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Abstract: Large-scale wind power access may cause a series of safety and stability problems.
Wind power forecasting (WPF) is beneficial to dispatch in advance. In this paper, a new extreme
gradient boosting (XGBoost) model with weather similarity analysis and feature engineering
is proposed for short-term wind power forecasting. Based on the similarity among historical
days’ weather, k-means clustering algorithm is used to divide the samples into several categories.
Additionally, we also create some time features and drop unimportant features through feature
engineering. For each category, we make predictions using XGBoost. The results of the proposed model
are compared with the back propagation neural network (BPNN) and classification and regression
tree (CART), random forests (RF), support vector regression (SVR), and a single XGBoost model. It is
shown that the proposed model produces the highest forecasting accuracy among all these models.

Keywords: renewable energy; short-term wind power forecasting; XGBoost; weather similarity
analysis; k-means clustering; feature engineering

1. Introduction

Renewable energy has been a popular choice for power generation and has become a crucial part
in government development schemes. Wind energy is a kind of clean and pollution-free renewable
energy source and its reserves are huge. By 2008, wind power production was about 94.1 million
kilowatts globally, which is more than 1% of the world’s power generation. There is no doubt that
wind power generation plays an important role in electric power systems [1,2]. However, wind power
generation faces primary problems of intermittency and uncertainty. The randomness of wind is
caused by a variety of factors, such as terrain, season, air pressure, temperature, and so on, which can
cause many problems [3]. Fluctuations in wind speed and large-scale wind power grid-connected
access threaten the safe and stable operation of the power system and have a bad effect on electricity
dispatching, which increases the operating costs of the power system and means the economic benefits
of wind power generation decrease. The experience of wind power operation in various countries
shows that wind power forecasting (WPF) technology is one of the most effective ways to alleviate
the pressure of power grids by adjusting peak-loads and reducing system reserve capacity.

At present, wind power forecasting (WPF) systems can be divided into three categories,
which include short-term forecasting, medium-term forecasting, and long-term forecasting [4].
Short-term forecasting predicts the wind power from several hours to one week, medium-term
forecasting predicts the wind power from one week to one month, while long-term forecasting forecasts
the wind power from several months to one year.

WPF methods consist of physical approaches, statistic approaches, learning approaches,
and combination forecasting approaches [5]. Physical approaches mainly consider physical quantities,
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such as numerical weather, wind turbine hub height, wind turbine thrust coefficient, and other technical
parameters [6]. The aim is to find the optimal wind speed estimation at the hub height of the wind
turbine and convert it into the output power of the wind farm according to the power curve of
the wind turbine or wind farm. Statistical methods can be divided into two categories. One category
establishes linear or nonlinear mapping of wind power system input and output by curve fitting
and parameter estimation based on previous wind power, including the autoregressive moving average
(ARMA) model [7], autoregressive integrated moving average (ARIMA) model [8], and generalized
autoregressive conditional heterosked (GARCH) model [9]. The other category builds the regression
model between meteorological observations and wind power. Examples include support vector
regression (SVR) [10–13], classification and regression tree (CART) [14], Gaussian process regression
(GPR) [15], and ensemble learning [16]. The learning approaches are mainly based on the artificial
neural network (ANN) [17], which uses meteorological observations provided by the wind farm to
predict the wind power; examples include back propagation neural network (BPNN) [18,19], radial basis
function neural network (RBFNN) [20], deep belief network (DBN) [21], recurrent neural network
(RNN) [22], long short-term memory (LSTM) [23], and other neural networks [24–26]. For ANN,
the adjustment of parameters may have a great influence on the prediction results. Some optimization
algorithms are also used in combination with neural networks to adjust the parameters of neural
networks to achieve better prediction results [27]. Combination forecasting approaches are based on
a variety of different prediction models to overcome the shortcomings of a single model and obtain
higher accuracy by using the combination of different models’ prediction results [28].

In this paper, we present a new WPF model based on XGBoost, weather similarity analysis,
and feature engineering. We try to analyze the similarity of weather and assign meteorological
observation data into several clusters. Next, when we consider the influence of weather features,
we also think about time features. We create some time features and select some more important
features in feature engineering. The features we select are the inputs of XGBoost. For each type,
we train a XGBoost model. Then, we compute the forecasting accuracy for short-term forecasting,
showing that the proposed model has a better performance than BPNN, CART, random forests (RF),
support vector regression (SVR), and a single XGBoost model.

The remaining parts of this paper are organized as follows. An overview of the XGBoost algorithm
is outlined in Section 2. Section 3 introduces the details of the proposed WPF model. Simulation results
obtained by the proposed model and other compared methods are shown in Section 4. The final section
gives the conclusions.

2. Methodology

XGBoost is applied to supervised learning problems using training data to predict the target
variables [29]. XGBoost selects decision tree as its base learner. By adding new base learners,
the error between predictive values and target are reduced. The final predictive values are equal to
the summation of all base learners.

XGBoost algorithm can be regarded as an additive model consisting of M decision trees, which are
given by Equation (1):

Yi =
M∑

m=1
fm(xi), fm ∈ F (1)

where f stands for a decision tree and F represents the function of all decision trees.
In the process of regression, the object function of the additive model becomes (2):

Obj(θ) =
n∑

i=1
l(yi, Yi) +

M∑
m=1

Ω( fm), θ = ( f1, f2, · · · , fM) (2)

where l means loss function and Ω expresses the regularization term.
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For regularization terms of every decision tree, we improve the decision tree using vector mapping.
Therefore, the details of Ω(f ) can be seen in Equation (3):

Ω( f ) = γT + 1
2λ

T∑
j=1

ω2
j (3)

where T indicates the number of a decision tree’s leaf nodes, ω represents the vector of score, and both
γ and λ express the penalty factor.

XGBoost uses the forward stagewise algorithm to simplify the model complexity. Each time
the model adds a decision tree, it learns one new function and its coefficients to fit the last step predicted

residuals. Therefore, when the tth step learning happens, the predictive value of xi: Yt
i = Yt−1

i + ft(xi) .
Therefore, the object function should be expressed by Equation (4):

Obj(θ)t =
n∑

i=1

l
(
yi, Yt

i

)
+

t∑
m=1

Ω( fm) =
n∑

i=1

l
(
yi, Yt−1

i + ft(xi)
)
+

t∑
m=1

Ω( fm) (4)

Based on object function, the XGBoost algorithm applies the greedy algorithm to build the decision
tree; by building decision trees constantly, a complete XGBoost model is established.

3. Model Establishment

In this section, the detailed process of the proposed model is discussed, which consists of data
preprocessing, weather similarity analysis, and feature engineering.

3.1. Data Preprocessing

Due to errors in data collection, there may be some unreasonable values in the original data.
These unreasonable data will decrease the prediction accuracy, which is not conducive to establishing
the model to predict wind power. Besides, data preprocessing can provide a good preliminary
understanding of the data, so the first step of the model is to preprocess the data.

• Data cleaning: There are outliers in the original data. For example, there are some points in
the original data, whose corresponding wind speed is equal to zero, but the corresponding wind
power is smaller than zero. It is obvious that these data are unreasonable and need to be cleaned.

• Missing data filling: After data cleaning is completed, there will be gaps in the data. It is necessary
to fill these missing values, because if the filling of missing values is reasonable, the prediction
accuracy of the model can be improved. The k-Nearest Neighbor (KNN) algorithm is adopted to
find the nearest neighbor in the time series to fill the missing values in the data.

• Data normalization: The purpose of data normalization is to reduce the influence of order
of magnitude on the model, accelerate the training speed of the model, and make the model
more accurate than before. Min-max normalization maps data between zero and one, whose
transformation formula is described by Equation (5):

x = x−xmin
xmax−xmin

(5)

Data cleaning, filling of missing data, and data normalization constitute data preprocessing. The three
steps above are significant for improving the prediction accuracy of the model.

3.2. Weather Similarity Analysis

From the perspective of weather similarity, we analyze the relationship among meteorological
observations at different times and classify weather into several categories based on meteorological



Appl. Sci. 2019, 9, 3019 4 of 12

observations data from the wind farm, which contains wind speed, wind direction, temperature,
air pressure, and humidity. For each type of weather, a wind power prediction model is established.

For the preprocessed meteorological observations data, the k-means algorithm is used to
accomplish the classification of weather. The k-means algorithm finds k clusters from the dataset
and the number of k clusters is decided by users. Every cluster is described by its centroid, which is
the center of all points belonging to this cluster. The inputs of the k-means algorithm include wind
speed, wind direction, temperature, pressure, and humidity. First, k points are selected randomly
as centroids of k clusters. Then, each point of the dataset is assigned to a cluster. Then, the nearest
centroid for each point of the dataset is found and assigned to the cluster corresponding to the nearest
centroid. Next, let the centroids of different clusters be equal to the center of all points belonging
to this cluster. Repeat the above operations until the centroids of different clusters are unchanged.
The number of clusters is determined by cross-validation. The value of k corresponds to the best
WPF results.

The pseudo code of the above process is in Algorithm 1 [30].

Algorithm 1. K-means Algorithm

Input: Dataset S = {x1, x2, . . . , xh}
Procedure:
1: select k samples from dataset S as the original centroid vector c = { c1, c2, . . . , ck }
2: for every sample xi then
3: calculate the euclidean distance between xi and cj (j = 1,2, . . . ,k)
4: find the nearest centroid cj and let ui = j where ui represent the corresponding cluster of xi
5: end for
6: u = { u1, u2, . . . , uk }
7: for every cluster then
8: calculate the centroid of every cluster vi
9: end for
10: v = { v1, v2, . . . , vk }, u = {u1, u2, . . . , uh}
11: if v == c then
12: return u
13: else
14: c = v and go to step 2
15: end if
Output: vector u which shows the cluster label of every sample

3.3. Feature Engineering

The data determines the upper limit of machine learning, and the algorithm approximates this
upper limit as much as possible. Feature engineering refers to the process of transforming raw data
into training data for the model. Its purpose is to obtain better training data characteristics. The first
thing we need to do is extract more features from the original data. We suppose that wind power
is associated with some time features. Then, we create some time features, such as day of the week
and hour of day. In addition to these above features, we guess that the current wind power may be
related to the wind power from 24 and 48 h earlier. All supposed time features are created. The details
of these time features could be found in Table 1.

We then create certain features, and in Figure 1, the Pearson correlation coefficient matrix is
expressed as a heatmap. The Pearson correlation coefficient can describe the linear correlation between
two features. We find that some features we created have a stronger linear correlation with other
features, for example, “month” and “doy”. According to the message of the heatmap, the Pearson
correlation coefficient between these two features approaches one. Two features with complete linear
correlation can be expressed by each other, which means that the contained information of these two
features have no differences. For the two features with strong linear correlation, removing one of
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them can improve the accuracy of the model with less data information loss. Therefore, we drop
the “month” feature.

Table 1. Meaning of different time features.

Feature Meaning

dow day of the week (integer 0–6)
doy day of the year (integer 0–365)
day day of the month (integer 1–31)

month month of the year (integer 1–12)
hour hour of the day (integer 0–23)

minute minute of the day (integer 0–1339)
t_m24 wind power value from 24 h earlier
t_m48 wind power value from 48 h earlier
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However, the process of filtering features is not still over. Here, we continue to select features with
help from XGBoost. First, we use all features to build a model based on XGBoost. Then, we calculate
the value of importance of every feature. The value of importance indicates how much this feature
affects the model based on XGBoost. In Figure 2, the F score represents the value of importance.
Based on the value of importance, we drop some features whose value of importance is smaller
than other features. In Figure 2, the two features are “day” and “dow”, whose F scores are significantly
smaller than other features. Therefore, for the model based on XGBoost, these two features play
an unimportant role in forecasting. In other words, these two features have a weaker correlation with
wind power than other features. Consequently, these two features containing “day” and “dow” are
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dropped. In the end, the input features of XGBoost are composed of “speed”, “direction”, “doy”,
“t_m24”, “temperature”, “hour”, “t_m48”, “humidity”, and “pressure”.Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 12 
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3.4. The Structure of Proposed Model

In this paper, we divide the preprocessed data into several clusters. For every cluster, we build
a model based on XGBoost. Through feature engineering, we obtain the features that will be regarded
as the inputs of the XGBoost algorithm. After the training process of XGBoost, our model is established
successfully. Since the XGBoost algorithm has some parameters, it is necessary to adjust the parameters
for more higher accuracy. Ten-fold cross-validation is used to test algorithm accuracy and adjust
parameters here. First, we divide the original data into ten parts. We choose one part as the testing
data and others as training data at a time. We obtain the results of ten different choices. The mean
value of the results is the final evaluation indicator. A set of parameters corresponding to the best
result are the parameters we use. The proposed model is simulated by using Python and the structure
of this model is shown in Figure 3.
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4. Experiments

4.1. Description of Data

In this paper, the data is provided by a wind farm in northwest China’s Gansu province.
The raw data contains timestamp, wind power, wind speed, wind direction, air pressure, temperature,
and humidity data each hour from January 1, 2016, to April 28, 2017. Figure 4 shows the change of
different meteorological observations of normalized data over time in the first 50 days. The five curves
in Figure 4 represent the normalized values of wind speed, wind direction, temperature, humidity,
and air pressure, respectively. As shown in Figure 4, some meteorological observations have obvious
volatility, especially wind speed, temperature, and humidity. These features are characterized by
periodic variations, which explain that the correlation between meteorological observations and time
is strong and it is necessary to create some time features. According to the introduction section,
we need to predict the wind power from several hours to one week based on previous data for
short-term wind power forecasting. In this paper, we predict wind power per hour for the next week,
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which has 168 values. Therefore, the testing set uses the data from April 21, 2017, to April 28, 2017,
and the training set uses the data from January 1, 2016, to April 20, 2017, in specific experiments.
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4.2. Evaluating Indicator

For short-term wind power forecasting, mean square error (MSE), root mean square error (RMSE),
mean absolute error (MAE), and root mean absolute error (RMAE) are the most common evaluation
indicators, which can be illustrated by:

MSE =
1
n

n∑
i=1

(PPi − PMi)
2 (6)

RMSE =

√√
1
n

n∑
i=1

(PPi − PMi)
2 (7)

MAE =
1
n

n∑
i=1

|PPi − PMi| (8)

RMAE =

√√
1
n

n∑
i=1

|PPi − PMi| (9)

where n is the number of samples, PMi is real time power, and PPi is forecasting wind power. mean
square error (MSE) is the average sum of the difference between the real value and the predicted
value. root mean square error (RMSE) is used to measure the deviation between the observed value
and the truth value. For MSE and RMSE, mean absolute error (MAE), and root mean absolute error
(RMAE) are not susceptible to outliers and can better reflect the actual situation of predicted error.
These four indicators will be used in testing part.
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4.3. Wind Power Forecasting Results

In order to better express the value of the proposed model in this paper, five models are selected
to be compared with the proposed model. These models include CART, BPNN, RF, SVR, and a simple
XGBoost model.

Figure 5 shows the clustering results. Points with different colors represent different clusters.
We can clearly see that there are seven clusters in Figure 5. These clusters have different characteristics,
such as different wind directions and different air pressure. From the prediction results in Table 2,
we see that the XGBoost model with weather similarity analysis and feature engineering can reduce
the prediction error compared with a single XGBoost model, in which MSE, RMSE, MAE, and RMAE are
reduced by 19.93%, 10.52%, 18.79%, and 9.73%, respectively. From this point of view, weather similarity
analysis and feature engineering improve the accuracy of forecasting results significantly. What is
more, the proposed model is the most accurate model among the six models. For RF, which obtains
the best performance among the five compared models, MSE, RMSE, MAE, and RMAE are reduced by
16.56%, 8.68%, 4.58%, and 2.11%, respectively.

Table 2. Evaluated results of different wind power forecasting models.

Proposed RF CART BPNN XGBoost SVR

MSE 434.06 520.20 948.51 738.97 542.11 1174.73
RMSE 20.83 22.81 31.51 27.18 23.28 34.27
MAE 13.74 14.40 19.39 20.37 16.92 23.37

RMAE 3.71 3.79 4.40 4.51 4.11 4.83

RF: random forests; CART: classification and regression tree; BPNN: back propagation neural network; XGBoost:
extreme gradient boosting; SVR: support vector regression; MSE: mean square error; RMSE: root mean square error;
MAE: mean absolute error; RMAE: root mean absolute error.
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Figure 6 shows the predicted wind power of RF and the proposed model from April 21, 2017,
to April 28, 2017. For the five compared models, there is a RF model in Figure 6, because RF is the best
model among all compared models based on results in Table 2. In Figure 6, the blue curve represents
wind power of actual data. The red curve represents wind power forecasting results of the proposed
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model and the black curve represents wind power forecasting results of RF. According to the messages
of the red circle in Figure 6, it is easy to see that the proposed model is obviously better than RF.
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Figure 7 displays the absolute error between actual wind power and predictive wind power for
different models. In Figure 7, the red curve represents the absolute error between the predictive wind
power of the proposed model and actual wind power, and the black curve represents the absolute
error between the predictive wind power of RF and actual wind power. For most times, the forecasting
error of the RF is greater than the proposed model. The proposed model can follow the wind power’s
variation tendency of actual data and the stability of the proposed model is better than RF.
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According to the above analysis, it is significant to see that the XGBoost model with weather
similarity analysis and feature engineering is better than a simple XGBoost model. This also confirms
the value of weather similarity analysis and feature engineering. In short, the proposed model in
this paper is better than the traditional WPF models (BPNN, CART, RF, XGBoost, and SVR) and has
wide applicability.

5. Conclusions

WPF plays a crucial part in solving intermittency and uncertainty of wind. An accurate WPF
model is important for electrical power systems to complete the advance dispatching of electricity.
In this paper, a new model for short-term wind power forecasting has been proposed, which consists
of XGBoost, weather similarity analysis, and feature engineering. In the proposed model, we analyze
weather similarity based on the k-means clustering algorithm and classify meteorological observation
data into several clusters. In order to improve the accuracy of forecasting, we create some time features
and select some features that are more important than others. Then, XGBoost, whose inputs contain all
of the features we obtained from feature engineering, is used for prediction. Next, the WPF results are
compared to RF, CART, BPNN, SVR, and a simple XGBoost model to fully evaluate the performance
of the proposed model. According to the simulation results, it is obvious that the proposed model
does have the highest accuracy of prediction for short-term forecasting. However, there are still some
problems that need to be considered for the proposed model. For example, some spatial features
can also be added in the WPF model, such as environmental and geographic features near the wind
farm. The question still remains of how to achieve feature selection with more potential features.
These points are valuable and important in further studies.
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