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Abstract: In the present work, the metallurgical changes in the welding of clad pipelines are studied.
Clad pipes consist of a complex multi-material system, with (i) the clad being stainless steel or a
nickel-based superalloy, (ii) the pipe being API X60 or X65 high-strength carbon steel, and (iii) the
welding wire being a nickel-based superalloy or stainless steel in the root and hot pass, with a nickel
or iron buffer layer, followed by filling with carbon steel wire. Alternatively, the corrosion resistant
alloy may be used only. During production of the clad pipe, at the diffusion bonding temperature,
substantial material changes may occur. These are carbon diffusion from the carbon steel to the clad,
followed by the formation of hard martensite at the interface on cooling. The solidification behavior
and microstructure evolution in the weld metal and in the heat-affected zone are further discussed for
the different material combinations. Solidification behavior was also numerically estimated to show
solidification parameters and resulting solidification modes.
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1. Introduction

Clad or lined pipes represent cheap alternative to pipes fully made of corrosion-resistant alloys
(CRAs), which are very expensive materials including stainless steel or nickel-based alloys. As a
substrate, a carbon steel is used. Clad pipes are widely used in refineries and petrochemical industries,
fertilizer and chemical industry, power generation, environmental technology, seawater desalination,
pulp and paper manufacturing, the food industry, and shipbuilding [1]. Concerning the oil and gas
industry, clad and lined pipes, including the pipe-in-pipe method, have already been installed in the
North Sea and the Norwegian Sea. These are often made of carbon steel with an inner clad or liner to
protect the carbon steel against hydrogen embrittlement and sulfide stress corrosion cracking. The clad
and liner are most frequently made of austenitic stainless steel, often 316L, or a Ni-based superalloy,
typically Inconel 625. Clad pipes are mainly produced by hot roll bonding, explosion bonding, and weld
overlay. Hot roll bonding is by far the most widely adopted production method [2]. Nickel-based
superalloys also frequently used in the aerospace industry [3].

There are different methods of producing clad pipe, e.g., via a mechanical inner liner.
This technology is a cost-effective alternative to more expensive options such as solid CRAs or
metallurgically bonded clad pipe. The principles are the same as for metallurgically bonded clad
pipes, but involve being connected to the external carbon steel pipe through a mechanical bond.
Recent results [4] claimed that the liner separation is of minor importance and the use of the established
acceptance criterion derived for plain carbon steel pipes can be justified to apply to CRA-lined pipelines.
Both clad pipe and lined pipes can be laid by reeling. Although lined pipes are a cheaper solution than
clad pipes, the welding technology for the former case may be more challenging. Since the welding
solutions for reelable CRA-lined pipe may be considered as key enabling technologies for future
exploitation of deep-water oil and gas reserves, it will not be further addressed in the present work.
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Welding represents a very complicated joining process by the melting and subsequent solidification
of metal forming a hermetic and strong joint. During the process, all four states of matter are present
and interact. The most widely used methods are gas tungsten arc welding (GTAW) and gas metal
arc welding (GMAW). In the case of GTAW, filler wire is added externally to the weld pool where
the tungsten electrode is nonconsumable, while in GMAW, filler wire is added directly since it is a
consumable electrode. Both are very well suited to automated processes [5–7].

The welding of clad pipelines may encounter several challenges, specifically when damage or
leakage occur and the repair of clad pipes is required. Repair of a pipeline implies replacement of
the damaged part with a new pipe section to be joined at the seabed via remote control. Such subsea
operations are very expensive, which makes the robustness of the joining operation of crucial importance.
This led to the development of the welded sleeve concept for pipe repair, which was the only technique
where acceptable robustness could be achieved [8]. In a repair situation, the welded sleeve technique
involves the installation of an oversized pipe segment (sleeve) over the joint by threading the pipe
ends through the sleeve and performing a subsea fillet weld between the pipe and sleeve on each
end [9]. This technique is fully remotely controlled and has been proven by simulating conditions
in a hyperbaric chamber to work down to at least 2500 m depth, corresponding to 250 bar pressure
conditions, for the welding process. However, the sleeve solution is not acceptable for clad pipes due to
the direct exposure to the environment, as it may suffer from corrosion and/or hydrogen embrittlement
during service [10]. A comprehensive review is available for further studies [11] with cohesive zone
numerical modeling [12]. To retain the corrosion resistance of the clad pipe, the root and hot pass
should be deposited with a wire compatible with the clad material. This limits the freedom in the
selection of welding consumables.

In recognition of this situation, the development of hyperbaric butt-welding technology was
initiated with the aim to develop a fully remotely controlled dry welding technology for deep waters
(below about 200 m depth). In addition to the welding technology challenges, there are metallurgical
aspects that need to be considered. Therefore, the present paper addresses the metallurgical aspects in
the welding of clad pipes, involving clad materials such as AISI 316L SS and Inconel 625 (typically of 3
mm thickness) and the typical pipeline API X60/X65 high-strength carbon steels. With the addition
of the specific welding wire—Ni-based superalloys such as Inconel 625 and Alloy 59—a complex
multi-material system is formed that needs more comprehensive understanding. Inconel 625 filler wire
has been proven (high toughness at −30 ◦C) for hot-tap welding operating in subsea conditions [13] in
joining X65 high-strength steel pipelines. Examples from an ongoing research project will be used
to illustrate various microstructure observations, concentrating on the clad, the heat-affected zone
(HAZ) of the pipe and the weld metal, or the fusion zone. Possibly, for onshore operations, a relatively
new method of friction drilling and form tapping can be used to reduce the harmful effect of heat on
welded joints [14].

Under hyperbaric conditions for pipe repair, from a practical standpoint, the use of multiple wires
will be very difficult, such as is frequently employed in conventional clad pipeline welding; i.e., a CRA
alloy for the root and hot pass, followed by a buffer layer of either Fe or Ni, and finally, filler passes by
a matching ferritic wire. In a fully remotely controlled hyperbaric operation, a much simpler solution
with one wire only will be employed throughout the weld. The use of backing gas is applicable since it
is purged into the chamber prior to welding to remove the seawater. The moisture and oxygen content
of the chamber gas must be carefully controlled continuously during welding. Moreover, the use of
one welding process for the root pass and another for the fillers will not be suitable. Although GTAW
is frequently used in the root pass welding of clad pipes due to the smooth surfaces, it is not applicable
in remotely controlled conditions. GMAW is therefore under development for future dry subsea pipe
welding, including the use of an inner clad.

The manuscript is organized as follows: description of the clad pipes and their production is
followed by an explanation of microstructure evolution principles (applicable for both clad pipe
production and welding), applied to the weld metal and HAZ microstructure evolution with different
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material combinations, a description of hyperbaric (repair in subsea level) welding conditions, and an
outline of the potential numerical simulation of the arc physics.

2. Production of Clad Pipes

The metallurgical behavior of clad pipes depends on their production route during fabrication.
Diffusion bonding represents a frequently used technique. During production, a certain temperature
range is required to achieve metallurgical bonding, usually from 0.5Tm to 0.8Tm (where Tm is the
melting temperature). The temperature–time cycle will thus allow the diffusion of alloying elements
that may influence the structural integrity of the pipe. Thus, the interface between the two materials
will attain a gradient of chemical composition and hence produce other microstructures compared
to the two surrounding materials, as indicated in Figure 1. One example is shown in Figure 2,
which shows carbon diffusion into the 316L stainless steel (SS) clad due to the higher solubility in
austenite. The carbon content at the bimetallic or clad/pipe interface on the clad side is between 0.15 and
0.20 wt %. A consequence is that extensive precipitation of Cr23C6 takes place [15]. It is also expected
that other elements such as Ni, Cr, and Mo may diffuse to the interface, although to a lower extent
than carbon due to the lower diffusivity of these large-atom elements. Due to diffusion of alloying
elements, microsegregation may facilitate martensite formation at the interface. Local microhardness
increases of up to 350 HV has been found, as shown in Figure 3, as an indication of martensite presence.
Another influencing factor may be a deformation hardening during the hot-roll bonding process [16].

Measurements made on welded samples gave evidence that martensite was formed. The maximum
microhardness values of 362 and 392 HV in the clad close to the interface for two different macros was
reported [17]. Because of the carbon depletion of the pipeline steel measured by an electron probe
microanalyzer (EPMA), the hardness level on the steel side close to the interface is low (156 HV). As an
example, Line 3 in Figure 2 shows a carbon reduction from 0.16 to 0.03 wt % C. Moreover, some grain
growth of the carbon steel close to the interface was observed, which is also consistent with the lower
hardness in this region. Therefore, remarkable gradients of hardness and microstructure occur across
the interface, which may potentially influence the integrity of the pipe.
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Figure 1. Carbon steel–clad (316L) interface microstructure as observed by (a) optical microscopy and
(b) SEM; 1—the interface layer and 2—the width of the carbon diffusion layer [18].

In contrast to direct cladding with AISI 316, the application of a 30–35 µm nickel interlayer
between the clad and the carbon steel reduces the carbon diffusion into the clad substantially [19].

With the Ni-based alloy 625 as the clad material, there is a higher potential for elemental segregation
than with stainless steel. However, diffusion of Fe into the clad is regarded as a more critical issue.
This is also the case in the cladding of carbon steel with Alloy 625. This alloy is frequently used in
the overlay welding of carbon steels to improve the corrosion resistance, where the dilution with the
substrate is kept low to preserve the initial corrosion resistance of the clad [20].
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It should be noted that the chemical composition of the weld clad/overlay must comply with
the specification of the material. In the case of Alloy 625, the maximum allowable Fe content is 5%
(according to API 5LD [22] specifications) or 10% (according to the DNV GL [23] standard). To achieve
such low dilution, particularly the 5% requirement, the cold metal transfer (CMT) variant of the gas
metal arc welding (CMT-GMAW) is an advantageous process due to lower heat input.

3. Microstructure Evolution

In the welding of clad pipes, it is common to use corrosion-resistant alloys as consumables
(filler wire), often Alloy 59 or Inconel 625, and 304L/309/316L may be used for the root and the hot
pass. Thus, the weld metal (WM) will be different from the pipe material, which is typically X60 or
X65 carbon steel. Therefore, the welded joint of clad pipes consists of three or four different materials.
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Hence, the microstructure and how it influences the final properties of the weldment is complex. In the
following section, microstructures of the WM, HAZ, and clad will be discussed, starting with the
solidification of WM.

3.1. Solidification

3.1.1. Fundamentals of Solidification Theory

Welding of clad pipes is most often performed with an Inconel 625 or an Alloy 59 filler wire.
Sometimes, AISI 309 wire is employed for root and hot pass deposition. Stainless steel solidifies in
different modes according to its chemical composition. In addition, the cooling rate may induce a shift
in solidification [24]. The solidification mode of stainless steel can be divided into four types according
to the ratio between ferrite-(δ) and austenite-(γ) stabilizing elements, i.e., Creq/Nieq [25]:

F (ferritic) mode: L (liquid phase)→ L + δ→ δ→ δ + γ for Creq/Nieq > 2.0 (1a)

FA (ferritic-austenitic) mode: L→ L + δ→ L + δ + γ→ δ + γ→ γ for 1.5 < Creq/Nieq < 2.0 (1b)

AF (austenitic-ferritic) mode: L→ L + γ→ L + δ + γ→ γ + δ→ γ for 1.37 < Creq/Nieq < 1.5 (1c)

A (austenitic) mode: L→ L + γ→ γ for Creq/Nieq < 1.37 (1d)

The values of Creq and Nieq can be calculated by a variety of equations. Olson [26] presented
more than 15 different equations for different purposes (welding, casting) and including/excluding
some of the microalloying elements, such as Cu and Co for Nieq and Nb, Mo, Ti, Al, V, W, and Ta
for Creq. However, the authors [27] had previously used equations by Hammar and Svensson [28] to
determine the solidification of stainless steel weld metals. The Cr and Ni equivalents can be calculated
from Equation (2a) and Equation (2b), respectively. Values are represented by the wt % of the elements.
Based on these equations, the solidified weld metal can be visualized (see Figure 4).

Creq = Cr + 1.37 Mo + 1.5 Si + 2 Nb + 3 Ti (2a)

Nieq = Ni + 22 C + 14.2 N + 0.31 Mn + Cu (2b)

Thus, it is indicated by extrapolation in Figure 4 that the classical austenitic stainless steels like
AISI 309 SS and AISI 316 SS primarily solidify as ferrite.Appl. Sci. 2019, 9, x  6 of 24 
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For Alloy 59, very limited information is available in the literature, while there are numerous
publications on other Ni-based alloys. However, those are mainly precipitation-hardened alloys in
the 7xx series of Inconel alloys, frequently used in aerospace applications. Another frequently used
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Ni-based alloy is Inconel 625, and the nominal chemical compositions of Alloy 59 and Inconel 625 are
outlined in Table 1. The main difference between them is the Nb content of Inconel 625 and the much
higher Mo addition in Alloy 59. The mechanical properties are also comparable, with yield strengths
of ≥340 and 350 MPa for Alloy 59 and Inconel 625, respectively. Their corresponding tensile strengths
are ≥690 and 770 MPa.

Table 1. Comparison of nominal chemical composition (wt %) of different materials.

Alloy Ni Cr Mo Fe Nb Co Mn Ti Si C

Alloy 59 59.0 22.0–24.0 15.0–16.0 ≤1.5 - ≤0.3 ≤0.5 - ≤0.1 ≤0.01

Inconel 625 58.0 20.0–23.0 8.0–10.0 5.0 3.15–4.15 1.0 ≤0.5 0.4 0.5 0.1

X65 0.5 0.02 - 98.5 0.05 - ≤1.4 0.04 0.25 0.07

316L 10.0–14.0 16.0–18.0 3.0 63.0–64.0 - - ≤1.3 - 0.75 ≤0.03

Several experimental studies have been conducted to investigate the behavior of the solidification
in superalloys containing niobium (Nb). Nb-bearing superalloys (like the popular Inconel 625/718)
terminate the solidification by a eutectic-type reaction between γ- and various Nb-rich phases, such as
NbC and Laves phases [29]. The creation of a crystal from an alloy melt causes a local change in the
composition [30]. When the dendrites solidify, elements such as Mo and Nb, as well as impurities,
segregate to interdendritic regions [31]. It was shown [32] that the presence of iron in Ni-based
superalloys lowers niobium solubility in the austenite phase. When iron is in a solid solution in
the γ Ni–Cr phase, the ability of Nb to remain in solution is limited [33] and partitioning of Nb
to interdendritic regions in the WM is increased. The solidification pattern follows Equation (3),
where primary dendrites of γ solidify first with a final microstructure of γ with NbC and Laves phases
precipitated in the interdendritic regions.

L→ L + γ→ L + γ + NbC→ L + γ + NbC + Laves→ γ + NbC + Laves (3)

Niobium-free alloys, such as Alloy 59, solidify by a simple L→ γ transformation without any
eutectic-like reaction and exhibit a relatively narrow solidification temperature range. Solidification
cracking is therefore not expected.

When compared with carbon and low-alloy steels, Ni-based alloys have a high temperature
gradient (in WM) due to lower thermal conductivity, which is related to the high alloying level.
Therefore, a planar solidification front may not be stable, and the primary solidification mode is
cellular-dendritic, as shown in Figure 5. Here, only the grains with a crystallographic preferential
growth orientation (along the (100) direction, Miller index, for metals having a cubic crystal lattice
structure [34]) relationship aligned with the heat flow direction will continue to grow. When the
preferential growth direction of the solid starts to deviate significantly from the heat flow direction,
the growth stops, and new grains nucleate successively with the preferential growth direction nearly
along the heat flow direction. The criterion for constitutional supercooling for plane front instability
can be mathematically estimated [35] as follows:

The plane front will be stable when:
G
R
≥

∆T0

DL
(4a)

Planar instability will occur when:
G
R
<

∆T0

DL
(4b)

Here, G is the temperature gradient (◦C/m) in the liquid, R denotes the solidification front
(or crystal) growth rate (µm/s), ∆T0 is the equilibrium solidification temperature range (at composition
C0), and DL represents the solute diffusion coefficient (m2/s) in liquid. The frequently used G/R ratio is
a solidification morphology parameter.
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In the diagram shown in Figure 5, the range of solidification modes are assumed. Carbon steel
(e.g., X65) has planar solidification in a wide range of temperature gradients due to low alloy content.
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The product GR is related to the cooling rate ε (◦C/s) as follows [36]:

ε = GR (5)

This means that the dendrite spacing increases with increasing cooling time, i.e., with increasing
heat input in welding.

The solidification rate parameter (R) can be estimated empirically based on the angle (α) between
the welding direction and solidification growth direction, or molten surface normal, as shown in
Figure 5. The solidification rate (2D, the top surface) is calculated by the following equation:

R = v cosα (6)

where v is welding speed.
The solidification rate for the 3D case can be calculated according to [37]:

R = v
−
∂T
∂x√(

∂T
∂x

)2
+

(
∂T
∂y

)2
+

(
∂T
∂z

)2
(7)

It should be noted that Equation (5) does not represent a linear relationship due to the complex
heat flow in welding. However, it is assumed to be linear for simplicity to identify solidification
parameters (ε, G, and R).
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3.1.2. Numerical Simulation of Solidification Parameters

In order to estimate solidification parameters by finite element analysis (ABAQUS 6.14 with
DFLUX subroutine programmed in Fortran), combined double Goldak’s ellipsoid and surface Gaussian
heat source were used [38]. Different heat sources are needed to simulate the typical finger penetration
geometry of the GMAW welds, according to Yang and Debroy [39], since there is an impingement of
droplets from the electrode into the weld pool which transports the additional heat. A detailed modeling
procedure and boundary conditions can be found in [40]. Applied thermophysical parameters for the
materials are outlined in Table 2. The results of numerical simulation, achieved by a trial-and-error
method, are presented in Figure 6. The process parameters were set to 7 mm/s as the welding speed
and 5.5 kW (220 A; 25 V) as the arc power. A good agreement with previous experimental results
(for X70 carbon steel) welded under hyperbaric conditions of 10 bar [41] was found.

Table 2. Summary of thermophysical properties for Ni-based alloys and various steels.

Material Density
(kg m−3)

Thermal Conductivity
(W m−1 ◦C−1)

Specific Heat
(J kg−1 ◦C−1)

Solidus Point
(◦C)

Latent Heat of Fusion
(J kg−1 ◦C−1)

Inconel 625/Alloy 59 [42] 8440 10 410 1290 227000
316L SS [43] 7200 19 712 1424 274000

X65 carbon steel [44] 7800 32 726 1494 277000
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Due to different spatial temperature gradients and complex weld pool physics, the cooling rate as
well as solidification rate varies according to the specific location in the WM or the HAZ [43]. Therefore,
in the same WM, different solidification modes are common, as illustrated in Figure 5. At the WM
centerline, the temperature gradient is smaller and the solidification rate faster when compared to the
area near the FL (fusion line or liquid/solid interface) for each selected material. The most widely used
parameter to describe cooling in welding for carbon steel is the cooling time from 800 ◦C to 500 ◦C
(denoted as ∆t8/5), since most phase transformations take place within this range [45]. However, for the
crystal growth rate in WM for any kind of alloy, the cooling rate from the peak temperature to the
solidus line is used. The finite element analysis (FEA) results at the centerline are compiled in Table 3.
The centerline is illustrated in Figure 6. The solidification parameters are outlined in Table 4 for the
liquid/solid interface located at 1/4 of the weld pool length at the solidification front, and in the case of
the top plane, see Figure 7. For the mid-plane case, the angle of the G vector is more complex to find,
since it is normal to the tangential plane for a curved solid/liquid interface. Moreover, this surface is
constantly in motion because it follows the moving heat source.
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Table 3. Estimated solidification parameters at the WM centerline on top-plane. Cooling rate is
calculated for temperature range from peak temperature to solidus point.

Material Cooling Rate,
ε (◦C/s)

Temperature Gradient,
G (◦C/mm)

Solidification Growth
Rate, R (mm/s) F-Factor = G/R

Inconel 625/Alloy 59 1122 160 7.0 23
316L SS 925 132 7.0 19

X65 carbon steel 874 125 7.0 18

Table 4. Estimated solidification parameters at the liquid/solid interface, i.e., solidification front.
Cooling rate is calculated for the temperature range from the peak temperature to solidus point.

Material Cooling Rate,
ε (◦C/s)

Temperature
Gradient, G (◦C/mm)

α Angle
(Degree)

Solidification Growth
Rate, R (mm/s) F-Factor = G/R

Inconel 625/Alloy 59 323 242 79 1.336 181
316L SS 241 166 78 1.455 114

X65 carbon steel 373 149 69 2.509 59
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Blecher et al. [37] established a solidification map of a Ni-based alloy (Inconel 690). For the top
of the weld pool, the R and G values are similar to the estimated values for Inconel 625/Alloy 59
(Table 3; Table 4). Since fiber laser beam welding in the keyhole mode was applied, higher G values for
the deeper part of the weld pool were obtained by Wei et al. [46]. Along the weld centerline, the R
parameter is very similar to the welding speed, meaning that the solidification angle (α), used in
Equation (6), is approximately equal to 0 (cos α = 1) at the centerline, and hence R → v. At the
centerline, the X65 steel has a smaller G value due to higher heat conduction. For the same reason,
the solidification rate for X65 is the highest for the materials studied here. It is important to note that
the R parameter is very sensitive to the α angle (based on Equation (6) and Table 4).
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The primary dendrite arm spacing (λ1) is shown in Figure 8, and has a strong effect on mechanical
properties [36]. Based on Kurz and Fisher [47], a generalized (simplified) formula for the primary
dendrite spacing is:

λ1 = AG−mR−n (8)

here, m (=0.5) and n (=0.25) are constants, and A is a composition-dependent (alloy) material parameter.
Since GR values are obtained and λ1 can be measured from micrographs, the A parameter can be

estimated based on Equation (8).
The secondary dendrite arm spacing (λ2, Figure 8) may also strongly influence the mechanical

properties. Its size will also depend on the cooling rate [36]:

λ2 = B(GR)−n (9)

where B is a material-dependent parameter and n (=1/3) is a constant.
Tertiary dendrites (λ3, Figure 8) have minor effects, and some related studies can be found in [48].

Therefore, these are not discussed in detail here due to their lower importance.
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3.2. Segregation in Welds

Segregation is a defect in welded joints, where the alloying elements are enriched within specific
areas due to motion of liquid and can decrease mechanical properties locally. Segregation is very
common in stainless steels and Ni-based superalloys due to high alloy content, whereas low segregation
tendency in low-carbon steel is observed, except for the segregation of impurities (S, P).

The Scheil equations, or non-equilibrium level rule, describe the solute redistribution during
solidification of an alloy [50]:

CS = kC0(1− fS)
(k−1) (10)

and
CL = C0 fL(k−1) (11)

where CS is the element concentration in the solid, CL is the concentration in liquid, C0 represents the
initial concentration in the liquid, k is the effective segregation coefficient (≤1.0), and fS and fL denote
the volume fraction of solid and liquid, respectively.

The segregation coefficient can be estimated as follows [50]:

k =
CS
CL

(12)
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The segregation coefficient k can also be applied in determination of microsegregation in
solidification, i.e., the distribution of elements between the core of primary dendrites and the
interdendritic areas. Based on Figure 9, it is shown that Mo and Nb segregate to the interdendritic
region, while Ni and to some extent Cr are enriched in the dendrites. Silva et al. [51] reported that the
constant k for Ni and Fe had values just above 1.0, which indicates a slight segregation into the dendrite
core. A coefficient of 1.0 implies that no segregation occurs. In the case of Mo, the coefficient is ~0.9,
resulting in segregation to the liquid metal and hence enriching the interdendritic region. Like Mo,
Nb also segregates to the liquid, but with a greater intensity due to a lower k value of ~0.5. Therefore,
this strong segregation of Nb has been appointed as reason for the formation of the secondary phases
such as the Laves phase in welding with Alloy 625 wire. For the use of Alloy 59 wire, this will not be
the case due to the absence of Nb. The extensive segregation in high-alloy materials can cause residual
stresses during solidification and therefore reduced mechanical properties [52].
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segregation during solidification process, as shown by EDS (energy-dispersive X-ray spectroscopy).
The arrows indicate the interdendritic regions [51].

Carbon diffusion to the interface area has already been shown to take place during production of
the clad pipe. Transportation of the alloying elements may change the phase transformation behavior
at the interface. A temperature for the martensite start transformation (Ms) is strongly influenced by
the chemical composition of the alloy, according to the following, i.e., the Andrews equation [53]:

Ms (◦C) = 539 − 423 C − 30.4 Mn − 17.7 Ni − 12.1 Cr − 7.5 Mo (13)

Different Ms temperatures can be used for Fe–Mn–Ni–Cr austenitic weld metal, which can be
found in [26].

With a carbon content increase from 0.03 to 0.20 wt % C, the transformation temperature is reduced
by around 85 ◦C. With segregation of the alloying elements, being Ni and Cr in the present case, the Ms

temperature will decrease by 37 ◦C per wt % Ni and 11 ◦C per wt % Cr. Note that for clad steels,
this will be the segregated concentration, not that of the initial bulk.

In addition to the influence from martensite transformation, the enhanced carbon diffusion to
the clad side causes extensive precipitation of chromium carbides at austenite grain boundaries in
the clad [54]. The precipitation kinetics of Cr23C6 is shown in Figure 10, clearly showing how carbon
raises the precipitation temperature, as indicated by the dotted red arrow. With a carbon content
of 0.15–0.20 wt % in the clad close to the interface, carbides will spontaneously precipitate as soon
as the temperature in hot rolling or diffusion bonding of the clad pipe falls to around 900–950 ◦C.
These reactions may have a negative impact of the corrosion resistance of the clad layer, since part of
the Cr content will be consumed by the precipitates.
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Selection of CRAs for welding wires, such as Alloy 59 or Inconel 625, or stainless steel, will form
welds without solid-state phase transformations. This means that the solidification behavior controls
the size and shape of grains, microstructure, macro- and microsegregation, distribution of inclusions,
defects such as porosity and hot cracks, and ultimately the mechanical properties of the WM, as well as
strongly influencing the corrosion resistance.

3.3. Weld Metal Microstructures

The WM microstructure in clad pipes is complex as it is a mixture of two different materials
(mixed zone) for the root pass (see Figure 11a), the filler wire, and the clad material. For the hot pass
(see Figure 11b), the situation can be even more complicated as a third material, the carbon steel, is also
incorporated. The use of the term “hot pass” is due to the weld being deposited after the root pass
within limited timing. The Schaeffler diagram [56], DeLong [57] diagram, and WRC-1992 [58] diagram
have limited use in the prediction of the final microstructure of the WM for Ni-based superalloys due
to very high Nieq values (>55–60 wt %) and low dilution with the carbon steel. The final microstructure
will be the Ni-rich γ-phase. In addition to the chemical composition of the WM, the cooling rate must
be considered. It should be noted that the CMT process is often used for root pass welding [59] as a
low-heat-input welding process. It tends to provide high cooling rates in the WM, i.e., with ∆t8/5 values
even below 2.5 s at atmospheric pressure, which tends to decrease further (to 0.6 s) with increasing
pressure [60]. Such fast cooling rates may promote martensite formation.
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3.3.1. Root Pass Welding with Ni-Based Wire and Stainless Steel Clad

Electron beam welding (EBW) of Inconel 617 and 310 SS provided a complex microstructure due
to nonequilibrium conditions and fast solidification [61]. Due to higher G/R values, the WM consisted
of small columnar dendrites, which were located near the edge towards the Ni-alloy solid surface.
The core of the dendrites consisted of Ni, Mo, and Nb. No cracks or other defects were found. At the
weld centerline, a uniform equiaxed cellular structure was obtained. The XRD analyses showed the
same γ-Ni matrix lattice in both the base metal and the WM of Inconel 625. The WM hardness was at
the same level as Inconel 625 (230 HV), but dropped sharply to 150 HV close to the 304L SS.

Inconel 617 and 310 SS as base metals were joined by applying different filler materials, such as
Inconel 82, Inconel 617, and 310 SS. Each filler alloy provided different dilution rates by GTAW [62],
and hence different microstructures were formed in the WM. With the use of Inconel 82 wire, the WM
was fully austenitic with a substantial amount of dispersed intergranular precipitates (NbC and γ-Laves
eutectic). The 304 SS filler wire also provided fully austenitic columnar dendrites. Due to the high
Nieq from the nickel-based superalloy, no δ-ferrite was obtained. The Inconel 617 wire provided fine
columnar dendrites, where Mo-rich particles were found in interdendritic regions.

With deposition of Ni-based tubular filler wire on the 316L SS base metal for underwater welding
purposes [63], no cracking was observed due to austenite microstructure (5–7% of ferrite is needed
to prevent cracking) with equiaxed dendrites with appropriate toughness. However, the tensile test
showed a decrease in mechanical properties in WM, corresponding to 85% tensile strength of BM (base
metal) with high elongation (up to 32%) and ductile fracture mode, possibly due to lower hardness
in the WM. A sharp increase of the hardness was seen near the FL, specifically in the unmixed zone,
due to significant iron and some chromium diffusion in from the BM.

Alloy 59 has been used offshore for hot-tapping, while both Alloy 59 and Inconel 625 are candidates
for subsea tie-ins and weld repair [13]. These two fillers will give similar weld metal microstructures.
The main difference is that the Laves phase and NbC are found in Inconel 625 welds due to the high
Nb and C contents, as indicated in Table 1.

3.3.2. Root Pass Welding with Stainless Steel Wire and Stainless Steel Clad

The use of AISI 309L SS wire frequently used for the root and hot passes showed a solidification
microstructure containing δ-ferrite, a darker phase as illustrated in Figure 12, with a vermicular
morphology in the root and columnar morphology in the hot pass [19]. The matrix was austenitic,
and this correlates well with the fact that 309L SS is a Cr-rich alloy, in which δ-ferrite is the first phase to
solidify. The formation of δ-ferrite (a few percent, e.g., 3–20%) and FA (ferrite/austenite) solidification
mode is strongly recommended to avoid solidification cracking in welding with austenitic fillers [64].
A reduction of impurities is very effective in avoiding cracking problems [57].
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3.3.3. Root Pass Welding with Ni-Based Filler Wire and Inconel 625 Clad

For the combination of a Ni-based filler wire (Alloy 59/Inconel 625) and Inconel 625 clad layer,
the weld metal microstructure should not be much influenced by the mixing of clad melting and filler
wire due to their similar chemical compositions.

The solidification mode is influenced to some degree by the cooling rate [34]. There is also local
variation in chemical composition at the subgrain level due to the microsegregation of alloying (Fe, Cr,
Nb, Mo, and Si) and impurity elements (S, P, O, and C) during solidification, leading to the second
phase formation (e.g., carbides and Laves phase for Inconel 625). These phases form at the end of
solidification in the interdendritic regions. Composition analyses show that dendrite cores consist of
Ni, whereas interdendritic areas mostly include the precipitation of Nb (carbides, Laves phase) and Mo
(Laves phase) [65]. An example is shown in Figure 13. The Laves phase is an intermetallic compound
of the type A2B, where A is Ni or Cr and B is constituted by Mo or Nb.
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Due to the segregation of alloying and impurity elements, there is a possibility for liquation or
solidification cracking (Figure 14a) to occur in the welding of solid-solution-strengthened alloys, as well
as ductility-dip cracking (DDC); see Figure 14b. DDC is particularly common for multipass welding
due to reheating [65]. Regarding nickel-based alloys, Ren et al. [66] identified that the constitutional
liquation of M23(B,C)6 (M can be Mo, Cr, or Fe) carbides is responsible for the liquation cracking in
WM. It was noted that the liquation cracking was reduced with a decrease in heat input; the heat input
must, therefore, be optimized during welding.
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Recently, it was found that significant reduction (by ~90 vol %) in Laves phases in welds can
be achieved by applying an acoustic device which induces the vibration of the weld pool through
a high-frequency current (the ultrasonic Ampere’s force) at a specific frequency rate [67]. Here,
two mechanisms are involved during ultrasonic treatment: reduction of the local concentration of Nb
and specific (distorted) Ni-dendrite growth directions.

3.3.4. Hot-Pass Welding

In the hot pass, the three materials are mixed (as visualized in Figure 11b), namely X60 (BM),
Ni-based Alloy 59 filler wire, and clad material (316L SS). Some part of the previously deposited root
pass will also be melted, forming a quaternary mixing system. The dilution rate will depend on both
welding parameters and bevel geometry, particularly root gap and root face height. With excessive
carbon diffusion from X60 or from the carbon-enriched interface between the clad and BM of the pipe,
there is a risk of embrittlement.

The chemical composition of single beads was determined by EPMA to include both root and
hot pass, as shown in Figure 15. For a 309 SS wire, there is no significant change in the chemical
composition. When using Inconel 625 wire (see Figure 16), Ni increases significantly in the root pass,
while Fe decreases. This is related to the melting of a part of the pipe steel (X60) which has low Ni
content. For the same reason, a slight increase in Cr, Mo, and Nb in the root pass is also observed,
while the Fe concentration is substantially lower in the root pass, clearly showing very low dilution
with the pipe. On the contrary, the hot pass contains 20–30 wt % Fe, which implies a certain dilution
with the pipe.
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3.4. Heat-Affected Zone

The HAZ of the pipeline steel is another important aspect to consider, due to the grain growth near
the FL. As a result, the coarse-grained HAZ (CGHAZ) should be considered. The major parameters
which may control the final microstructure evolution of the HAZ are the weld cooling rate, the clad pipe
production method (e.g., TMCP or QT steel) [68], and the chemical composition of the material [65].

3.4.1. High-Strength, Low-Alloy Steel HAZ

Modern pipeline steel normally has low carbon content (≤0.06 wt % C). The final HAZ
microstructure can be predicted by a CCT (continuous cooling transformation) diagram, e.g., for X70
steel (see Figure 17), where it can be seen that a fully martensitic microstructure is formed upon fast
cooling (∆t8/5 < 1.4 s) with a hardness level of ~340 HV. At slower cooling rates (>20 s), coarse bainite
(~220 HV) is formed. This type of microstructure may give low toughness at subzero temperatures.
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In the case of multipass welding (filling passes), reheating of the CGHAZ may induce the formation
of brittle martensite–austenite (M-A) islands, i.e., the intercritically reheated CGHAZ (ICCGHAZ).
Hence, very low toughness at subzero temperatures may occur [70,71]. Afterwards, a comprehensive
study by Mohseni et al. [72–75] and Haugen et al. [76] on brittle crack initiation in the ICCGHAZ
confirmed earlier results [77].

3.4.2. HAZ of Welded 316L Stainless Steel Clad

The HAZ of austenitic stainless steels (e.g., 304L/309/316L) consists of an austenitic matrix after
solidification with almost negligible grain growth when compared to carbon steels. The grain size of
the 316L SS base metal is ~45–75 µm, where the variation highly depends on manufacturing route [78].
When compared to fine-grained carbon steel having grain size smaller than 10 µm [79], there is a much
lower driving force for grain growth [80]. In addition, upon cooling, some delta ferrite may form at
the HAZ grain boundaries, suppressing grain growth [57]. This results in a minor hardness increase
near the FL [63]. However, despite the low susceptibility for grain growth, high heat input should
be avoided, especially when the BM has smaller grains that can cause significant grain growth even
in austenitic steels with subsequent softening [81]. In addition, due to high heat input, there is the
formation of chromium carbides on the grain boundaries of austenite. As a result, the area around the
carbides has lower chromium content compared to the bulk material. This can lead to the sensitization
phenomenon, which reduces corrosion resistance significantly [57].

Due to dissolved precipitates, some carbides and nitrides can form upon cooling along grain
boundaries in the HAZ or at the ferrite–austenite interface, especially when the stainless steel contains
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Ti and Nb. This can cause grain boundary liquation by lowering the melting temperature, in addition
to the segregation of impurities (primarily P and S), causing liquid films upon cooling. Notably,
between the FZ and the HAZ, there is the partially melted zone (PMZ) due to temperature gradients,
which has low mechanical properties [82]. Grain growth in this zone is not significant and the grain
size is similar to the as-received BM [83]. The thickness of the UMZ (unmixed zone) (<0.5 mm) can be
reduced by applying mechanical vibrations during welding [84].

3.4.3. HAZ of Ni-Based Superalloy Clad

Ni-based superalloys are divided into solid-solution-strengthened (substitutional alloying
elements: Cr, Fe, W, Cu, Mo, Co, Ta, and Re; among them are 59, 617, 625, 690, 800, 825,
and 902 alloys [65]) and precipitation-strengthened (precipitation formation elements: Ti, Al,
and Nb; among them are 300, 263, 713, 718, 725, 751, 925, 945, and Rene 41 alloys [65]) categories,
the latter of which are not frequently used for cladding. Therefore, further metallurgical aspects for
solid-solution-strengthened alloys only are discussed.

Due to the high alloy level of Inconel 625 (see Table 1), additional metallurgical reactions may take
place when it is used as a clad. In the HAZ, these may consist of the dissolution and reprecipitation of
NbC, grain boundary segregation, and liquation phenomena [65]. A segregation mechanism of some
elements (S, P, Pb, and B) has the most profound effect on liquation in the HAZ, and the principal
mechanisms are illustrated in Figure 18. The same mechanisms are valid for stainless steels.Appl. Sci. 2019, 9, x  18 of 24 
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Grain growth in welding of these alloys does not present any problems, since the initial grain
size is coarse (~20–40 µm [85]). Accordingly, the driving force for grain growth is very low and
similar to stainless steels. A secondary factor is the interaction of secondary phases (e.g., borides,
sulfides, and carbides such as TiC and NbC) with grain boundaries by a constitutional liquation [86];
this is called penetration mechanism [87]. During welding (rapid heating), secondary phases do
not dissolve within the matrix, and upon heating, they react with the matrix by forming interfacial
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liquid films [65]. However, small-scale M23C6 particles dissolve at high temperatures during GTAW
welding [88]. NbC and TiC can also be responsible for hardness and strength increases, based on
experimental observations made by GTAW of 2 mm Inconel 625 [89]. As a result, a high-heat-input
process must be avoided.

The liquation cracking may occur in the partially melted zone (PMZ) in the HAZ adjacent to the FL.
The crack length has been observed to increase with a decrease in heat input [66]. Preheating suppressed
the crack length, possibly by reducing the cooling rate. Therefore, the cooling rate must be adjusted to
avoid the liquation cracking.

Another factor contributing to crack forming is stresses built up during solidification and further
cooling [65].

3.4.4. Bimetallic Interface After Welding

The interface between the 316L SS clad and high-strength, low-alloy (X60/X65) base metal has
already been discussed in Section 2, as the majority of the elemental diffusion and segregation has
taken place during the clad pipe production. In hot-roll (metallurgical) bonding of the clad pipe,
carbon diffuses at elevated temperatures (>A3 point in the Fe–C diagram) from the carbon-rich ferrite
to the austenite, with subsequent carbide precipitation of M23C6, mainly Cr23C6 [90]. This diffusion
results in a softer, carbon-depleted zone in the ferrite (decarburized layer in the pipe steel close to
the interface), and a hard, carbon-enriched zone (carburized layer) in the 316 SS (austenite) clad [91].
Moreover, this phenomenon makes the clad sensitized, and the existence of Cr-depleted zones may
promote intergranular corrosion [92].

After welding, interface cracking has been found between the BM (X60) and the 316L SS clad
material, as shown in Figure 19a. It was observed that the cracking was usually initiated in the HAZ.
Upon further inspection, it was found that there is a grain boundary precipitation on the clad side
near the interface (see Figure 19b) [93]. The electron microprobe analysis revealed high carbon content
in the clad near the interface, which increases the risk of cracking [21]. This possibly takes place
due to additional stresses caused by welding; i.e., residual stresses added to production thermal
stresses because of thermal expansion mismatch between the 316L stainless steel clad and the pipe
steel. Fortunately, the cracks occurred in the direction following the pipe length, where the load is
low, and were not regarded as representing any risk of pipeline failure. The cracking problem can
be prevented using a Ni interlayer [17]. To the authors’ knowledge, similar cracking problems with
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4. Potential Application of Hyperbaric Weld Repair

Repair welding of clad and lined pipes requires advanced and robust hyperbaric welding processes.
It is thus critical to understand the physical phenomena of the welding process as well as optimize the
welding parameters to obtain high-quality welds. During the last decade, significant progress has
been made in the field of modeling of the heat and mass transfer during GMAW. Models including
the computation of current density, temperature, and momentum transfer, including the transfer of
individual droplets, have been presented [94–105].

The complex interaction of the shielding gas and current with weld bead appearance and
temperature distribution has been studied. However, no detailed modeling of the arc physics and
metal transfer under hyperbaric conditions has been found in the literature. One could expect that both
the arc pressure and the effect of droplet impingement would be stronger in the case of a more confined
or constricted arc with higher shielding gas density. There are five main flow-driving forces during
arc welding processes that should be investigated: the gradient of surface tension (Marangoni force),
the gas drag force at the surface, the buoyancy, the electromagnetic (Lorentz) force, and the moment
transferred by impinging droplets in the weld pool. In the case of CMT, the droplet momentum is
strongly reduced, but there could be other challenging effects from the large variations in current and
changes in the boundary conditions for the plasma arc. So far, no papers with numerical simulation of
the CMT arc mode physics have been published, which is probably related to the high complexity of
the process.

5. Conclusions

The present work has addressed metallurgical changes in the welding of clad pipes, and several
conclusions may be drawn:

• Complex metallurgical phenomena present in the welding of clad pipes due to multi-material
systems, especially concerning the weld metal. Clad pipes represent a solid economic alternative
to pipes made of stainless steel which is vital to the oil and gas industry.

• Welding process significantly alters the base metal near the weld metal, i.e., the heat-affected zone.
Therefore, in complex clad pipes, utilizing expensive materials must be considered in detail.

• Solidification parameters have very high importance on solidification behavior and resulting
mechanical properties. Moreover, they can be efficiently estimated by numerical simulation at
any point in welded joints.

• The subsea clad pipe network requires an emergency method for pipe repair to be developed.
Therefore, the current manuscript represents an important contribution to the knowledge on
microstructural changes and diffusion that may occur in welding, and how these may influence
the pipeline integrity.

• During repair under hyperbaric conditions, the use of multiple filler wires is very complicated
for clad pipes. Therefore, the suitability of filler wire for multi-material systems, both for
carbon and nickel-based/stainless steel materials, must be carefully investigated for single filler
wire applications.
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