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Abstract: The skew angle and period length of the multi-period pattern are two critical parameters
for evaluating the quality of textile cutting pieces. In this paper, a new measurement method of
the skew angle and period length is proposed based on Faster region convolutional neural network
(R-CNN). First, a dataset containing approximately 5000 unique pattern images was established and
annotated in the format of PASCAL VOC 2007. Second, the Faster R-CNN model was used to detect
the pattern to determine the approximate location of the pattern (the position of the whole pattern).
Third, precise position of the pattern (geometric center points of pattern) are processed based on
the approximate position results using the automatic threshold segmentation method. Finally, the
four-neighbor method was used to fill the missing center points to obtain a complete center point
map, and the skew angle and period length can be measured by the detected center points. The
experimental results show that the mean average position (mAP) of the pattern detection reached
84%, the average error of the proposed algorithm was less than 5% compared with the error of the
manual measurement.
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1. Introduction

Textile cutting pieces [1], as semi-finished products, have been widely used in car seats and
garments areas. Most of the finished products are stitched from these pieces, and the performance of
the pieces (see Figure 1a) is a key to determining the quality of the finished product. The quality of the
textile pieces depends largely on their preformed geometry structure, such as the period length and
skew angle of the pattern. The skew angles θweft and θwarp are defined as the angle between the line
along the horizontal or vertical period direction of the pattern and the overall contour of the piece (see
Figure 1b). The skew angle is a critical parameter of multi-period pattern pieces, for it can affect the
overall regularity of the pattern. The period length Thi and Tvi (i = 1, 2 . . . ) are defined as the length of
one complete pattern period distance in the horizontal and vertical directions, can be used to infer the
local regularity of the pattern (see Figure 1b). These two parameters can reflect the design difference
between the pattern sample and the standard template, so they can be used as a criterion for judging
the quality of the pattern.
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Figure 1. Textile cutting piece of car seat and pattern parameters. (a) The overall outline of the cutting
piece with strip-shaped pattern in the global perspective. (b) The local part of (a) where Th is weft
period length, Tv is warp period length. θweft is weft skew angle, and θwarp is warp skew angle.

The two parameters are used to check whether the cutting pieces are qualified or not in the
industrial area. At present, the manual method is still the main measurement way, which is time
and manpower-consuming, and due to the large amount of pattern types, only limited numbers of
cutting pieces are sampled. In addition, a cutting piece with complicated patterns cannot be effectively
detected by the human eyes, and this phenomenon often causes quality problems.

The periodicity of the pattern has great research significance for the pattern fabric, and is the
basis for measuring the skew angle and period length of the multi-period pattern. Therefore, the
period extraction of the pattern becomes the key and difficult point in measuring the parameters
of a pattern. In recent years, with the rapid development of image processing technology, many
approaches have been proposed for fabric periodic research. In general, these approaches can be
classified into three groups: grey level co-occurrence matrix-based (GLCM) [2]; distance matching
function-based (DMF) [3]; and image autocorrelation function-based [4]. The method based on GLCM
is a common technique in statistical image analysis that is used to estimate image properties related to
second-order statistics. Li [5] and his colleagues research the variation of the eigenvalues of four grey
level co-occurrence matrices to determine the period characteristics of texture, and achieved relatively
good results. Xiao, et al. [6] calculated the correlation coefficient between different regions enclosed
by fabric yarns based on the grey level co-occurrence matrix method to complete the segmentation
of a striped fabric. The features calculated by the co-occurrence matrix can be used for periodic
detection of finite-size pattern images and the computation speed is relatively fast. However, since the
quantization angle and distance are frequently used to reduce the computation time when calculating
the co-occurrence matrix features, the accuracy of texture cycle extraction is significantly reduced.
The method based on DMF can directly use the grey value of the texture to find the texture period and
requires less computation time than the traditional co-occurrence matrix approach. Jing [7] determined
the period of the printed fabrics by calculating the maximum value of the second forward difference of
the two-dimensional DMF. Zhou [8] implemented an automatic measurement of the texture period of
woven fabric images by combining frequency domain analysis with a distance matching function and
improved the stability and computational efficiency of cycle measurement. The distance matching
function is an effective method for extracting pattern period. For images of any size, the distance
matching function has a faster calculation speed than the traditional co-occurrence matrix method.
It is suitable for patterns of finite size. However, when the brightness and shape of the periodic
pattern are inconsistent, the distance matching function cannot effectively extract the pattern period.
The method based on an autocorrelation function calculates the correlation coefficient of the texture by
the autocorrelation function of the image to analyze the periodicity of the texture. Wu [9] calculated the
autocorrelation function of the texture edge to determine the matrix of the autocorrelation function, and
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then extracted the periodic and directional features of the texture. The image autocorrelation function
method is easy to implement and has strong adaptability. However, the pattern period detection
method based on the autocorrelation function can only reflect the periodic features of the pattern and
has no other features. Moreover, it cannot efficiently acquire periodic information of a periodic pattern
that has a sparsely distributed and large size in the image. Similarly, the measurement of the surface
braiding angle and pitch length of the three-dimensional braided composite was realized by the corner
detection-based method [10–12]. However, this algorithm based on corner detection is not suitable
for the measurement of multi-period pattern parameters. When faced with complicated patterns, the
corner points detected by the corner detection algorithm are disordered and the pseudo corner points
are too many, and the center point of the pattern cannot be accurately found, so that the pattern period
cannot be effectively extracted.

In this paper, a new measurement method based on Faster region convolutional neural network
(R-CNN) [13] was proposed to measure the parameters of the multi-period pattern. At present, Faster
R-CNN has been applied in many fields, such as license plate detection [14], scene text detection [15] and
optical image detection [16], and achieved excellent results with its powerful performance. As Faster
R-CNN has the advantages of high object detection accuracy, fast speed and strong adaptability,
we used Faster R-CNN as the pattern detector to locate the pattern and extract the pattern period.
The contributions of this paper are as follows:

• We have established the first multi-period pattern dataset. This dataset contains 5000 pattern
images with size of 512 × 640 pixels and contains a total of six types of patterns. Moreover, each
pattern in the image was annotated as an object in VOC 2007 format.

• We have proposed to use the object detection network in deep learning to locate the pattern. We
selected the training model of Faster R-CNN as the pattern detector and generated the bounding
boxes enclosing the patterns to achieve the approximate positioning of the pattern.

• We have proposed an automatic threshold method to extract the contour of the pattern
and calculated the center points to obtain the precise positioning of the pattern. The
four-neighbor-method was used to fill the missing center points to acquire the center point
map that reflects the periodic characteristics of the pattern.

2. Methods

In this section, the period length and pattern skew angles of textile cutting pieces were measured
based on Faster R-CNN. Firstly, original images were acquired and the pattern dataset were created.
Then, the patterns were detected by a model trained by Faster R-CNN net. Secondly, the approximate
location of the pattern (the position of the whole patterns) were obtained based on the detected pattern.
Thirdly, the precise positions of the pattern (geometric center points of pattern) were detected based on
the approximate position results using the automatic threshold segmentation method. Missing center
points were filled based on the four-neighbor-method to obtain a complete center point map. Finally,
the skew angle and period length were measured based on the detected center points.

2.1. Image Acquisition and Pattern Dataset Creation

In this study, the image acquisition system was composed of a dome light source, a 1.3 megapixel
color industrial camera, an LCD backlight and a servo motor module (see Figure 2). A vertically
installed industrial camera with a camera lens overlooked the fabric. The dome light source that
illuminated the fabric surface uniformly wasplaced in front of the fabric. In order to sample multiple
parts of the piece, the system contained a servo mobile module that could move industrial cameras
in a flat range. Figure 3 shows the six types of pattern images Fi, Fr, Fc, Fs1, Fs2 and Fs3 (the size was
1024 × 1280 pixels) acquired by the image acquisition system, where: Fi is the pattern with irregular
shape. Fr is the pattern with circular shape. Fw is the pattern with the wavy shape. Fs1, Fs2, Fs3 are
patterns with a strip shape. The acquired images were transmitted to the data processing system (see
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Figure 2) to be processed by the Faster R-CNN based algorithm. The image data processing is shown
in Section 2.3.

Figure 2. Image processing system. The image acquisition system on the left was used to acquire the
partial texture image of the pattern, and the acquired images were three-channel RGB images and the
size was 1024 × 1280 pixels. The acquired images were transmitted to the data processing system on
the right for data processing.

Figure 3. The sample images of different kinds of pattern piece. (a) irregular-shaped pattern Fi,
(b) circular-shape pattern Fr, (c) wavy-shaped pattern Fc, (d) strip-shaped pattern Fs1, (e )strip-shaped
pattern Fs2, (f) strip-shaped pattern Fs3.

In this paper, 5000 unique images with size of 640 × 512 × 3 pixels were contained in the pattern
dataset, and each image contained approximately 20 to 50 patterns. These images were cropped from
approximately 400 original images with size of 1280 × 1024 × 3 pixels. To obtain the best training effect,
each image was labeled in detail. The key details for labeling each image were as follows:

• In order to avoid image over-fitting problems, each image contained 20–50 patterns, which were a
critical metric for detection and recognition.

• The bounding box completely enclosed the pattern and kept the center coordinates of the pattern
the same as the center coordinates of the bounding box.
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• There are no overlapping regions between the bounding boxes and the dimensions of each
bounding box remain the constant.

2.2. Training of Pattern Detection Model

In recent years, object detection technology has achieved rapid development, and the object
detection network based on deep learning has greatly improved the ability of object detection.
At present, there are two main methods: one depends on region proposal, such as R-CNN (region
convolutional neural network) [17], Fast R-CNN [18], Faster R-CNN [13] and R-FCN [19]; the other
does not rely on region proposal and directly estimates candidate object recommendations, such as
SSD [20] and YOLO [21–23] family.

After R-CNN [17] and Fast R-CNN [18], Microsoft’s Shaoqing Ren proposed Faster R-CNN [13] to
optimize the running time of the detection network. The region proposal network (RPN) was proposed
to generate the proposal region. RPN replaces the previous methods such as Selective Search [24] and
EdgeBoxes [25] and it shares the convolution feature of the full map with the detection network so that
the region proposal detection takes very little time. The Faster R-CNN structural framework consists of
RPN + Fast R-CNN. The RPN network is mainly used to generate high-quality proposal region boxes,
and Fast R-CNN is used to learn high-quality proposal region features and classify objects. The overall
framework of Faster R-CNN is shown in Figure 4.

Figure 4. Faster region convolutional neural network (R-CNN) overall framework. (a) The streamlined
flow chart of the Faster R-CNN framework [26]. (b) The detailed flow chart of the Faster R-CNN [13].
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Faster R-CNN proposes the region proposal network and improves the efficiency of object
detection. This provides feasibility for detecting multi-period patterns with Faster R-CNN. Three nets
(ZF-Net [27], VGG16 [28] and Rse-Net-101 [29]) were respectively used as the pre-trained model of
Faster R-CNN, where the pattern dataset contained 5382 patterns and a total of six types of patterns:
Fi, Fr, Fw, Fs1, Fs2 and Fs3 (see Figure 3). The number of various pattern images was 894, 899, 902,
892, 904 and 891. Image size was 512 × 640 pixels. The pattern dataset was randomly divided into
validation set, test set and train set according to the ratio of 2:2:6. Then, the divided datasets were
used for training of Faster R-CNN (ZF-Net), Faster R-CNN (VGG16) and Faster R-CNN (ResNet-101),
respectively. The experimental platforms included Windows 7, GPU GTX1080ti, Matlab 2014a and
Visual Studio 2013, and the whole experiment was based on the deep learning framework Caffe.

The compared results are shown in Table 1, where the performance of the three pattern detection
models can be seen. Precision represented the detection accuracy of the pattern. Balanced accuracy
(Ba) was used to evaluate balanced accuracy of the pattern dataset. Kappa (K) was used to evaluate
the accuracy of the pattern classification. Mean average precision (mAP) was the main indicator for
evaluating the main detection results, because mAP was the actual metric for object detection.

Table 1. Evaluation of the Faster R-CNN with different pre-trained nets.

Pre-Trained Net
Precision

K Ba mAP
Fi Fr Fc Fs1 Fs2 Fs3

ZF 0.876 0.801 0.832 0.887 0.857 0.824 0.798 0.842 0.78
VGG16 0.879 0.864 0.864 0.904 0.886 0.857 0.824 0.884 0.81

ResNet-101 0.885 0.881 0.901 0.972 0.958 0.898 0.836 0.910 0.84

From Table 1, it can be concluded that the precision, K, Ba and mAP of the Resnet-101 net as
the pre-trained model were higher than the other two nets, and thus Resnet-101 was chosen as the
pre-trained model in this paper.

Figure 5 shows the detection results of the six patterns (Fi, Fr, Fw, Fs1, Fs2 and Fs3) on the Faster
R-CNN model. The boxes of different colors represent the different pattern categories detected by the
model; the upper left corner of the box represents the classification result, pattern category and category
score for the object of the box region. Since the patterns Fs1, Fs2, Fs3 and Fr had the characteristics of large
pattern pitch, small volume and regular shape, we chose to completely surround the pattern with the
bounding box. The patterns Fi and Fc were irregular shapes and could not be completely surrounded
by the bounding box, so we regarded a part of the pattern having the periodic characteristics as the
detection object. It can be concluded from Figure 5 that the Faster R-CNN model could effectively
detect six types of multi-period patterns and had fewer false positive and missing alarms.

Figure 6 shows the precision–recall (P–R) curve of the Faster R-CNN pattern detection model.
The precision is the vertical axis, and the recall is the horizontal axis. The area value enclosed by the
curve represents the mAP. It can be concluded from the Figure 6 that the pattern detection model had
high accuracy, recall rate and average precision, so this model had pretty good pattern detection ability
and excellent detection accuracy.
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Figure 5. Detection results of the six types of patterns on the Faster R-CNN model. (a) Detection
result of Fi. (b) Detection result of Fr. (c) Detection result of pattern Fc. (d) Detection result of Fs1.
(e) Detection result of Fs2. (f) Detection result of Fs3.
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Figure 6. Precision–recall (P–R) curve of pattern detection by Faster R-CNN. The longitudinal axis
indicates the detection precision, and the horizontal axis indicates the recall ratio. The area enclosed by
the curve represents the mean average precision of the pattern detection.

2.3. Centre Point Extraction

The center point of the pattern is defined as the center of the region enclosed by the pattern outline.
The area is defined as the number of pixels of a region. The center is calculated as the mean value of the
line or column coordinates, respectively, of all pixels. The proposed method detected the approximate
position of the pattern using the Faster R-CNN, and then an automatic threshold method was used
to divide the pixel points of the pattern region and calculate the center coordinates. The steps are
as follows:

Step 1: Image cropping method with overlapping areas is used for image cropping. The original
image (Figure 7a) with size of 1208 × 1024 pixels is cropped into several sub-images (Figure 7b–e) of
640 × 512 pixels. The moving step length of the image cropping is approximately twice the length of
the pattern period.

Step 2: The Faster R-CNN model is used to detect the pattern and output the classification score
and categories. (Figure 7f–i).

Step 3: Merge sub-image Fsubi according the coordinates of image cropping, obtaining image Fnew

(see Figure 8b). For example, define the coordinates of sub-image as (xsub, ysub), and the coordinates in
image Fnew as (xori, yori), so the coordinates (xori, yori) are computed as follows:

(xori, yori) = (xsub + sx × (i− 1), ysub + sy × ( j− 1)) (1)

where sx and sy are, respectively, the horizontal moving step length and the longitudinal moving
step length. The variables i (i = 1, 2, 3 . . . ) and j (j = 1, 2, 3 . . . ), respectively, represent the times
of horizontal and vertical cropping. Then combine the overlapping bounding boxes into one large
bounding box according the maximum coordinates of overlapping bounding boxes, getting image
Fnew1 (see Figure 8c).

Step 4: Correct the inaccurate bounding boxes and calculate the center points of the patterns
to get the original center point map. First, the grey distribution information of the original image is
counted by the grey histogram and the average grey value Gth is calculated. Second, Gth is used as
a threshold to segment the patterns in the bounding boxes and calculate the area Si (i = 1, 2 . . . ) of
segmented pattern, the average value Sav of Si, the center point Pp of the pattern, and the center point
Pb of the bounding box. Third, compare the size of Si and Sav, and remove the bounding boxes which
S ≤ Sav. Fourth, adjust the positions of bounding boxes by moving the bounding boxes toward Pp to
make S > Sav. Finally, segment the patterns f in the corrected bounding boxes using the threshold
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segmentation method and calculate them center points to obtain the original center point map (see
Figure 9a).

f (x, y) =
{

1 f (x, y) > Gth
0 f (x, y) ≤ Gth

. (2)

Step 5: Missing center points are filled based on four-neighbor-method to obtain the final center
point map (see Figure 9c). First, approximately weft period length Thx and approximately warp period
length Thy are counted from the original center point map. Second, the missing center point is between
two known adjacent points A and B. If (k + 1/2) < Thx < dm < (k + 3/2) Thx, where k = 1, 2 . . . , and dm is
the distance between two adjacent corners A and B, then fill in k missing center points uniformly on the
line AB. Suppose the filled point is N. Third, find two adjacent points C and D of N in the longitudinal
direction. Finally, the missing point M (see Figure 9b) is the intersection between L1 (the line formed
by point A and point B) and L2 (the line formed by point C and point D). Similarly, handle the cases
with missing points in the vertical direction.

Figure 7. Intermediate process of the proposed method. (a) Original image. (b) Sub-image Fsub1.
(c) Sub-image Fsub2. (d) Sub-image Fsub3. (e) Sub-image Fsub4. (f) Detection results of Fsub1. (g) Detection
results of Fsub2. (h) Detection results of Fsub3. (i) Detection results of Fsub4.
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Figure 8. Bounding box mapping process. (a) Original image. (b) Bounding box mapping result Fnew.
(c) Bounding box merge result Fnew1.

Figure 9. The procedure of the proposed method. (a) Original center point map. (b) Missing point
filling process. (c) Final center point map.

2.4. Pattern Period Length and Skew Angle Measurement

The skew angles and period length can be measured based on the final center point map which
reflects the center points distribution of the pattern.

The period lengths include the weft period length Th and warp period length Tv. As shown in
Figure 10b, the detected center points were denoted by the red points Hi, Vi, (i = 1, 2, 3, . . . ). One weft
period length is Th = dHiHj, where dHiHj is the distance between the Hi and Hj (j = i + 1, i = 1, 2, 3 . . . ).
Similarly, one warp period length is Tv = dViVj, where dViVj is the distance between the Vi and Vj (j = i +

1, i = 1, 2, 3 . . . ).

Figure 10. Measurement of the skew angles and period length. (a) Schematic diagram of pattern
parameter measurement. (b) The pattern center points map of (a).
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The skew angles also include the weft skew angle θweft and warp skew angle θwarp. The θweft and
θwarp are calculated by θh, θv and θc in Figure 10a, where θc is the angle between the contour of the
piece and the x-axis, measured by the measuring tool (see Figure 10a). Since this paper only studied
the local pattern features of the piece, it is assumed that θc is a known angle. The way to obtain θh
and θv is shown in Figure 10b. First, the least squares method is used to fit the center points Hi (i = 1,
2, 3 . . . ) in the weft direction as a weft period line Lh. Second, calculate the slope Kh of the line Lh.
Finally, θh is calculated by the equation θ = arctan(k). Similarly, the center points Vi (i = 1, 2, 3 . . . )
in the weft direction are used to obtain θv. The skew angles (θweft and θwarp) can be obtained by the
following equation:

(θwe f ,θwarp) = (θh − θc,θv − θc) (3)

3. Results and Discussion

In this section, the proposed algorithm was used to test the six types of pattern images (Fi, Fr, Fc,
Fs1, Fs2 and Fs3) shown in Figure 11a–f. The center point maps reflecting the periodic characteristics of
the pattern are shown in Figure 11g–l. Since θc in Figure 10a is an external angle and does not affect
the overall accuracy of the angle to be measured, this paper measured and evaluated the θh and θv

shown in Figure 10a.
To evaluate the proposed algorithm, we compare the proposed algorithm with manual

measurement results. Manual measurement of the period length was achieved by clicking the
center points of the patterns on the computer screen. As illustrated in Figure 12b, for example, we
obtained the center points Hi, Vi, (i = 1, 2, . . . ) and then calculated the weft period length as Th = dHiHj,
where dHiHj is the distance between the Hi and Hj (j = i + 1, i = 1, 2, . . . ).And the warp period length as
Tv = dViVj, where dViVj is the distance between the Vi and Vj (j = i + 1, i = 1, 2, . . . ). Th and Tv were
measured twenty times, and the final result was the average of the measurements. Similarly, manual
measurement of the θh and θv also was accomplished by clicking the center points of the patterns on
the computer screen. The center points in the same period direction were fitted as a straight line and
the angle between the line and the x-axis was calculated (see Figure 11a). We measured each angle
twenty times and then calculated the average values to obtain the result. The standard deviation δ was
used to analyze the accuracy of the manual measurements of the period length and skew angle.
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Figure 11. Six types of pattern images and their center point maps.

Figure 12. Manual measurement of parameters. (a) Skew angle, (b) period length.
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The expression of the standard deviation is shown as follows:

δ =

√√√
1
N

N∑
i=1

(Xi −
−

X)
2

(4)

where X is the average value of X.
Table 2 shows the manual measurement standard deviation of period length of images (Fr, Fc, Fs1,

Fs2 and Fs3), where δThα, δThβ, and δThγ were the minimum, maximum and average standard deviation,
respectively, of the weft period length measurement. δTvα, δTvβ, and δTvγ were defined similarly for the
warp period length measurement. As shown in Table 2, the standard deviation obtained by manual
measurement was very small. Therefore, it was reasonable to use the manual measurement results as
the evaluation standard.

Table 2. Standard deviation of manual measurement of period length.

Image Standard Deviation of Th Standard Deviation of Tv

δThα δThβ δThγ δTvα δTvβ δTvγ

Fs2 0.044 0.378 0.081 0.006 0.286 0.175
Fr 0.069 0.451 0.167 None None None
Fs3 0.018 0.237 0.146 0.046 0.588 0.392
Fs1 0.008 0.164 0.132 0.052 0.682 0.458
Fc 0.157 0.533 0.259 0.098 0.226 0.181
Fi 0.088 0.576 0.472 0.038 0.574 0.282

Table 3 shows the period length measurement results of images (Fi, Fr, Fc, Fs1, Fs2 and Fs3 in
Figure 11). The method based on image autocorrelation, the method based on distance matching
function and the proposed method were compared with the manual measurement results, where T is
the period length, the subscript h represents the weft direction, the subscript v represents the warp
direction, m stands for manual measurement method, p stands for the proposed method, z stands for
autocorrelation, d stands for distance matching function.

Table 3. Period length measurement results of various methods.

Image Thm Thp Thz Thd Tvm Tvp Tvz Tvd

Fs2 204.8 203.6 208.3 206.4 178.6 177.3 180.1 176.6
Fr 90.2 90.1 93.4 95.8 None None None None
Fs3 102.2 101.8 202.8 128.5 62.8 63.7 59.7 65.4
Fs1 176.0 177.2 58.7 168.2 120.6 120.8 119.0 121.5
Fc 125.7 125.4 128.8 130.7 114.8 114.2 130.0 120.1
Fi 271.4 270.3 243.5 256.2 269.8 267.2 273.5 264.6

Table 4 shows the relative error value between different period length measurement methods and
manual measurements of images (Fi, Fr, Fc, Fs1, Fs2 and Fs3 in Figure 11), where the ehpm represents the
relative error of Thp with Thm. ehzm represents the relative error of Thz with Thm. ehdm represents the
relative error of Thd with Thm. Similarly, evpm is the relative error of Tvp with Tvm. evzm is the relative
error of Tvz with Tvm. evdm is the relative error of Tvd with Tvm. The expression of the relative error RE
is shown in the following Equation (5).

RE =
X − T

T
× 100% (5)

where X represents the measured value and T represents the actual value.
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Table 4. Relative errors of the period length measurements for the multi-period pattern piece.

Image ehpm (%) ehzm (%) ehdm (%) evpm (%) evzm (%) evdm (%)

Fs2 0.587 1.709 0.781 0.728 0.839 1.119
Fr 0.111 3.548 6.208 None None None
Fs3 0.391 98.434 25.734 1.433 4.936 4.140
Fs1 0.682 66.647 4.432 0.166 1.326 0.746
Fc 0.239 2.466 3.978 0.523 13.240 4.617
Fi 0.405 10.280 5.601 0.964 1.371 1.927

From Tables 3 and 4, we could conclude that the period length measured by the proposed
method had higher accuracy than the autocorrelation-based and the distance-matching function-based
method. There was also a smaller relative error between the proposed method and the manual
measurement result.

Similar to the evaluation of the period length, the standard deviation was used to suggest the
reliability of the manual measurement of the angles. Table 5 shows the manual measurement standard
deviation of θh and θv of images (Fi, Fr, Fc, Fs1, Fs2 and Fs3 in Figure 11), where the δθhα, δθhβ and δθhγ
are the minimum, maximum and average standard deviation of the θh, respectively. Similarly, δθvα,
δθvβ and δθvγ are the minimum, maximum and average standard deviation of the θv, respectively.
From Table 5, we could conclude that the standard deviation of the manual measurements was small.
Therefore, it was reasonable to use the manual measurement results as a benchmark to evaluate the
measurement accuracy of the proposed measurement method.

Table 5. Standard deviation of manual measurement of θh and θv.

Image Standard Deviation of θh Standard Deviation of θv

δθhα δθhβ δθhγ δθvα δθvβ δθvγ

Fs2 0.032 0.221 0.076 0.007 0.274 0.129
Fr 0.093 0.727 0.364 None None None
Fs3 0.009 0.158 0.074 0.171 0.447 0.300
Fs1 0.003 0.077 0.052 0.061 0.115 0.079
Fc 0.067 0.082 0.022 0.009 0.238 0.166
Fi 0.025 0.094 0.037 0.018 0.049 0.026

Table 6 shows the various methods measurement results of θh and θv of images (Fi, Fr, Fc, Fs1,
Fs2 and Fs3 in Figure 11). The method based on corner detection method and the proposed method
for measuring θh and θv were compared with the manual measurement results, where the subscript
h represents the weft direction, the subscript v represents the warp direction, m stands for manual
measurement method, p stands for the proposed method, c stands for corner detection.

Table 6. Measurement results of various methods of θh and θv.

Image θhm (◦) θvm (◦) θhp (◦) θvp (◦) θhc (◦) θvc (◦)

Fs2 0.182 88.502 0.188 88.424 0.397 84.186
Fr 3.578 None 3.686 None 4.858 None
Fs3 1.552 88.105 1.534 87.845 2.434 82.428
Fs1 1.784 86.238 1.779 86.173 2.379 89.327
Fc 1.874 88.386 1.824 88.693 1.467 85.486
Fi 2.836 86.332 2.868 86.546 3.542 88.248

Table 7 shows the relative error value between different angle measurement methods and manual
measurements of images (Fi, Fr, Fc, Fs1, Fs2 and Fs3 in Figure 11), where the ehpm represents the relative
error of θhp with θhm. evpm represents the relative error of θvp with θvm. ehcm represents the relative
error of θhc with θhm. evcm represents the relative error of θvc with θvm.



Appl. Sci. 2019, 9, 3026 15 of 16

Table 7. Relative errors of the angle measurements for the multi-period pattern piece.

Image ehpm (%) evpm (%) ehcm (%) evcm (%)

Fs2 3.297 0.088 118.131 4.877
Fr 3.018 None 35.434 None
Fs3 1.159 0.295 56.829 6.443
Fs1 0.280 0.075 98.991 3.582
Fc 2.668 0.347 21.238 3.281
Fi 1.128 0.248 24.894 2.219

The following observations were derived from Tables 6 and 7. The proposed method for measuring
θh and θv achieved a smaller relative error compared to manual measurements. Compared with
the corner detection-based method, the proposed method had higher accuracy and more stable
performance in angle measurement.

4. Conclusions

The measurement of the skew angle and the period length is a fundamental problem in the
quality inspection of multi-period pattern cutting pieces. We demonstrated a solution that Faster
R-CNN efficiently detected the approximate location of the pattern and the method based on threshold
achieved the precise location of pattern, which achieved the measurement of the skew angle and period
length with high accuracy. We believe this work opens up exciting research opportunities to use the
object detection network to extract the fabric pattern period, providing a new way to study pattern
periodicity and can improve the detection accuracy of the pattern parameters.
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