5000
Monte Carlo run

0

0.005

0.01

0.015

0.02

S
ta

nd
ar

d 
D

ev
ia

tio
n 

of
 th

e 
5

th

D
am

pi
ng

 R
at

io
 [%

]

Predicted std (MLE-PMM)

Predicted Std (MLE-MM)

Sample Std (MLE-PMM)

Sample std (MLE-MM)

(b)

Figure 7. Monte Carlo simulation results for the five-DOF system example with 10% noise: sample
standard deviation of the natural frequencies (a) and damping ratios (b) estimated for the 5th mode
both with the MLE-PMM and MLE-MM [14] and their corresponding standard deviation estimates
obtained after 10 iterations.
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Figure 8. Covariances on the estimates for the natural frequencies and damping ratios obtained
with the MLE-PMM for all modes of the 5-DOF system: estimates obtained after 10 iterations of the
MLE-PMM over the Monte Carlo realizations (blue dots); 95% elliptical confidence regions obtained
from the sample covariance, Cov( f̂n, ξ̂n) (continuous black line); and 95% elliptical confidence regions
obtained from the mean over the covariance estimates provided by the MLE-PMM over the Monte
Carlo simulations (dashed red line).

These results also demonstrate the MLE-PMM capability of providing very accurate confidence
regions for the optimized modal properties. The MLE-PMM capability of predicting the sample
standard deviations for all the identified modes is illustrated in Figure 9 and Table 5. In the former,
the sample standard deviations computed from the 5000 sets of estimates obtained with the Monte
Carlo simulations are compared to the means of the standard deviation estimates provided by the
MLE-PMM. In the latter, this comparison is established, in terms of relative difference, both for the
MLE-PMM and the MLE-MM estimates. Analysing these results, one verifies that the MLE-PMM
provided accurate predictions for the sample standard deviation of all the identified modes, which are
as well in good agreement with the MLE-MM estimates.
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Figure 9. Monte Carlo simulation results for the identified natural frequencies (a) and damping ratios
(b): sample mean and standard deviation (black line) and mean and standard deviation predicted after
10 iterations of MLE-PMM (red line) from a typical Monte Carlo dataset.

Table 5. Monte Carlo simulation results obtained from the simulated EMA of the five-DOF system:
comparison between the sample standard deviations and those predicted in a typical Monte Carlo run
with the proposed MLE-PMM after 10 iterations.

Estimator Mode

Sample Std. Mean Over the Std. Estimates Rel. Difference (dσ,σ̂)

σ f̂n
σξ̂n

σ̂ f̂n
σ̂ξ̂n

dσ f̂n ,σ̂ f̂n
dσξ̂n ,σ̂ξ̂n

(Hz ×103) (% ×102) (Hz ×103) (% ×102) (%) (%)

MLE-PMM

1 3.04 1.20 3.10 1.18 1.74 2.23
2 3.80 1.03 3.80 1.04 0.05 0.38
3 8.83 1.75 8.97 1.73 1.60 1.05
4 6.74 1.20 6.81 1.21 1.12 1.20
5 7.04 1.11 7.02 1.12 0.29 0.51

MLE-MM

1 3.01 1.19 3.06 1.16 1.53 2.15
2 3.70 1.01 3.70 1.01 0.20 0.33
3 8.07 1.59 8.15 1.58 1.01 0.49
4 5.34 0.98 5.47 0.97 2.39 0.35
5 6.37 1.01 6.35 1.00 0.36 0.68

Although it is verified from Figures 6 and 7 and from Table 5 that the MLE-MM provides slightly
lower uncertainty bounds for optimized estimates, the MLE-PMM algorithm is significantly less time
consuming. This is verified in Figure 10 where the performance of the ML-PMM algorithm is compared,
in terms of time consumed over the performed Monte Carlo simulations, to its ML-MM counterpart.
The significant difference in processing time between the two algorithms is explained by the fact that
the dimensions of the system matrices obtained with the MLE-PMM is significantly lower than those
of the MLE-MM.
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Figure 10. Time consumed by MLE-PMM (red line) and MLE-MM [14] (blue line) algorithms over the
Monte Carlo runs.
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3.2. Lattice Tower Example

The second simulated example used to validate the ML approach discussed in Section 2.2 consists
of a finite element model which is illustrated in Figure 11. The example consists of a lattice tower
structure constituted by two segments of equal height and by variable equilateral triangular sections.
The lower section is scaled with regard to the upper one by a factor of 2. This model is composed by
beam elements with 6 DOFs per node. The nodes of the foundations are clamped and the others have
3 DOFs: two translations in x and y and one rotation around z-axis; and the remaining DOFs are set
equal to zero. These settings result in a FE model with a total of Nm = 18 DOFs.

The symmetry of the structure was slightly broken by defining different geometry and materials
to the column elements in order to simulate the behaviour of tower-like structures, which normally
present very closely spaced of bending modes. The real mode shapes of the tower structure are shown
in Table 6. The first 6 modal configurations and the corresponding modal parameters of the FE model
of the lattice tower are presented in Figure 12 and Table 7, respectively.

The structural damping, on the other hand, is modelled as the special case of proportional
damping by setting the damping coefficients of all modes equal to 1%. The structure was excited,
independently, at node 8 in x and y-direction and at node 9 in y-direction with white noise inputs.
The simulated responses were measured in acceleration at the 6 DOFs indicated in Figure 13.
By assuming that the two triangular sections behave as rigid diaphragms, the measured outputs
are enough to yield the modal configurations of the structure. The FRF matrix with 6 rows and
3 columns was calculated in the frequency range of 0–10 Hz with a resolution of 10 mHz. Afterwards,
a colored noise was introduced in the FRF matrix with a standard deviation of 5%.

Figure 11. Finite element model of the tower example used in the simulated analysis.

(a) (b) (c) (d) (e) (f)

Figure 12. First six mode shapes of the tower structure: 1st bending mode in Y direction (BY1) (a),
1st bending mode in X direction (BX1) (b), 1st torsional mode (T1) (c), 2nd bending mode in Y direction
(BY2) (d), 2st bending mode in X direction (BX2) (e) and 2nd torsional mode (T2) (f).
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Table 6. Real modes of the lattice tower structure used in simulation examples.

DOF/Mode 1 2 3 4 5 6

1 0.4468 −0.6874 0.3127 0.3392 0.6939 0.1024
2 −0.6972 −0.4527 −0.1825 −0.6996 0.3094 −0.0583
3 −0.1535 0.0972 0.6919 0.1836 0.1287 −0.0468
4 0.4489 −0.6965 0.0014 0.3186 0.6843 0.0022
5 −0.7059 −0.4370 0.3573 −0.7115 0.3235 0.1151
6 0.1269 0.1106 0.6946 −0.1849 0.0980 −0.0492

Table 7. Modal configurations of the FE model of the lattice structure.

Mode Type fni [Hz] ξni [%] mi [Kg]

1 1st bending mode in Y direction (BY1) 1.2869 1.0 2608.8271

2 1st bending mode in X direction (BX1) 1.2937 1.0 2592.8286

3 1st torsional mode (T1) 2.2251 1.0 281.0965

4 2nd bending mode in Y direction (BY2) 3.8713 1.0 1431.1279

5 2nd bending mode in X direction (BX2) 3.8932 1.0 1410.8619

6 2nd torsional mode (T2) 6.1745 1.0 54.2551

Figure 13. Sensors and measured directions.

The noise was added to the FRFs following the same procedure described in the previous example.
The exact and noisy element(1,1) of the FRF matrix, the corresponding exact standard deviation of the
noise as well as the exact natural frequencies are shown in Figure 14. A set of 1000 FRFs with 1000
frequency lines contaminated with noise was generated to perform Monte Carlo simulations in order
to assess the efficiency of the proposed MLE-PMM when dealing with closely spaced modes. In the
first step of the identification of each dataset, a stabilisation diagram was constructed with the LSCF
technique from the measured FRFs and the approach based on Hierarchical Clustering described in
References [29,30] was subsequently used to automatically identify the physical modal properties.

A typical stabilization diagram constructed by identifying models with order ranging from 30 to
60 is represented in Figure 15. Next, the FRF matrix was synthesized from the estimates obtained with
the LSCF technique was then used as starting guess by the MLE-PMM. Finally, a total of 20 iterations
were performed, both to optimize the estimates obtained with LSCF in the first step and to compute
confidence intervals of the optimized estimates. Differently from the previous application example,
a higher number of iterations was used in these simulations to secure the convergence of the cost
function l(Θ). This difference is explained by the fact that the system being optimized in this particular
simulation example comprises vibration modes with closely spaced natural frequencies and, therefore,
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the ML estimator needs to iterate more times to reach convergence. Similarly to the previous application
example, the optimization with the MLE-PMM was carried out using again the full frequency band,
i.e., with no out-of-band modes.
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Figure 14. Element(1,1) of the FRF matrix contaminated with 5% noise: exact and noisy FRF,
noise standard deviation and exact natural frequencies (vertical lines) (a); and details of the close
spaced modes around 1.29 Hz (a) and 3.88 Hz (b).
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Figure 15. Typical stabilization diagram constructed with the LSCF for model orders ranging from 30 to 60.

The variation of the natural frequency and damping ratio estimates for modes 2 and 5 obtained
both with the LSCF and MLE-PMM over the Monte Carlo simulations are shown in Figures 16 and 17
and the results obtained in terms of relative bias error for all the identified modes are synthesized in
Table 8.
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Figure 16. Monte Carlo simulation results for the 2nd identified natural frequency (a) and damping
ratio (b): exact quantity (solid black line), LSCF estimates (blue dots) and MLE-PMM estimates after
20 iterations (red dots).
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Figure 17. Monte Carlo simulation results for the 5th identified natural frequency (a) and damping
ratio (b): exact quantity (solid black line), LSCF estimates (blue dots) and MLE-PMM estimates after
20 iterations (red dots).

Table 8. Monte Carlo simulation results obtained from the simulated EMA of the lattice tower structure:
mean natural frequencies and damping rations and their respective relative bias error computed from
the LSCF estimates and from the estimates obtained with the MLE-PMM technique after 20 iterations.

Mode

LSCF Estimates MLE-PMM Estimates (20 Iterations)

µ f̂n
Rel.Bias µξ̂n

Rel.Bias µ f̂n
Rel.Bias µξ̂n

Rel.Bias
(Hz) (% ×103) (%) (% ×10) (Hz) (% ×103) (%) (% ×10)

1 1.2869 0.294 1.0000 0.003 1.2869 0.050 1.0003 2.816
2 1.2937 0.839 1.0020 20.201 1.2937 0.272 1.0000 0.334
3 2.2251 0.107 1.0001 0.723 2.2251 0.001 0.9999 1.282
4 3.8712 0.154 1.0007 6.951 3.8713 0.209 1.0002 2.035
5 3.8932 0.805 1.0000 0.014 3.8932 0.002 0.9998 1.957
6 6.1745 0.119 1.0004 3.687 6.1745 0.059 1.0000 0.001

By comparing the results obtained before and after the optimization with MLE-PMM shown in this
table, it is verified that no significant reduction in terms of the bias error was obtained after 20 iterations
of the MLE-PMM with regard to the LSCF estimates. The mean of standard deviation estimates for
the natural frequencies and damping ratios of modes 2 and 5 predicted by the proposed MLE-PMM
after 20 iterations are compared to their respective sample standard deviations in Figures 18 and 19.
By inspecting these figures, one verifies that, even in case of closely spaced modes, the MLE-PMM
provides very good estimates for the sample standard deviations.
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Figure 18. Monte Carlo simulation results for the lattice tower example with 5% of noise level: sample
standard deviation of the natural frequencies (a) and damping ratios (b) (solid line) estimated for the
2nd mode and the corresponding standard deviations predicted from a typical Monte Carlo dataset
after 20 iterations of the MLE-PMM (dots).
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Figure 19. Monte Carlo simulation results for the lattice tower example with 5% of noise level: sample
standard deviation of the natural frequencies (a) and damping ratios (b) (solid line) estimated for the
5th mode and the corresponding standard deviations predicted from a typical Monte Carlo dataset
after 20 iterations of MLE-PMM (dots).

These results are also verified in Figure 20 and Table 9, where the sample standard deviations
of all the identified natural frequencies and damping ratios are compared to those predicted by the
MLE-PMM. In Figures 18 and 19 and in Table 9, the estimates for the standard deviations provided by
the MLE-PMM are also compared to the estimates obtained with MLE-MM proposed by Reference [14]
after 20 iterations. From this comparison it is concluded that, even though the MLE-PMM provides
very accurate estimates for the uncertainty bounds of its optimized modal parameter estimates, these
uncertainty intervals are significantly higher than those provided by the MLE-MM. This leads to the
conclusion that, in case of closely spaced modes, the optimisation with the MLE-PMM is not as efficient
as in case of reasonably or well separated modes.
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Figure 20. Monte Carlo simulation results for the identified natural frequencies and damping ratios:
sample (black line) and predicted (red line) means and standard deviations of natural frequencies (a)
and damping ratios (b) provided by the proposed MLE-PMM method after 20 iterations.

Table 9. Monte Carlo simulation results obtained from the simulated EMA of the five-DOF system:
comparison between the sample standard deviations and those predicted in a typical Monte Carlo run
with the proposed MLE-PMM after 20 iterations.

Estimator Mode

Sample Std. Mean Over the Std. Estimates Rel. Difference (dσ,σ̂)

σ f̂n
σξ̂n

σ̂ f̂n
σ̂ξ̂n

dσ f̂n ,σ̂ f̂n
dσξ̂n ,σ̂ξ̂n

(Hz ×103) (% ×102) (Hz ×103) (% ×102) (%) (%)

MLE-PMM

1 0.22 1.68 0.22 1.70 2.00 1.52
2 0.21 1.67 0.22 1.70 3.35 2.08
3 0.08 0.36 0.08 0.37 0.26 1.30
4 0.39 1.01 0.37 0.97 4.54 4.45
5 0.39 1.01 0.38 0.97 3.33 3.97
6 0.13 0.21 0.13 0.22 3.05 3.27
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Table 9. Cont.

Estimator Mode

Sample Std. Mean Over the Std. Estimates Rel. Difference (dσ,σ̂)

σ f̂n
σξ̂n

σ̂ f̂n
σ̂ξ̂n

dσ f̂n ,σ̂ f̂n
dσξ̂n ,σ̂ξ̂n

(Hz ×103) (% ×102) (Hz ×103) (% ×102) (%) (%)

MLE-MM

1 0.05 0.38 0.05 0.37 1.54 1.56
2 0.05 0.36 0.05 0.37 2.86 2.88
3 0.08 0.33 0.08 0.34 0.86 1.44
4 0.11 0.27 0.11 0.28 2.07 3.21
5 0.11 0.28 0.11 0.28 2.10 0.64
6 0.13 0.20 0.13 0.21 1.66 3.46

4. Conclusions

In this paper, a novel ML-based estimator formulated in pole-residue modal model is proposed.
Just like any other ML-based approach, the MLE-PMM introduced in this paper requires a good
starting guess to assure convergence over the performed Gauss-Newton iterations. Despite the fact
that any LS-based identification technique can be used to provide the starting guess, the proposed ML
approach is combined with the LSCF estimator to retain the multi-reference information and improve
the accuracy of the LS estimates. The idea of combining the ML-PMM with LSCF estimator aims at
taking advantage of the particular features of each estimators, that is, (i) the fast modal parameter
estimation obtained with the latter; and (ii) the numerical stability of the former. It was verified that,
when combined with the LSCF estimator, the MLE-PMM is capable of improving the accuracy of the
LSCF estimates and providing confidence intervals for the optimized estimates.

The main advantage of the proposed MLE-PMM with regards to the MLE-MM is that, due to the
reduced dimension of the system matrices, it is significantly less time consuming, as demonstrated in
the first application example presented in Section 3.1. Another distinguishing feature of the derived
ML approach is that, due to the parametrization used in its formulation, the variances of the natural
frequencies and damping coefficients are estimated directly from the Jacobian matrix. Therefore, the use
of additional linearization formulas is avoided if one is only interested on these variances. The main
disadvantages, however, are in fact, related to the limitations of modal model in pole residue form.
These disadvantages include: (1) difficulty of distinguishing between close spaced modes; (2) difficulty
in accurately synthesizing the FRF matrix once the mode shapes and modal participation factor vectors
are estimated from the modal residues by means of the singular value decomposition; and (3) difficulty
in fully optimizing the LSCF modal parameter estimates used as starting guess in case of closely
spaced modes.

When dealing with reasonably or well separated modes, however, it is observed that MLE-PMM
performs very well when compared to it modal model based counterpart. Two application examples
were used to validate the proposed ML-based estimator. The first consisted of well separated whereas
the second of closely spaced modes. From the simulations with former, it was demonstrated the
ability of the MLE-PMM technique to significantly reduce the bias error of the LSCF estimates and
predict the uncertainties for the optimized estimates. This is demonstrated by the results presented
in Tables 4 and 5. From the simulations with the latter, it was verified (as shown in Tables 8 and 9)
that, even in case of closely spaced modes, the proposed MLE-PMM was capable of reducing the
bias error of the LSCF estimates and providing reliable predictions for the confidence intervals of the
optimized estimates.
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Appendix A. Identification of Modal Residues and Upper and Lower Residuals with the
LSFD Technique

When the poles λm are determined from a preliminary LS estimation, the modal residues [Res]m
and the matrices [LR] and [UR] of the residual model can be estimated in a linear least squares sense
by minimizing the following error equation with respect the remaining unknown invariants in the
pole-residue modal model

Eo(Θ, ω) =
Nm

∑
r=1

[Res]ro
jω− λr

+
[Res∗]ro
jω− λ∗r

+ a(ω) [LR]o + b(ω) [UR]o − Ho(ω) (A1)

with the subindex “o” designating the oth row of a matrix, E(Θ, ω) the error matrix and Θ representing
the row vector containing the unknown parameters given by

ΘT =
[
Re ([Res])T

1o · · · Re ([Res])T
Nmo Im ([Res])T

1o · · · Im ([Res])T
Nmo [LR]To [UR]To

]
∈ R(2Nm+2)×Ni (A2)

Writing down Equation (A1) for each frequency line f ( f = 2, 3, · · · , N f ), yields

Eo(Θ) = JΘ− Ho = 0 (A3)

with Eo(Θ) and Ho given now by

Eo(Θ) =


Eo(Θ, ω2)

...
Eo(Θ, ωN f )

 ∈ C(N f−1)×Ni , Ho =


Ho(ω2)

...
Ho(ωN f )

 ∈ C(N f−1)×Ni (A4)

and the corresponding Jacobian matrix, J ∈ C(N f−1)×(2Nm+2), by

J =



(
1

jω2 − λ1
+

1
jω1 − λ∗1

)
· · ·

(
1

jω2 − λNm

+
1

jω2 − λ∗Nm

) (
j

jω2 − λ1
− j

jω2 − λ∗1

)
· · ·

(
j

jω2 − λNm

− j
jω2 − λ∗Nm

)
a(ω2) b(ω2)

...
. . .

...
...

. . .
...

...
...(

1
jωN f − λ1

+
1

jωN f − λ∗1

)
· · ·

(
1

jωN f − λNm

+
1

jωN f − λ∗Nm

) (
j

jωN f − λ1
− j

jωN f − λ∗1

)
· · ·

(
j

jωN f − λNm

− j
jωNf

−λ∗Nm

)
a(ωN f ) b(ωN f )


(A5)

It is straightforward to solve Equation (A3) for Θ in a linear least squares sense. Yet, in order to
guarantee the realness of Θ, J and Ho are replaced in Equation (A3), respectively, by

(J)re =
[
Re (J) Im (J)

]
, (Ho)re =

[
Re (Ho)

Im (Ho)

]
(A6)

and, after some manipulations of the resulting expression, the following equation can be derived to
compute the modal residues and the upper and lower matrices of the residual model
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

Re ([Res])1o
...

Re ([Res])Nmo
Im ([Res])1o

...
Im ([Res])Nmo

[LR]o
[UR]o


=
(
Re
(

JH J
))−1 Re

(
JH Ho

)
(A7)

Appendix B. Derivation of the Reduced Normal Equations

Since the Jacobian matrix as in Equation (14) normally contains a huge amount of elements, the
computation of the inverse of the normal equations as in (17) slows down the estimation process
with the MLE-PMM. Furthermore, the numerical stability of the Gauss-Newton algorithm can be
compromised depending on the conditioning of this matrix. In order to avoid these issues, the reduced
normal equations can be computed instead. The derivation of the reduced normal equations for the
MLE-PMM described in Section 2.2 starts by rewriting Equation (17) in a more compact form, as[

R S
ST T

]{
∆θ

∆θλ

}
= −

{
U
V

}
(A8)

with

R =

R1 · · · 0
...

. . .
...

0 · · · RNo Ni

 , S =

 S1
...

SNo Ni

 , T =
No Ni

∑
k=1

Tk

∆θ =


∆θ1

...
∆θNo Ni

 , U =


Re
(
YH

1 E1
)

...

Re
(

YH
No Ni

ENo Ni

)
 , V =

No Ni

∑
k=1

Re
(

XH
k Ek

) (A9)

From Equation (A8), one can write{
R∆θ + R∆θλ = −U

ST∆θ + T∆θλ = −V
(A10)

Isolating ∆θ in the first set of Equations (A10) and inserting the resulting expression into the
second set, yields

(T − ST R−1S)∆θλ = ST R−1U −V (A11)

Now replacing Equations (A9) into (A11), gives

( Nk

∑
k=1

Tk − ST
k R−1

k Sk

)
∆θλ =

No Ni

∑
k=1

ST
k R−1

k Re
(

YH
k Ek

)
− Re

(
XH

k Ek

)
or simply

M1∆θλ = M2
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Appendix C. Partial Derivatives of the Classical ML-PMM

The partial derivatives in entries Yk and Xk of the classical ML-PMM, given by Equations (15)
and (16), are computed by

∂Ek(Θ)

∂Re ([Res]mk)
=



1
σHk(ω1)

(
1

(jω1−λm)
+ 1

(jω1−λ∗m)

)
...

1
σHk(ωNf

)

(
1

(jωNf
−λm)

+ 1
(jωNf

−λ∗m)

)


, m = 1, 2, · · · , Nm

∂Ek(Θ)

∂Im ([Res]mk)
=



j
σHk(ω1)

(
1

(jω1−λm)
− 1

(jω1−λ∗m)

)
...

j
σHk(ωNf

)

(
1

(jωNf
−λm)

− 1
(jωNf

−λ∗m)

)


∂Ek(Θ)

∂Re ([LR]k)
=



a(ω1)
σHk(ω1)

...
a(ωNf

)

σHk(ωNf
)

 ,
∂Ek(Θ)

∂Re ([UR]k)
=



b(ω1)
σHk(ω1)

...
b(ωNf

)

σHk(ωNf
)



∂Ek(Θ)

∂Im ([LR]k)
=



ja(ω1)
σHo1(ω1)

...
ja(ωNf

)

σHo1(ωNf
)

 ,
∂Ek(Θ)

∂Im ([UR]k)
=



jb(ω1)
σHk(ω1)

...
jb(ωNf

)

σHk(ωNf
)



∂Ek(Θ)

∂ fnm

=



2π
|λm |σHk(ω1)

(
[Res]kmλm
(jω1−λm)2 +

[Res]∗kmλ∗m
(jω1−λ∗m)2

)
...

2π
|λm |σHk(ωNf

)

(
[Res]kmλm

(jωNf
−λm)2 +

[Res]∗kmλ∗m
(jωNf

−λ∗m)2

)


and

∂Ek(Θ)

∂ξnm

=



j|λm |
Im(λm)σHk(ω1)

(
[Res]kmλm
(jω1−λm)2 −

[Res]∗kmλ∗m
(jω1−λ∗m)2

)
...

j|λm |
Im(λm)σHk(ωNf

)

(
[Res]kmλm

(jωNf
−λm)2 −

[Res]∗kmλ∗m
(jωNf

−λ∗m)2

)


Appendix D. Partial Derivatives of the Log-Like ML-PMM

The partial derivatives in entries Yk and Xk of the log-like ML-PMM, given by Equations (15)
and (16), are computed by

∂Ek(Θ)

∂Re ([Res]mk)
=



|Hk(ω1)|
σHk(ω1)

(
1

(jω1−λm)
+ 1

(jω1−λ∗m)

)
...∣∣∣Hk(ωNf

)
∣∣∣

σHk(ωNf
)

(
1

(jωNf
−λm)

+ 1
(jωNf

−λ∗m)

)


, m = 1, 2, · · · , Nm



Appl. Sci. 2019, 9, 3120 24 of 26

∂Ek(Θ)

∂Im ([Res]mk)
=



j|Hk(ω1)|
σHk(ω1)

(
1

(jω1−λm)
− 1

(jω1−λ∗m)

)
...

j
∣∣∣Hk(ωNf

)
∣∣∣

σHk(ωNf
)

(
1

(jωNf
−λm)

− 1
(jωNf

−λ∗m)

)



∂Ek(Θ)

∂Re ([LR]k)
=



a(ω1)|Hk(ω1)|
σHk(ω1)

...
a(ωNf

)
∣∣∣Hk(ωNf

)
∣∣∣

σHk(ωNf
)


,

∂Ek(Θ)

∂Re ([UR]k)
=



b(ω1)|Hk(ω1)|
σHk(ω1)

...
b(ωNf

)
∣∣∣Hk(ωNf

)
∣∣∣

b(ωNf
)σHk(ωNf

)



∂Ek(Θ)

∂Im ([LR]k)
=



ja(ω1)|Hk(ω1)|
σHo1(ω1)

...
ja(ωNf

)
∣∣∣Hk(ωNf

)
∣∣∣

σHo1(ωNf
)


,

∂Ek(Θ)

∂Im ([UR]k)
=



jb(ω1)|Hk(ω1)|
σHk(ω1)

...
jb(ωNf

)
∣∣∣Hk(ωNf

)
∣∣∣

b(ωNf
)σHk(ωNf

)



∂Ek(Θ)

∂ fnm

=



2π|Hk(ω1)|
|λm |σHk(ω1)

(
[Res]kmλm
(jω1−λm)2 +

[Res]∗kmλ∗m
(jω1−λ∗m)2

)
...

2π
∣∣∣Hk(ωNf

)
∣∣∣

|λm |σHk(ωNf
)

(
[Res]kmλm

(jωNf
−λm)2 +

[Res]∗kmλ∗m
(jωNf

−λ∗m)2

)


and

∂Ek(Θ)

∂ξnm

=



j|λm ||Hk(ω1)|
Im(λm)σHk(ω1)

(
[Res]kmλm
(jω1−λm)2 −

[Res]∗kmλ∗m
(jω1−λ∗m)2

)
...

j|λm |
∣∣∣Hk(ωNf

)
∣∣∣

Im(λm)σHk(ωNf
)

(
[Res]kmλm

(jωNf
−λm)2 −

[Res]∗kmλ∗m
(jωNf

−λ∗m)2

)


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