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Abstract: This paper proposes a noble multi-robot path planning algorithm using Deep q learning
combined with CNN (Convolution Neural Network) algorithm. In conventional path planning
algorithms, robots need to search a comparatively wide area for navigation and move in a predesigned
formation under a given environment. Each robot in the multi-robot system is inherently required to
navigate independently with collaborating with other robots for efficient performance. In addition,
the robot collaboration scheme is highly depends on the conditions of each robot, such as its position
and velocity. However, the conventional method does not actively cope with variable situations since
each robot has difficulty to recognize the moving robot around it as an obstacle or a cooperative robot.
To compensate for these shortcomings, we apply Deep q learning to strengthen the learning algorithm
combined with CNN algorithm, which is needed to analyze the situation efficiently. CNN analyzes
the exact situation using image information on its environment and the robot navigates based on the
situation analyzed through Deep q learning. The simulation results using the proposed algorithm
shows the flexible and efficient movement of the robots comparing with conventional methods under
various environments.

Keywords: reinforcement learning; multi-robots; cooperation; Deep q learning; Convolution
Neural Network

1. Introduction

Machine learning, which is one of the fields of artificial intelligence and is a technology to implement
functions such as human learning ability by computer, has been studied in various concessions mainly
used in the field of signal processing and image processing [1–3], such as speech recognition [4,5],
natural language processing [6–8], and medical treatment [9,10]. Since the performance using machine
learning shows good results, it will play an important role in the 4th industrial revolution as is well
known in Alpha machine learning [11]. Reinforced learning is the training of machine learning models
to make a sequence of decisions so that a robot learns to achieve a goal in an uncertain, potentially
complex environment by selecting the action to be performed according to the environment without
an accurate system model. When learning data is not provided, some actions are taken to compensate
the system for learning. Reinforcement learning, which includes actor critic [12–14] structure and q
learning [15–21], has many applications such as scheduling, chess, and robot control based on image
processing, path planning [22–29] and etc. Most of the existing studies using reinforcement learning
exclusively the performance in simulation or games. In multi-robot control, reinforcement learning
and genetic algorithms have some drawbacks that have to be compensated for. In contrast to the
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control of multiple motors in a single robot arm, reinforcement learning of the multiple robots for
solving one task or multiple tasks is relatively inactive.

This paper deals with information and strategy around reinforcement learning for multi-robot
navigation algorithm [30–33] where each robot can be considered as a dynamic obstacle [34,35] or
cooperative robot depending on the situation. That is, each robot in the system can perform independent
actions and simultaneously collaborate with each other depending on the given mission. After the
selected action, the relationship with the target is evaluated, and rewards or penalty is given to each
robot to learn.

The robot learns the next action based on the learned data when it selects the next action, and after
several learning, it moves to the closest target. By interacting with the environment, robots exhibit new
and complex behaviors rather than existing behaviors. The existing analytical methods suffer from
adaptation to complex and dynamic systems and environments. By using Deep q learning [36–38] and
CNN [39–41], reinforcement learning is performed on the basis of image, and the same data as the
actual multi-robot is used to compare it with the existing algorithms.

In the proposed algorithm, the global image information in the multi-robot provides the robots
with higher autonomy comparing with conventional robots. In this paper, we propose a noble method
for a robot to move quickly to the target point by using reinforcement learning for path planning of a
multi-robot system. In this case, reinforcement learning is a Deep q learning that can be used in a real
mobile robot environment by sharing q parameters for each robot. In various 2D environments such as
static and dynamic environment, the proposed algorithm spends less searching time than other path
planning algorithms.

2. Reinforcement Learning

Reinforcement learning is the training of machine learning models to make a sequence of decisions
through trial and error in a dynamic environment. The robots learn to achieve a goal in an uncertain,
potentially complex environment through programming the object by reward or penalty.

Figure 1 shows a general reinforcement learning, a robot which selects the action a as output
recognizes the environment and receives the state, s, of the environment. The state of the behavior
is changed, and the state transition is delivered to the individual as a reinforcement signal called a
reinforcement signal. The behavior of the individual robot is selected in such a way as to increase the
sum of the enhancement signal values over a long period of time.
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is that it does not use the representation of the link between input and output. After choosing an
action, it is rewarded and knows the following situation. Another difference is that the online features
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of reinforcement learning are important since the computation of the system takes place at the same
time as learning. One of the reinforcement learning features, Deep q learning, is characterized by the
temporal difference method, which allows learning directly by experience and does not need to wait
until the final result to calculate the value of each state like dynamic programming.

When a robot is moving in a discrete, restrictive environment, it chooses one of a set of definite
behaviors at every time interval and assumes that it is in Markov state; the state changes to the
probability s of different.

Pr[st+1] = s’[st, at] = Pr[at] (1)

At every time interval t, a robot can get status s from the environment and then take action at. It
receives a stochastic prize r, which depends on the state and behavior of the expected prize Rst to find
the optimal policy that an entity wants to achieve.

Rst(ai) = E

 ∞∑
i=0

Y jrt+ j

 (2)

The discount factor means that the rewards received at t time intervals are less affected than the rewards
currently received. The operational value function Va is calculated using the policy function π and the
policy value function Vp as shown in Equation (3). The state value function for the expected prize
when starting from state s and following the policy is expressed by the following equation.

Va(st) ≡ Rs(π(st)) + Y
∑

u
Pxy[π(st)]Vp(st) (3)

It is proved that there is at least one optimal policy as follows. The goal of Q-learning is to set an
optimal policy without initial conditions. For the policy, define the Q value as follows.

Qp(st, at) = Rs(at) + Y
∑

u
Pxy[π(st)]Vp(y) (4)

Q(st, at) is the newly calculated Q(st−1, at−1), and Q(st−1, at−1) corresponding to the next state by the
current Q(st−1, at−1) value and the current Q(st−1, at−1).

3. Proposed Algorithm

Figure 2 is the form of the proposed. The proposed algorithm uses empirical representation
technique. The learning experience that occurs at each time step through multiple episodes to be stored
in the dataset is called memory regeneration. The learning data samples are used for updating with a
certain probability in the reconstructed memory each time. Data efficiency can be improved by reusing
experience data and reducing correlations between samples.

Without treating each pixel independently, we use the CNN algorithm to understand the
information in the images. The transformation layer transmits the feature information of the image to
the neural network by considering the area of the image and maintaining the relationship between
the objects on the screen. CNN extracts only feature information from image information. The
reconstructed memory to store the experience basically stores the agent’s experience and uses it
randomly when learning neural networks. Through this process, which prevents learning about
immediate behavior in the environment, the experience is sustained and updated. In addition, the goal
value is used to calculate the loss of all actions during learning.
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Figure 2. The concept of the proposed algorithm.

The proposed algorithm uses empirical data according to the roles assigned individually. In
learning how to set goal value by dividing several situations, different expectation value for each role
before starting to learn is set. For example, assuming that the path planning should take less time than
the A* algorithm in any case and that it is a success factor for each episode, the proposed algorithm
designates an arbitrary position and number of obstacles in the map of a given size and use the A*.
This time is used as a compensation function of Deep q algorithm.

The agent learns so that the compensation value always increases. If the searching time increases
more than the A* algorithm, the compensation value decreases and learning is performed so that the
search time does not increase. Figure 3 shows the learning part of the overall system, which consists of
preprocessing part for finding outlier in video using CNN and post-processing part for learning data
using singular point.
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In the preprocessing part, the features of the image are searched using input images, and these
features are collected and learned. In this case, the Q value is learned for each robot assigned to each
role, but the CNN value has the same input with a different expected value. Therefore, the Q value
is shared when learning, and used for the learning machine. In order to optimize the updating of Q
value, it is necessary to define an objective function as defined as error of target value and prediction
value of Q value. Equation (5) describes an objective function.

L =
1
2
[r + maxa′Q(s′, a′) −Q(s, a)]2 (5)

The basic information for obtaining a loss function is a transition <s, a, r, s’>. Therefore, first, the
Q-network forward pass is performed using the state as an input to obtain an action-value value for all
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actions. After obtaining the environment return value <r, s’> for the action a, the action-value value
for all action a’ is obtained again using the state s’. Then, we get all the information to get the loss
function, which updates the weight parameter so that the Q-value updates for the selected action
converges; that is, as close as possible to the target value and the prediction value. Algorithm 1 is a
function of compensation, which greatly increases compensation if the distance to the current target
point is reduced before, and decreases the compensation if the distance becomes longer and closer.

Algorithm 1 Reward Function

if distancet−1 > distancet

then reward = 0.2
else
then reward = −0.2
if action == 0
then reward = reward + 0.1
else if action == 1 or action == 2
then reward = reward − 0.1
else if action == 3 or action == 4
then reward = reward − 0.2
if collision
then reward = −10
else if goal
then reward = 100
return reward

The two Q networks, such as target Q network and Q network, which is used mandatorily, are
employed in the algorithm. Both networks are exactly the same with different weight parameters. In
order to smooth convergence in DQN, the target network is updated not continuously, but periodically.

The adaptive learning rate method, RMSProp method, was used as the optimizer and the learning
rate was adjusted according to the parameter gradient. This means that, in a situation where the training
set is continuously changing, unlike the case of a certain training set, it is necessary to continuously
change certain parameters.

The algorithm is simply stated as follows.
When entering the state st, randomly selects a behavior a that maximizes Q (st, a; θt).
Obtain state sn+1 and a complement rt by action a.
Enter state st+1 and find Max Q (st+1, a; θ).
Update the variable θt with the correct answer.

Yi = rt + Y Max Q(st+1,a;θ) (6)

L(θt) = 1/2 X (yi − Q(st,a;θ))2 (7)

Qi+1 = Qi − α∇θiL(θi) (8)

4. Experiment

4.1. Experiment Environment

Experiments were conducted on Intel Core i5-6500 3.20GHz, GPU GTX 1060 6GB, RAM 8GB, OS
Ubuntu 16.04 and Window 7 Python and C++.

On a regular PC, we built a simulator using C++ and Python in a Linux environment. The robot
has four random positions and its arrival position is always in the upper right corner. In a static
and dynamic obstacle environment in the simulator, the number and location of obstacles are chosen
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randomly. Under each environment, the proposed algorithm is compared with A* and algorithm D*
algorithm, respectively.

The simulation was conducted under the environment without considering the physical engine of
the robot, assuming that the robot made ideal movements.

4.2. Learning Environment

The experiment result compares the proposed algorithm with the existing A* algorithm. The
proposed algorithm learns based on the search time of the A* algorithm and assumes learning success
when it reaches the target position more quickly than the A* algorithm. Figure 4 shows the simulation
configuration diagram of the proposed algorithm. The environmental information image used by
CNN is 2560 × 2000 and is designed with 3 × 3 filters with a total of 19 layers (16conv. and 3 FC layers)
in the form of VGGNet [42].
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Figure 5 shows the score of the Q parameter when learning by episode. In the graph, the red line
depicts the score of the proposed algorithm and the blue line is the score when learning Q parameters
per mobile robot. The experiment result confirms that the score of the proposed algorithm is slightly
slower at the beginning of learning but reaches the final goal score.
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The proposed algorithm, as in Figure 6, which shows the target arrival speed of the episode-based
algorithm, has slower learning progression speed than the Q parameter of each model with a similar
target position.
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Figure 7 depicts that the average score of each generation increases gradually as learning progresses.
As the learning progresses, it gradually gets better results.
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4.3. Experimental Results in a Static Environment

In Section 4.3, the proposed algorithm is compared with the A* algorithm. Because the A*
algorithm always finds the shortest path, it can see how quickly the proposed algorithm can find the
shortest path. The proposed algorithm and the A* algorithm were tested by four robots to find a path
with an arbitrary numbers of obstacles in random initial positions. The test was repeated 100 times
on the generated map, which is changed 5000 times to obtain the route visited by the robot and the
shortest path for each robot to reach the target point. In the first case, the search area and the time to
reach the target point of the proposed algorithm is smaller than the A* algorithm, but the actual travel
distance of the robot is increased, as shown in Figures 8 and 9. Figures 8 and 9 depict the results of the
A* algorithm and the proposed algorithm, respectively. The average search range of A* algorithm is
222 node visitation. The shortest paths of robots 1 to 4 were 35, 38, 43, and 28 steps, respectively, and
the proposed algorithm, where each robot path are 41, 39, 44, and 31 steps, had 137 visited nodes.
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As shown in Figures 10 and 11, which are the result of the A* algorithm and the proposed
algorithm, respectively for the second case, the search range of the proposed algorithm is similar to
that of the A* algorithm. The average search range of A* algorithm is 80 node visitation. The shortest
paths of robots 1 to 4 were 33, 29, 28, and 21 steps, and the proposed algorithm had 65 visited nodes,
where each robot pathare 34, 36, 32, and 25 steps, respectively.
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In the third case without obstacles in environment, as shown in Figures 12 and 13, the search
range of two algorithms is the same, and the movement path of the robot is similar. The average search
range of the A* algorithm was 66 node visitation. The shortest paths of robots 1 to 4 were 33, 29, 28, 21,
and 66 steps; the proposed algorithm had 66 visited nodes, and each robot path was 34, 31, 28, and
22 steps, respectively.
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In the fourth case, the search range of both algorithms is similar, and the movement path of the
robot is the same. Figures 14 and 15 show the results of the A* algorithm and the proposed algorithm,
respectively. In the average search range of A* algorithm, robot visited 121 nodes, and the shortest
paths of robots 1 to 4 were 40, 38, 36, and 23 steps respectively. And the proposed algorithm had
100 visited nodes, and the shortest path of each robot is 40, 39, 36, and 23 steps, respectively.
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Table 1 shows the search range of the proposed algorithm and A* algorithm for each situation.
The search range is one of the most important factors on effective robot navigation to the target point.
As shown in Table 1, the proposed algorithm has a smaller search range than the A* algorithm.

Table 1. The average search range of A* and the proposed algorithm.

Situation A* Algorithm Proposed Algorithm

Situation 1 258 155
Situation 2 83 67
Situation 3 69 69
Situation 4 120 101
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Table 2 shows the generated path for each robot according to the situation for both proposed
and A* algorithm. The proposed algorithm results in no less number of steps than A* in an average
generation. In general, A* algorithm is not always searching for the optimal path because it always
searches the optimal path in a static environment. However, the proposed algorithm generates the
path faster than A*.

Table 2. The robot average generation path of A* and the proposed algorithm.

Situation A* Algorithm Proposed Algorithm

Situation 1 35 36
Situation 2 28 30
Situation 3 30 31
Situation 4 32 32

Table 3 shows the frequency of occurrence of each situation when a total of 5000 experiments
were conducted. Although the search area is small, the situation 1 where the robot generation path is
long shows about 58% of occurrence, and the situation 2 where the search area and travel distance are
similar is about 34%. According to the simulation result, the search range of the proposed method is
always smaller and the robot generation path is the same or similar to the robot path generated by the
A* algorithm with a probability of about 34.76%.

Table 3. Frequency of occurrence by situation.

Situation Frequency of Occurrence

Situation 1 3262
Situation 2 1556
Situation 3 102
Situation 4 80

4.4. Experimental Results in a Dynamic Environment

Experiments based on the proposed algorithm in a dynamic environment is performed to compare
the learning results of the D* algorithm. D* [43] and its variants have been widely used for mobile robot
navigation because of its adaptation on dynamic environment. During the navigation of the robot, new
information is used for a robot to replan a new shortest path from its current coordinates repeatedly.
Under the 5000 different dynamic environments consisting of the smallized static environment as done
in Section 4.3, and dynamic obstacles with random initial positions, the simulation was performed
around 100 times per environment.

For the D* algorithm, if an obstacle is locates on the robot path, the path will be checked again after
the path of movement. In the same situation, different paths may occur depending on the circumstances
of the moving obstacle. Figure 16 shows that the yellow star is a dynamic obstacle that creates the
shortest path, as shown in Figure 16, or the path to the target point rather than the shortest path, as
shown in Figure 17. This shows that the situation of the moving obstacle affects the robot’s path.
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In the proposed algorithm under a dynamic environment where moving obstacles are located on
the traveling path of the robot, they do not block the robot, as shown in Figure 18. It guarantees a short
traveling distance of each robot.
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As shown in Figure 19, the robot moves downward to avoid collision with obstacles on the path
of the robot. In Figure 19, the extent to which the path created by D* and the proposed algorithm was
not moved to the existing path by the mobile yellow star and explored to generate the bypass path.
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Since the robot moves actively to the next position depending on the results learned step by step,
it is possible to create a path to the target point in a dynamic environment.

Table 4 shows under a dynamic environment, the first bypass path of D* and the proposed
algorithm have 84 and 65 search ranges to move to the target point, respectively. In addition, for the
second bypass, each method has 126 and 83 search range, respectively.

Table 4. Total search scope under dynamic environment for D* and proposed algorithm.

Situation D* Algorithm Proposed Algorithm

First bypass 84 65
Second bypass 126 83

Table 5 shows the minimum search range, the maximum search range, and the average search
range of the simulation for the D* algorithm and the proposed algorithm for the overall simulation
results. All of the three indicators show that the search range of the proposed algorithm is no bigger
than D*. Since the search range of the proposed method is small when searching for the bypass path,
efficient path planning is possible to the target point. The proposed algorithm used the A* algorithm
as a comparison algorithm, which is not available in a dynamic environment. The proposed algorithm
was learned by comparing it with the A* algorithm, but unlike the A*, path generation is possible even
in a dynamic environment.

Table 5. Minimum, maximum, and average exploration range during the full simulation of D* and
proposed algorithms.

Situation D* Algorithm Proposed Algorithm

Minimum Exploration Range 66 66
Maximum Exploration Range 294 237
Average Exploration Range 188 141
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5. Conclusions

The problem of multi-robot path planning is motivated by many practical tasks because of its
efficiency for performing given missions. However, since each robot in the group operates individually
or cooperatively depending on the situation, the search area of each robot is increased. Reinforcement
learning in the robot’s path planning algorithm is mainly focused on moving in a fixed space where
each part is interactive.

The proposed algorithm combines the reinforcement learning algorithm with the path planning
algorithm of the mobile robot to compensate for the demerits of conventional methods by learning the
situation where each robot has mutual influence. In most cases, existing path planning algorithms are
highly depends on the environment. Although the proposed algorithm used an A* algorithm that
could not be used in a dynamic environment as a comparison algorithm, it also showed that path
generation is possible even in a dynamic environment. The proposed algorithm is available for use in
both a static environment and in a dynamic environment. Since robots share the memory used for
learning, they learn the situation by using one system. Because learning is slow and the result includes
errors of each robot at the beginning of learning, each robot has the same result as using each parameter
after learning progress to a certain extent. The proposed algorithm including A* for learning can be
applied in real robots by minimizing the memory to store the operations and values.

A* algorithm always finds the shortest distance rather than the search time. Under the proposed
algorithm, which shows diverse results, the search area of each robot is similar to A*-based learning.
However, in the environment where the generated path is simple or without obstacles, an unnecessary
movement occurs. To enhance the proposed algorithm, research on the potential field algorithm is
undergoing. In addition, the proposed algorithm did not take into account the dynamics of robots and
obstacles [44–46] and performed simulations in situations in which robots and obstacles always made
ideal movements without taking into account the dynamics of them. Based on the simulation result,
the research considering the actual environment and physical engine is on the way.
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