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Featured Application: The novelty of this work is that the prepared resin AEE-3 has a potential
application in the removal of nitrate from real secondary treated wastewater containing dissolved
organic matters.

Abstract: A novel anion exchange resin AEE-3 was synthesized by N-alkylation of a weakly basic
polyacrylic anion exchanger D311 with 1-bromopropane to effectively remove nitrate (NO3

−-N)
from aqueous solution. The related finding revealed that its adsorption isotherm obeyed the Langmuir
model well, and the second-order model was more validated for the NO3

−-N adsorption kinetics
study. Compared to commercially-available polystyrene-based nitrate specialty resin Purolite A 520E
(A520E), AEE-3 resin has a higher adsorbed amount and better regeneration performance toward
NO3

−-N in the existence of dissolved organic matter (DOM) using static and dynamic methods.
Notably, a real secondary treated wastewater (STWW) obtained from a local municipal wastewater
treatment plant was also assessed for NO3

−-N removal in fixed-bed columns. Observations from this
study indicated that AEE-3 could effectively remove NO3

−-N from contaminated surface water.
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1. Introduction

With the rapid development of industry and agriculture, excessively-used nutrients such as
nitrogen (N) and phosphorous (P) in crop production have been infiltrated into rivers, lakes and ponds,
leading to the eutrophication of aquatic systems [1,2]. Nowadays, nitrate (NO3

−-N) pollution in
surface and ground water is a severe environmental problem due to its carcinogenicity, toxicity
and potential hazards to human health and livestock. Therefore, the World Health Organization
(WHO) set the NO3

−-N concentration limit of 50 mg/L, whereas the U.S. Environmental protection
Agency (U.S. EPA) allows 10 mg/L in drinking water [3,4].

Current approaches like reverse osmosis, electrodialysis, biological denitrification, adsorption
and ion exchange have been utilized to treat NO3

−-N polluted water [5,6]. In consideration of the merits
of ion exchange, such as high efficiency, acceptable regeneration and cost-effective preparation, anion
exchange resins (AERs) have been employed to adsorb NO3

−-N from contaminated water [7–9].
On the basis of their chemical structure, commercial AERs are normally categorized into two skeletons,
namely, polystyrene and polyacrylic. Polystyrene AERs have been used to effectively adsorb NO3

−-N
from ground water in the past decade [10,11]. However, high concentrations of dissolved organic
matters (DOMs) always exist in surface water, including secondary treated wastewater (STWW),
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and can engender a strong affinity for resins via electrostatic attraction, hydrophobic interaction and so
on [12–14]. Hence, AERs are more sensitive to fouling with DOMs, which would compete with NO3

−-N
for the active sites and cause the decrease in NO3

−-N adsorption. More seriously, coexisting DOM
could lead to an irreversible fixation to anion exchangers. Polyacrylic AERs with hydrophilic structures
reveal a stronger resistance to organic fouling performance than polystyrene AERs [15]. Moreover,
acrylic-based resins possess unique physiochemical properties, rapid adsorption rates and high
ion-exchange capacities [16,17]. Accordingly, polyacrylic AERs could serve as a promising absorbent
to effectively remove NO3

−-N from polluted water in the presence of DOMs. Nevertheless, few works
have shown the feasibility of polyacrylic resins for NO3

−-N removal in real STWW containing NO3
−-N

at high levels.
However, competitive anions such as chloride (Cl−) or sulfate (SO4

2−) exist widely in water,
which can weaken NO3

−-N uptake efficacy of AERs [18]. To circumvent this limitation, studies
have been devoted to preparing a novel anion exchanger with prominent selectivity toward NO3

−-N.
The long alkyl chain addition at the exchange sites of resins could be of great benefit for the preferable
selectivity toward monovalent anions because of its steric hindrance and hydrophobic effect [19,20].
Hence, it is intriguing for us to modify the weakly basic resin by introducing long alkyl groups around
the active amine groups, which can easily form strongly basic functional groups (quaternary ammonium)
which interact with NO3

−-N through strong electrostatic attraction.
Herein, a weakly basic polyacrylic anion exchanger D311 was modified with 1-bromopropane

(C3H7Br) to prepare a strongly basic anion exchanger AEE-3 with high efficiency and brilliant selectivity
for NO3

−-N uptake. The adsorption kinetics, isotherms, influence of pH value and competitive anions
were investigated. In addition, commercial nitrate-selective polystyrene resin Purolite A 520E (A520E)
was chosen to make a comparison with AEE-3 in both batch and fixed-bed column experiments,
further demonstrating that AEE-3 is more resistant to fouling by DOMs (humic acid, tannic acid
and sodium dodecyl benzene sulfonate). Also, a dynamic experiment was studied to evaluate
the adsorption performance of AEE-3 toward NO3

−-N in real STWW.

2. Materials and Methods

2.1. Material

A commercially-available weakly basic anion exchanger D311 and strongly basic anion exchanger
Purolite A 520E (A520E) were obtained from Huizhu Resin Co., Ltd. (Shanghai, China) and Purolite Co.,
Ltd. (Huzhou, China), respectively. Tannic acid (TA), humic acid (HA) and sodium dodecyl benzene
sulfonate (SDBS) were purchased from Sinopharm Chemical Reagent Company (Shanghai, China).
Other chemicals in this work were of analytical reagent acquired from Nanjing Chemical Reagent Co.,
Ltd. (Nanjing, China). STWW samples with a high NO3

−-N concentration were obtained from a local
municipal wastewater treatment plant in Nanjing, China.

2.2. Preparation and Characterization of AEE-3

D311 resin was firstly rinsed successively with 1 mol/L HCl and 1 mol/L NaOH in turn to remove
impurities, and then washed with deionized water until neutral. Finally, resin was washed by ethyl
alcohol and then dried at 323 K for 8 h.

The synthesis method of AEE-3 is the following (Scheme 1): 10 g of dried D311 resin was swollen
in 100 mL of acetonitrile for 2 h. Afterwards, 20 mmol of KI and 20 mmol C3H7Br were added separately
and the mixture maintained with stirring at 333 K for 48 h. After alkylation, the obtained resin beads
were rinsed successively with dilute HCl, distilled water and dilute NaOH to attain a neutral pH.
Finally, the product was extracted with anhydrous ethanol and dried at 323 K for 8 h. The obtained resin
AEE-3 was characterized by Fourier transform infrared spectrometer (Nicolet 5700, Madison, USA)
and N2 adsorption analysis (ASAP-2010C, Micromeritics, Norcross, GA, USA).
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Scheme 1. The alkylation reaction of C3H7Br onto D311 resin. 

2.3. Batch Adsorption Experiments 

Isothermal adsorption experiments of NO3−-N on adsorbents were performed when 0.05 g resin 
was introduced to each 150 mL conical flasks containing 50 mL of NO3−-N in solution (10 to 60 mg/L 
concentration). To investigate the adsorption kinetics, 0.2 g resin was immersed into 200 mL NO3−-N 
solution with the initial concentration of 60 mg/L, and samples were withdrawn at different time 
intervals. The pH (4.0–10.0) with 50 mg/L NO3−-N solution in the presence of Cl− (200 mg/L) was 
adjusted using 0.1 mol/L HCl or 0.1 mol/L NaOH solution, respectively, as required. A competing 
anion (SO42− or Cl−) was added to the NO3−-N solution to study the effect of negative ions on 
adsorption capacities. The static tests of D311 and AEE-3 were conducted in a bi-solute system 
(HA/NO3−, SDBS/NO3− or TA/NO3−) for four adsorption-desorption cycles. Analyses of NO3−-N were 
obtained by measuring the UV1800 spectrophotometer at a wavelength of 220 nm. The adsorption 
amount Qe (mg/g) was calculated using Equation (1): 
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velocity (SLV) was 30 bed volume per hour (BV/h), and the breakthrough curve was obtained by 
analysis of different time intervals of the effluent. After adsorption, the elution of NO3−-N from the 
resin was performed using 0.6 mol/L NaCl solution. The adsorption–desorption cycle was repeated 
three times to evaluate the regeneration efficiency of resins. The desorption rate (D) of NO3−-N was 
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where Ca is the amount of NO3−-N adsorbed on resins and Cd is the amount of NO3−-N desorbed from 
resins by NaCl solution. 
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The adsorption-desorption isotherms and the pore size distribution curve of D311 and AEE-3 
are displayed in Figure 1. The isotherm plot of two resins can be considered type IV with a hysteresis 
loop in the relative pressure range of 0.8–1.0, hinting at the existence of both mesopores and 
macropores in these resins. Table 1 lists the essential properties of D311 and AEE-3.  

The FT-IR spectra of D311 and AEE-3 samples are shown in Figure 2. Notably, two bands with 
peaks at 1366 cm−1 and 2930 cm−1 are ascribed to asymmetric bands of the alkyl groups (–CH2–and‒
CH3), and the peak at 1478 cm−1 is assigned to C–N group. The appearance of a new band at 1407 cm−1 
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2.3. Batch Adsorption Experiments

Isothermal adsorption experiments of NO3
−-N on adsorbents were performed when 0.05 g resin

was introduced to each 150 mL conical flasks containing 50 mL of NO3
−-N in solution (10 to 60 mg/L

concentration). To investigate the adsorption kinetics, 0.2 g resin was immersed into 200 mL NO3
−-N

solution with the initial concentration of 60 mg/L, and samples were withdrawn at different time
intervals. The pH (4.0–10.0) with 50 mg/L NO3

−-N solution in the presence of Cl− (200 mg/L) was
adjusted using 0.1 mol/L HCl or 0.1 mol/L NaOH solution, respectively, as required. A competing anion
(SO4

2− or Cl−) was added to the NO3
−-N solution to study the effect of negative ions on adsorption

capacities. The static tests of D311 and AEE-3 were conducted in a bi-solute system (HA/NO3
−,

SDBS/NO3
− or TA/NO3

−) for four adsorption-desorption cycles. Analyses of NO3
−-N were obtained

by measuring the UV1800 spectrophotometer at a wavelength of 220 nm. The adsorption amount Qe

(mg/g) was calculated using Equation (1):

Qe =
(C0 −Ce)V

W
(1)

where C0 and Ce are the initial and equilibrium concentrations (mg/L) of NO3
−-N, V is the volume of

solution (L) and W represents the weight of dry resin (g).

2.4. Column Adsorption and Desorption

The experiments were carried out using a glass column (Φ18 × 200 mm) with 5 mL of dry fresh
resin and a peristaltic pump to ensure the constant flow rate under 298 K. The initial concentration of
NO3

−-N was 20 mg/L, containing 1 mg/L TA, 1 mg/L HA and 2 mg/L SDBS. The superficial liquid
velocity (SLV) was 30 bed volume per hour (BV/h), and the breakthrough curve was obtained by
analysis of different time intervals of the effluent. After adsorption, the elution of NO3

−-N from
the resin was performed using 0.6 mol/L NaCl solution. The adsorption–desorption cycle was repeated
three times to evaluate the regeneration efficiency of resins. The desorption rate (D) of NO3

−-N was
defined by Equation (2):

D(%) =
Cd

Ca
× 100 (2)

where Ca is the amount of NO3
−-N adsorbed on resins and Cd is the amount of NO3

−-N desorbed
from resins by NaCl solution.

3. Results and Discussion

3.1. Characterization

The adsorption-desorption isotherms and the pore size distribution curve of D311 and AEE-3 are
displayed in Figure 1. The isotherm plot of two resins can be considered type IV with a hysteresis loop
in the relative pressure range of 0.8–1.0, hinting at the existence of both mesopores and macropores in
these resins. Table 1 lists the essential properties of D311 and AEE-3.

The FT-IR spectra of D311 and AEE-3 samples are shown in Figure 2. Notably, two bands with peaks
at 1366 cm−1 and 2930 cm−1 are ascribed to asymmetric bands of the alkyl groups (–CH2–and-CH3),
and the peak at 1478 cm−1 is assigned to C–N group. The appearance of a new band at 1407 cm−1
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is associated with –CH2–of–CH2–N+R3 group [7]. On the other side, the fact that the strong base
ion-exchange capacity of the resin increased from 0 to 3.42 mmol/g implied that propyl groups were
successfully introduced onto the primary amine after alkylation. These observations proved AEE-3
had been synthesized successfully.
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Table 1. Physicochemical properties of two resins.

Resin Strong Base Ion-Exchange
Capacity (mmol/g Dry Resin)

Average Pore Diameter a

(nm)
BET Surface Area

(m2/g)
Pore Volume

(cm3/g)

D311 0 40.92 31.88 0.36
AEE-3 3.42 47.44 23.46 0.20

a BJH Desorption average pore diameter.

3.2. Adsorption Kinetics

Figure 3 describes the effect of contact time on NO3
−-N uptake by AEE-3 and A520E at 298 K,

and all the data were simulated using two commonly used kinetic models [21,22]:

Pseudo− first− order : Qt = Qe(1− e−k1t) (3)

Pseudo− sec ond− order : Qt =
k2Q2

et
1 + k2Qet

(4)

The initial adsorption rate was calculated by Equation (5):

h0 = k2Q2
e (5)

where Qe (mg/g) is the equilibrium adsorption capacity of NO3
−-N, and Qt (mg/g) refers to the amounts

of NO3
−-N in resins at time t (min). k1 (1/min) and k2 (g/(mg·min)) represent the rate constants for

the pseudo-first- and pseudo-second-order kinetic models, respectively. h0 is the initial adsorption rate
(mg/(g·min)). The kinetic parameters, together with the coefficient of determination (R2), are listed
in Table 2. It is evident that the adsorption behavior of NO3

−-N onto both resins was preferable to
fit the pseudo-second-order based on the R2 values. Obviously, AEE-3 exhibited a greater capacity
for NO3

−-N than A520E, illustrating that the introduction of alkyl chains would form quaternary
ammonium groups which can easily interact with NO3

−-N via electrostatic attraction. Finally, a larger
h0 value of AEE-3 was obtained, and the difference in the adsorption rate is related to the difference of
the resin matrix.
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Table 2. Kinetic parameters of NO3
−-N adsorption by two resins.

Resin
Qe, exp
(mg/g)

Pseudo-First-Order Pseudo-Second-Order

Qe
(mg/g)

k1
(1/min) R2 Qe

(mg/g)
103k2

(g/(mg·min)) R2 h0
(mg/(g·min))

AEE-3 32.75 30.85 0.327 0.9371 33.66 6.06 0.9819 7.13
A520E 30.22 29.19 0.100 0.9897 30.14 1.45 0.9987 1.16

3.3. Effect of Coexisting Anions

In general, some coexisting anions in water would strongly compete with NO3
−-N to occupy

active sites via electrostatic interaction. Thus, the selective absorption of resin is of vital importance in
evaluating the practical application, as well as in considering the absorption performance. A520E is
known for its good selectivity toward NO3

−-N, and its adsorption capacities are still relatively high
in the present of Cl− or SO4

2− [20]. As displayed in Figure 4, a slightly higher adsorption amount of
AEE-3 was detected compared to A520E with an identical addition of anions. The phenomena may be
rationalized by the fact that the long alkyl chain on AEE-3 is conducive to the adsorption selectivity for
NO3

−-N with lower hydration energy than Cl− or SO4
2−.
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3.4. Effect of pH

The primary mechanism for NO3
−-N uptake onto a strongly basic anion exchanger can be

explained by electrostatic interaction or columbic force [23]. Figure 5 displays the influence of solution
pH varying from 4.0 and 10.0; the adsorption capacity of NO3

−-N on AEE-3 was in the range of 25.5
to 26.0 mg/g under a Cl− concentration of 200 mg/L. It shows a considerable amount of NO3

−-N uptake
independent of the pH for the strongly basic anion exchanger. It may be concluded that the quaternary
tripropylamine groups of AEE-3 could remain stable, thereby causing steady adsorption activity for
NO3

−-N under both acidic and alkaline conditions [24].
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3.5. Adsorption Isotherms

The isotherms of NO3
−-N adsorption by AEE-3 are displayed in Figure 6. The experimental data

were fitted by both Langmuir and Freundlich equations which are represented as follows [25,26]:

Qe =
QmKLCe

1 + KLCe
(6)

Qe = KFC1/n
e (7)
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where Ce (mg/L) is the concentration at equilibrium state, Qe (mg/g) is the adsorption capacity
at equilibrium state, Qm (mg/g) is the maximum adsorption capacity, KL is the Langmuir constant
and KF and n are the Freundlich constants. The R2 of the isothermal fit are presented in Table 3.
In view of the R2 values, the equilibrium adsorption of NO3

−-N onto AEE-3 was better described by
the Langmuir isotherm, which coincided with the prevalent ion-exchange mechanism [7,23]. Moreover,
the Qm values of AEE-3 dropped with the increase of temperature, revealing that the NO3

−-N
adsorption by the resin was an exothermic process, and therefore, reducing the temperature benefited
NO3

−-N uptake.
The maximum NO3

−-N adsorption amount of AEE-3, as evaluated according to the Langmuir
model, was compared with other materials including chitosan, activated carbon and commercial anion
exchange resins (A520E and D201), etc. As shown in Table 4, the Qm of AEE-3 for NO3

−-N uptake was
higher than that of these commercially available materials, signifying that the novel anion exchange
resin can act as a potential material for the technological application of NO3

−-N removal from water.Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 13 
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Table 3. Isotherm parameters for NO3
−-N adsorption at 288, 303, and 318 K.

T (K)
Langmuir Model Freundlich Model

KL Qm (mg/g) R2 KF n R2

288 0.12 40.32 0.9915 7.18 2.21 0.9816
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Table 4. Comparison of NO3
−-N maximum adsorption capacity (Qm) by different materials.

Samples Qm (mg/g) Reference

Chitosan/PVA 35.00 [27]
Cationic polymer-modified granular activated carbon (CPMG) 27.56 [28]

Modified commercial activated carbon 21.51 [29]
Magnetic anion-exchange resin MD217 30.40 [30]

A520E 36.15 [31]
D201 38.46 [31]

AEE-3 40.32 This study
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3.6. Effect of DOMs on Static Adsorption and Desorption

Figure 7 shows the adsorption amounts of NO3
−-N using AEE-3 and A520E in a bi-solute

system (HA/NO3
−, SDBS/NO3

− or TA/NO3
−) for four adsorption-desorption cycles. It was seen that

the adsorption capacities of A520E for NO3
−-N distinctly declined over the four cycles. DOMs can

occupy more active sites through hydrophobic and electrostatic interactions on the A520E resin with
a polystyrene matrix [12]. By contrast, AEE-3 exhibited greater NO3

−-N adsorption in bi-solute systems,
and the reduction of NO3

−-N uptake was slight with increasing the number of adsorption-desorption
cycles. This result validated the hypothesis that AEE-3 has a strong resistance to interferential organics
due to its hydrophilic matrix. Besides, over 94% of the adsorbed NO3

−-N on AEE-3 was desorbed,
while the desorption rates of A520E in the presence of organic matters declined gradually with
the number of adsorption-desorption cycle (Figure 8). In addition, Figure 9 presents the desorption
rates of DOMs regenerated by a NaCl solution, and the low values for A520E resin can be attributed to
the strong affinity between the polystyrene matrix and the hydrophobic organics, causing the DOMs to
not be removed fully by regeneration. Hence, these results demonstrate an improved performance on
adsorption/regeneration of AEE-3 compared to A520E.
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3.7. Effect of DOMs on Column Mode Experiments

It is imperative to test the utilization efficiency of adsorbents in a dynamic fixed-bed experiment
related to real operating systems [32]. The influence of three organics on NO3

−-N adsorption was
studied using an influent with constant NO3

−-N concentration of 20 mg/L in the presence of HA,
TA and SDBS. As can be seen in Figure 10, the breakthrough curves (Run 2 and Run 3) for NO3

−-N
adsorption onto AEE-3 have a close coincidence with the original breakthrough curve (Run 1).
Nevertheless, a large separation between the three breakthrough curves was observed for NO3

−-N
adsorption onto A520E, which is indicative of a limited reusability of A520E towards NO3

−-N solution
containing DOMs.
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3.8. Assessments of Practical Application

Conventional heterotrophic denitrification techniques are severely restricted by the low C/N
ratio of wastewater, thereby causing the high NO3

−-N content in STWW [33,34]. To further assess
the practical application of AEE-3, the dynamic column test of NO3

−-N uptake onto AEE-3 was
performed using a real STWW effluent which was collected from a local sewage treatment plant,
containing the following quality parameters: pH, 6.54; NO3

−-N, 20 mg/L; COD, 39 mg/L; TDS, 436 mg/L.
The breakthrough curves of AEE-3 are shown in Figure 11. An inconspicuous deviation between Run 1
and Run 3 breakthrough curves was found, further confirming its potential application in the removal
of NO3

−-N from real STWW effluent.
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4. Conclusions

The strong base polyacrylic AER AEE-3 could be developed and utilized to absorb NO3
−-N

selectively from aqueous solutions. Batch adsorption studies exhibited that a pseudo-second-order
model was appropriate for depicting the kinetic process, and that the best fit for the isotherms
data was Langmuir model. In addition, AEE-3 displayed a greater adsorption capacity and better
regeneration capability for NO3

−-N uptake than the commonly-used, nitrate-selective AER A520E in
the presence of interferential DOMs. Notably, the effective adsorption of NO3

−-N in real STWW by
AEE-3 packed in fixed-bed columns revealed its promising potential in the removal of NO3

−-N from
actual complex wastewater.
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