
applied  
sciences

Article

QoS-Guaranteed Radio Resource Management in
LTE-A Co-Channel Networks with Dual Connectivity

Ren-Hung Hwang * , Min-Chun Peng and Kai-Chung Cheng

Department of Computer Science & Information Engineering, National Chung Cheng University,
Chiayi 600, Taiwan
* Correspondence: rhhwang@cs.ccu.edu.tw; Tel.: +886-5-272-9396

Received: 26 June 2019; Accepted: 25 July 2019; Published: 26 July 2019
����������
�������

Featured Application: Dual connectivity increases data rate of user equipment (UE), suitable for
multimedia applications in cellular networks.

Abstract: Dual connectivity (DC) was first proposed in 3GPP Release 12 which allows one piece
of user equipment (UE) to connect to two base stations in heterogeneous networks (HetNet) at
the same time, to increase the flexibility of resource utilization. DC has been further extended to
multiple connectivity in 5G New Radio (NR). On the other hand, different UE tends to have different
bandwidth requirements. Thus, in DC, one of the challenging issues is how to integrate resources
from two base stations to enhance the quality of service (QoS) as well as the data transfer rate of
each UE. In this paper, we proposed novel resource management mechanisms to improve the QoS
of UE in the co-channel dual connectivity network. In terms of resource allocation, we designed
the Max–Min Threshold Scheduler (MTS) which, in principle, allocates a resource block to the UE
with the best channel quality while considering the issues of intercell resource allocation and the
QoS requirement of each UE. In order to balance the load of different cells, we designed a novel
cell selection scheme based on the HetNet Congestion Indicator (HCI) which considers not only the
signal quality of UE but also the remaining resources of each base station. To improve the QoS of cell
edge UE, cell range expansion (CRE) and the Almost Blank Subframe (ABS) were proposed in 3GPP.
In this paper, based on Q-learning, we designed an adaptive mechanism which dynamically adjusts
the ABS ratio according to the network condition to improve resource utilization. Our simulation
results showed that our MTS scheduler was able to achieve a 31.44% higher data rate than the
Proportional Fairness Scheduler; our HCI cell selection scheme yielded a 2.98% higher data rate than
the signal-to-interference plus noise ratio (SINR) cell selection scheme; the QoS satisfaction rate of
our Q-learning dynamic ABS scheme was 4.06% higher than that of the Static ABS scheme. Finally,
for the cell edge users who often suffer poor data transfer rate, by integrating the mechanisms of DC,
CRE, and ABS, our experimental results showed that the QoS satisfaction ratio of cell edge UEs could
be improved by 10.76% as compared to the single connectivity and no ABS situation.

Keywords: heterogeneous network; dual connectivity; quality of service; resource allocation;
cell selection

1. Introduction

Due to the rapidly growing mobile data traffic, 4G is not able to meet the current traffic demand.
With the limited wireless radio resource, dual connectivity (DC) technology and heterogeneous network
(HetNet) architecture can improve the data transfer rate beyond 4G. DC is based on carrier aggregation
(CA) and coordinated multi-point (CoMP), allowing user equipment (UE) to connect two different
base stations at the same time, which are referred to as Master eNodeB (MeNB) and Secondary
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eNodeB (SeNB) [1]. Recently, DC has been further extended to include multiple connectivity in 5G
New Radio (NR) [2]. The research studies on DC have attracted quite a lot of attention, e.g., in [3–5],
authors have explored the potential benefits and challenges, including buffer status reporting, power
headroom calculation, discontinuous reception, logical channel prioritization, bearer split, and so on.
In [6], authors indicated that MeNB and SeNB have different scheduling requirements, proposing the
coordination mechanism to prevent the user equipment from using beyond its maximum transmission
power. In [7], a study of DC was divided into control plane and user plane issues. Using the channel
state information reference signal (CSI-RS), which is unique to the Multi-input Multi-output (MIMO)
frame, SeNB no longer deals with handover issues and MeNB can update the Radio Resource Control
(RRC) of the user equipment to achieve handover between the different base stations. In summary,
DC can effectively improve throughput in HetNet by optimal resource allocation [8]. Thus, in this
paper, we focused on DC combined with the radio resource management to integrate resources across
base stations and do the best to satisfy the bandwidth requirements of UEs. We explored three
research topics in DC, including resource allocation, cell selection, and enhanced inter-cell interference
coordination (e-ICIC).

In the study of the resource allocation, most commonly adopted resource scheduling mechanisms are
Round Robin Scheduler (RR), Best Channel Quality Indicator (CQI) Scheduler (BCQI), and Proportional
Fair Scheduler (PF) [9–11]. RR, which is simple to implement, assigns equal portions of resource blocks
(RB) to each UE in a circular order. However, the disadvantage is that this scheduler does not consider
channel condition and can lead to low system throughput. In contrast, BCQI assigns resource blocks
based on the channel condition. Although the system throughput is increased, it may cause UEs with
low CQI suffer starvation. PF is a compromise between throughput and fairness, based on the balance
of the competing benefit among the UEs, trying to maintain fairness while maximizing throughput.
Therefore, in order to emphasize the system throughput and fairness, most of the literature adopted
Proportional Fair scheduling. In [12], the authors use Karush–Kuhn–Tucker optimization conditions to
reduce the complexity of Proportional Fair, assuming that the transmission power of the base station is
evenly distributed on each subcarrier. In [13], the geometric mean is used to replace the arithmetic
mean in the Proportional Fair, which yields quicker convergence and improves throughput and block
error rate (BLER). In DC, since a UE could connect to two base stations at the same time, the co-channel
interference factors must also be considered. Therefore, the Proportional Fair is not necessarily the best
scheduler. We proposed to estimate the channel quality of each subcarrier and assign resource block to
the UE with the best CQI while considering how to integrate resources from two stations to enhance
QoS as well as data transfer rate of each UE.

In the study of the cell selection, the 3GPP defines that the basic cell selection principle of the
user equipment is done according to the received reference signal reception power (RSRP). The higher
the transmission power of the base station, the wider the range of signals that can be covered and the
more UEs will connect to that base station [14,15]. Many studies indicated that the RSRP is conducive
to large base stations (e.g., Macro BS), but not obvious for small cells (e.g., pico BS). In [16], the cell
range expansion (CRE) scheme is investigated, in which the coverage of pico BS is extended by adding
additional reference signal such that more UEs could select the pico BS rather than Macro BS. However,
increasing the CRE bias value alone does not improve the performance of the small cell, as the cell edge
users are significantly affected by the intercell interference. In [17], the serving cell is selected according
to the signal-to-interference plus noise ratio (SINR) which considers not only the transmission power
of the base station, but also the interference between the base stations. Many other factors are also
considered in cell selection in the literature, such as load balance, utility function of proportional fair,
dynamic strategy, and data transfer rate [18–21]. In this paper, based on the special features of DC,
we consider load balancing and downlink data transfer rate in the cell selection. Specifically, we first
estimate CQI based on SINR and then estimate the number of resource blocks that a UE can be assigned,
and finally calculate the actual data transfer rate.
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In the study of the enhanced intercell interference coordination, some previous works took the
Almost Blank Subframe (ABS) into consideration [22,23], in which a ratio of time slots of a frame of the
Macro BS were preserved for the pico BS to achieve time domain coordination. Most of previous works
adopted static ABS setting and showed that the ratio of 0.5 yielded the best performance. However,
it may waste a lot of wireless resources of the Macro BS. In this paper, we proposed a better method to
adjust the ABS ratio dynamically according to the network conditions. It would decrease the ABS ratio
when the Macro BS is overloaded, and increase the ABS ratio to improve the throughput of pico BS
when the load of Macro BS is low. Simulation results are given to substantiate theoretical findings with
a comparison with fixed ABS configuration.

Besides, there are various types of small cell and UEs with different bandwidth requirements in
HetNet. Most literature focused on single traffic, which is not able to reflect the real-world situation [24].
Thus, in this work, multiple types of applications with different QoS requirements were considered.
By considering voice traffic and video traffic, we classify two types of the traffic into different QoS
indicators: Guaranteed bit rate (GBR) and maximum bit rate (MBR). The QoS requirement of GBR is
a guaranteed fix transmission rate, while that of MBR is a guaranteed of minimum rate and a limit of
maximum rate. The numerical results show that our proposed schemes had significant improvement
in the QoS satisfaction ratio than previous works in the literature.

The rest of this paper is organized as follows. Section 2 introduced system design. The proposed
Max–min Threshold Scheduler (MTS), HetNet Congestion Indicator (HCI), and Q-learning dynamic
ABS will be described in detail in Section 3. The system deployment and the simulation results present
in Section 4. Finally, in Section 5, conclusion and future works are discussed.

2. System Model

2.1. Co-Channel Networks with Dual Connectivity

For HetNets, the wireless radio resources not only determine the quality of the network but also
determine whether the bandwidth requirements of UEs are satisfied. In the limited wireless radio
resources, how to effectively improve the spectrum utilization is very important; therefore, co-channel
HetNet is currently the most efficient approach, meaning that Macro BS and pico BS co-use the same
frequency. However, the challenge of the co-channel network is the interference between each base
station. Based on the different downlink transmission power of the base station in HetNets, the low
power pico BS with the distance closer to the Macro BS will suffer the greater interference, and lead to
the decrease of the signal coverage of the pico BS, as shown in Figure 1 [25].
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Figure 1. Pico base station (BS) coverage area in the presence of a Macro BS.

In this paper, we combine the dual connectivity technology with CRE and ABS by integrating
resources from two base stations to enhance the data transfer rate of each UE. For example, in 3GPP
co-channel network scenario [1] as shown in Figure 2, it can be observed that UE 1 and UE 3 are close
to the pico BS and Macro BS, respectively, and can receive better CQI than the UE 2. On the other
hand, UE 2 is located at the signal junction of the base station and has a worse CQI due to the greater
interference. In order to enhance the data transfer rate, UE 2 with dual connectivity can access the
resources from Macro BS in non-ABS situations and can also access the resources from pico BS in ABS
situations (see part (a) in Figure 2) where non-ABS means the ABS mechanism is not enabled.
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We learned that the difference between the dual connectivity and the original single connectivity
(SC) is that some UEs, such as UE 2, can access radio resources from the Macro BS and the pico
BS simultaneously. In order to facilitate the management, as shown in Figure 2b, we define two
categories of the user equipment, namely Macro user equipment (MUE) and Pico user equipment
(PUE). The characteristics of each category are described as follows.

• Macro user equipment (MUE): Only access the radio resources from the Macro BS, and cannot
access the radio resources from the pico BS. Therefore, in our proposed mechanisms, we will give
the MUE a higher priority than the PUE in the resource allocation of the Macro BS.

• Pico user equipment (PUE): Besides accessing the radio resources from the pico BS, a UE may
also access the radio resources from the Macro BS.
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2.2. Optimal Resource Allocation

In LTE-A, the basic schedule unit is a resource block (RB). One RB consists of 12 subcarriers and
a time domain, and the base station may calculate the data transfer rate of an RB when it is allocated
to a specific UE. Due to the difference in channel quality, the signal status of different UE is different,
so the data transfer rate will be affected by the modulation and coding rate (see Table 1).

Table 1. Channel Quality Indicator (CQI) table.

CQI Index Modulation Code Rate × 1024 Efficiency

0 out of range
1 QPSK 78 0.1523
2 QPSK 120 0.2344
3 QPSK 193 0.3770
4 QPSK 308 0.6016
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Table 1. Cont.

CQI Index Modulation Code Rate × 1024 Efficiency

5 QPSK 449 0.8770
6 QPSK 602 1.1758
7 16QAM 378 1.4766
8 16QAM 490 1.9141
9 16QAM 616 2.4063
10 64QAM 466 2.7305
11 64QAM 567 3.3223
12 64QAM 666 3.9023
13 64QAM 772 4.5234
14 64QAM 873 5.1152
15 64QAM 948 5.5547

The impact of the resource scheduling on the data transfer rate is very significant. Since all UEs
share bandwidth of a base station, to optimize the system throughput it is intuitive to assign an RB
to the UE with the best channel quality. That is, we formulate a throughput optimization problem
as follows.

max
Xu,k

∑
u∈U

K∑
k=1

TPu,k ∗ Xu,k (1)

where u is a UE belongs to the UE set U = {u1, . . . , uU}, k is a RB of the RB set K = {1, 2, . . . , K}, TPu,k is
the throughput of RB k when it is allocated to the UE u, and Xu,k represents whether RB k is assigned
to UE u. TPu,k can be calculated by 12 (subcarriers) * 7 (symbols) * CQIe f f iciency. There is a positive
correlation between TPu,k and CQIe f f iciency; however, CQIe f f iciency is not a linear function of CQIindex,
which makes the objective function nonlinear. Therefore, we replace CQIe f f iciency with CQIindex and
make the optimization problem (1) to a 0–1 integer programming problem as follows:

max
Xu,k

∑
u∈U

∑K

k=1
CQIu,k ∗ Xu,k. (2)

Subject to: ∑
u∈U

Xu,k ≤ 1∀k (3)

Xu,k ∈ { 0, 1}∀u, k (4)

where Equation (3) constrains each RB can only be assigned to a UE, and Equation (4) states that Xu,k
is an indication variable.

Two common approaches of solving 0–1 linear programming problems are “implicit enumeration”
and “branch and bound”. Unfortunately, the computational complexity of these two methods is
exponential time. In order to reduce the computational complexity, we can first relax the 0–1 integer
programming to linear programming. The relaxed linear programming can then be solved by many
existing solutions, such as “simplex method”, “ellipsoid method”, and “interior point method”.
For example, in MATLAB, the linprog library is provided which can obtain the optimal solution by the
“internal point method” according to the scale of the optimization problem.

After obtaining the optimal solution from linear programming, two methods can be used to
transfer the solution back to the 0–1 integer programming solution.

• Max method: For RB k, the sum of all variables is at most 1 under constraint (3). The max
method sorts these variables in descending order, assigns 1 to the variable with the largest value
(i.e., allocate the RB to the UE) and 0 to the rest variables.

• Random method: For RB k, let N =
∑

Xi,k. The random method allocates RB k to UE i with

probability pi where pi =
Xi,k
N (i.e., set Xi,k =1 and Xu,k = 0 ∀u , i).
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As aforementioned, we will propose a max–min RB allocation method which will be described in
detail in the next section. In the following, we performed experiments to compare the performance
of three RB allocation methods, namely, the max method, the random method, and the max–min
method. We compared three performance metrics: The similarity between the optimal solution (of the
0–1 integer programming) and that of these methods, the difference of objective function (1) and
(2) of the optimal solution, and that of these methods. The similarity was defined as the pair-wise
comparison of each variable of the optimal solution, and that of the three methods. For example, if the
system had 50 RBs, and allocation of 40 RBs were the same between two methods, we would define the
similarity as 80%. For the objective function, we compared the degradation of the objective function
of one method as compared to the optimal solution. For example, 10% means the objective function
obtained by one approximate method only achieves 90% of that of the optimal solution.

The system parameters of the experiments are shown in Table 2, in which the system has seven
Macro BSs, each Macro BS contains three sectors, and each sector deploys five user equipments. We
simulate 500 TTIs, and for each TTI, the optimal solution as well as the solutions of the three methods
were calculated for each sector (i.e., 21 sectors).

Table 2. Simulation parameter of the optimal resource allocation.

Parameters Configuration

Simulation time 500 TTI
Cellular layout Wrap around, 7 Macros, 3 sectors per site
Carrier frequency 2.14 GHz
Bandwidth 10 MHz
Number of RBs 50
Number of UEs per sector 5
Macro transmit power 46 dBm
Thermal noise −174 dBm/Hz
Pathloss model As in 3GPP TS 36.942

Table 3 shows the experimental results. As can be observed, random method did not perform well,
neither yielded good similarity to the optimal solution nor achieved good objective value. The max
method yielded the closest solution to the optimal solution. On the other hand, the max–min method
also yielded a very competitive solution to the max method, in particular, both methods yielded very
high objective value with less than 1% degradation. However, the max-min method had much less
computation complexity as compared to the other methods which need to solve 0–1 integer linear
programming or linear programming problem. In summary, the max-min method is a good candidate
mechanism for RB allocation.

Table 3. Experimental results.

Similarity Degradation of Obj. Func. (1) Degradation of Obj. Func. (2)

Max method 93.96% 0.43% 0.67%
Random method 36.03% 37.99% 48.42%
Max–Min method 87.62% 0.47% 0.83%

2.3. Guarantee Quality of Service (QoS)

In order to evaluate the system performance such as throughput, most literature assume UEs
have full buffer. However, in reality, each UE has its own traffic characteristic and quality of service
requirement. Allocating resources more than a UE’s needs does not increase system throughput. In this
work, we considered two types of traffic, each with its own bandwidth requirement. By considering
voice traffic and video traffic, we classified two types of the traffic into two QoS categories: Guaranteed
bit rate (GBR) and maximum bit rate (MBR). The characteristics of each QoS requirement are described
as follows [26]:
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• Guaranteed bit rate (GBR): Some applications, such as audio, require a fixed amount of bandwidth
continuously during their lifetime. Thus, the traffic characteristic as well as QoS requirement of
this kind of traffic is a constant data rate.

• Maximum bit rate (MBR): Yet, other types of applications, such as video, require a variable
amount of bandwidth. The traffic may be bursty, and is usually characterized by a peak data
rate and a sustainable data rate. Thus, we set the QoS requirement of MBR with two parameters,
namely a minimum of the sustainable data rate (or average data rate) and a peak (maximum)
data rate.

We took the QoS requirement into consideration while scheduling RBs. That is, when a base
station allocates RBs to UEs under its coverage, it will try its best to guarantee the QoS of each UE
under the constraint of limited RBs. Specifically, to provide QoS guarantee to UE u, the number of RBs
to be allocated depends on its QoS requirement and channel condition. For GBR traffic, the required
data rate is its guaranteed data rate while for MBR traffic, it is its minimum data rate. The number of
required RBs for UE u can be calculated by following equation [24]:

NRBu =

⌈
UEu,QoS

RBdata_rate

⌉
(5)

where UEu,QoS is QoS requirement for UE u, RBdata_rate is data rate of a RB, and NRBu is the minimum
number of the required RBs to satisfy the QoS of UE u. If the base station has abundant RBs, it will not
allocate more RBs to UEs with GBR traffic, instead, it will allocate to UEs with MBR traffic, but only up
to their peak data rate.

3. Proposed Schemes

The radio resource management scheme of base stations affects the performance of applying dual
connectivity in HetNets. In this section, we propose three novel schemes in resource scheduling, cell
selection, and enhanced intercell interference coordination, which are named Max—min Threshold
Scheduler (MTS), HetNet Congestion Indicator (HCI), and Q-learning Dynamic Almost Blank Subframe
(QD-ABS), respectively. The details for these schemes are outlined in the following.

3.1. Max–Min Threshold Scheduler

The MTS approach can be split into two different views: max–min scheduling and Threshold
restrictions. The former is responsible for optimizing the resource allocation, the latter limits the
allocation of RBs according to the environmental conditions with dual connectivity.

3.1.1. Max–Min Scheduling

For one RB, the achievable data transfer rate can be calculated by base station when the RB is
assigned to a UE. In general, the base station will allocate an RB to the UE with the best channel
quality while considering the issues of intercell resource allocation and the UE’s QoS requirement.
We assumed that there are N RBs within a time slot and M UEs connected to the base station. Based on
UE’s CQI, the base station constructs an NxM matrix A as shown in Figure 3. The max–min scheduling
is then used to assign RBs to UEs to satisfy QoS of UEs as much as possible.

The max–min scheduling consists of five steps:

(1) Find the maximum (max) of the CQI value in the matrix A, and assume it is A(i, j). It assigns the
i-th RB to the j-th UE so that the UE can receive the highest data rate with this RB.

(2) When there are more than one maximum CQIs in the matrix A, it selects the RB with minimum
(min) impact to the other UEs in the same row. For example, if A(i1, j1) and A(i2, j2) are the
same maximum in the matrix A, then it calculates s(i1) =

∑M
j=1 A(i1, j) and s(i2) =

∑M
j=1 A(i2, j),

respectively. It then assigns the i1-th RB to the j1-th UE first if s(i1) < s(i2).
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(3) If s(i1) = s(i2), it sorts the vector A(i1,*) and A(i2,*) in descending order, compares the elements
one by one until it finds the one with less value, say it is As(i1,j). It then assigns the i1-th RB to the
j-th UE (where As(i1,*) is the sorted vector).

(4) If all the elements are still the same, it randomly selects one, say A(i1, j1), and assigns the RB to
a UE accordingly.

(5) After allocating the i-th RB, the i-th row of the matrix A is cleared to 0 (indicating that the RB had
been allocated).

The max-min scheduling repeats the step from (1) to (5) until all of the UEs have satisfied QoS
requirement or all of the RBs had been allocated.
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Once the RB allocation is completed, the max–min scheduling then evaluates whether the QoS
requirements of the currently assigned UEs are satisfied. In LTE-A, the transport block (TB) is used to
calculate the throughput of the downlink. A TB consists of several RBs, and all RBs must be transmitted
using unified CQI encoding. Given the number of available RBs that can be assigned to the UE,
it calculates the maximum data rate it can receive from the base station using following equation:

TB = Nsymbol ∗RBassigned ∗CQIe f f iciency ∗ Tslot −CRC (6)

where Nsymbols is the number of symbols per RB, RBassigned is the number of RBs which the UE can be
assigned, CQIe f f iciency is the bits per RB, Tslots is the number of two time slots per millisecond, and CRC
is the cyclic redundancy check in 24 bits.

3.1.2. Threshold Restrictions

Recall that there are two types of UEs in the system, namely MUE and PUE. Thus, we let
U = UM

∪UP, where UM and UP are the set of MUEs and PUEs respectively. Since MUE can only
access RBs of the Macro BS, the proposed MTS scheme gives higher priority to MUE when allocating
RBs of the Macro BS, as illustrated in Figure 4. The MTS adopts a threshold-based scheme which
allocates a certain number of RBs to MUEs before it exercises the max–min scheduling. The basic idea
is to guarantee the QoS of MUEs first. It then adopts the max–min scheduling to allocate the remaining
RBs to both MUEs and PUEs. On the other hand, the pico BS exercises the max-min scheduling to
allocate the RBs to PUEs only.
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The number of RBs reserved for MUEs is based on solving following optimization problem,
similar to the problem defined in Section 2, but two new constraints are added, as shown in the following.

max
Xu,k

∑
u∈UM

∑K

k=1
CQIu,k ∗ Xu,k. (7)

Subject to: ∑
u∈UM

Xu,k ≤ 1 ∀k (8)

K∑
k=1

Xu,k ≤ NRBu ∀u ∈ UM (9)

CQIu,k ≥ 7 ∀k (10)

Xu,k ∈ { 0, 1} ∀u ∈ UM, k (11)

where Equation (9) means that the number of allocated RBs cannot exceed the QoS requirement of the
MUE, and Equation (10) means that the channel quality must be higher than CQI 7 to avoid wasting
RBs on low CQI MUEs. In summary, the threshold-based mechanism is expected to achieve similar
performance of the max-min scheduling because both methods are based on similar optimization
objectives. The purpose of the threshold-based mechanism is to protect MUEs to access enough
resources before competing with PUEs.

3.2. HetNet Congestion Indicator

Due to the dual connectivity, each piece of user equipment is connected to the Macro BS.
The handover problem between the HeNB will be processed by the Macro BS. We propose a new
HetNet Congestion Indicator (HCI) cell selection scheme to achieve the load balance, considering not
only the signal quality of the UE, but also the number of remaining resources of each base station.
In addition to the cell selection, we also use HCI to adjust the type of the UE, either MUE or PUE.

3.2.1. Cell Selection Scheme

When a UE has more than one BS to join, it selects the one with least HCI. The key idea of HCI is
to estimate the congestion level of a base station based on the competitive online algorithm proposed
in [27]. Specifically, the HCI cell selection scheme consists of two steps:
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(1) A UE continuously measures the SINR among neighboring cells. If the SINR of current serving BS
becomes weaker and some neighboring BSs become stronger, then the UE enters the cell selection
procedure (step 2).

(2) The UE selects a list of candidate BSs which have higher SINRs. For each BS, the UE estimates and
reports its Channel Quality Indicator (CQI) to the BS. By taking account of the QoS requirement
of the UE and the status of RB usage, the BS replies to the UE with its HCI which is calculated as
follows. Assume the maximum number of RBs per time slot (system capacity) is C, number of
RBs which have been used (allocated) is Ri, the number of RBs required by the UE (based on its
CQI and QoS requirement) is b, the HCI is given by:

HCI(b) = cost(Ri + b, C) − cost(Ri, C) (12)

where the cost() function is defined as follows.

cost(Ri, C) = µ(
Ri
C −1) (13)

where µ is a constant parameter which is usually set to C (in our case, it is set to 50).

After obtaining the HCI of each candidate BS, it selects the BS with the least HCI to join. The HCI
function is meant to estimate the congestion level or traffic load of a BS.

3.2.2. Classify a UE as a MUE or PUE Type

As mentioned in Section 2, a UE could be either MUE or PUE. If a UE receives signal from both
Macro BS and pico BS, and it selects the Macro BS as its serving BS as the BS has the least HCI, then the
UE is classified as a MUE; otherwise, it is a PUE. Due to the mobility, a UE may change its serving BS
which will also change its type. As aforementioned, the different type of the UE will affect the priority
of accessing resources. Specifically, a MUE can only access resources from the Macro BS, while a PUE
can access resources from two BSs simultaneously. Figure 5 illustrates how a UE may enter the dual
connectivity range or transits from PUE to MUE. Initially, a UE may be within the coverage range of
a pico BS, but far from the Macro BS. In this stage, it is a PUE. As it moves closer to the Macro BS,
it begins to receive signal from Macro BS and enters the dual connectivity range. At this stage, it is
able to utilize resources of both BSs. As it continues to move closer the Macro BS, it eventually selects
Macro BS as its serving BS based on the HCI cell selection scheme. At this stage, it becomes a MUE.
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3.3. Q-Learning Dynamic Almost Blank Subframe

In order to explore the dual connectivity mechanism combined with CRE and ABS, the ABS
configuration learning procedure is introduced in this section. We propose a novel Q-learning dynamic
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ABS method based on reinforcement learning. Furthermore, it is effective to adjust the ABS ratio
and reduce the interference in the co-channel networks by coordinating the adjacent Macro BSs.
Thus, we also propose a centralized decision to adjust the ABS ratio which requires all Macro BSs to
synchronize their ABS ratio.

3.3.1. Related Works

Prior works on ABS ratio can be classified into fixed and dynamic ABS ratio settings. In the fixed
dynamic ABS ratio setting schemes, ABS ratio is set to a fixed value based on some experiments,
e.g., [28,29]. On the other hand, the dynamic ABS ratio setting schemes adjust the ABS ratio according
to the system status, such as traffic load and number of edge UEs. Quite a few of dynamic ABS ratio
setting schemes are based on reinforcement learning [30–32].

Reinforcement learning is a machine learning method which focuses on issues such as learning
with feedback or sequential decision-making. The purpose is to let the machine learn actively what
kind of action can be achieved with the maximal feedback, rather than tell the machine what action
to take [30,31]. Different from the supervised learning, reinforcement learning can occur without
a teacher by repeatedly interacting with the environment. It does not require accurate input and output,
emphasizing a continuous decision-making action of the online planning. For example, Figure 6
illustrates the structure of ABS learner–environment interaction. It is difficult to adjust the ABS ratio in
the unknown environment, which consists of factors such as the designed cellular layout, the density
of the connected UE, interference between the BSs, and so on. However, in such a complex situation,
reinforcement learning will allow the system to select an arbitrary ABS ratio first, observe the feedback
of whether the performance is good or not, and then adjust (learn) the ABS ratio according to the
feedback. The system continues to observe and adjust until the most suitable ABS ratio is learned.

Q-learning is a well-known algorithm for reinforcement learning. The Q-learning consists of the
various states, action, and cost. The agent of Q-learning will continue to learn until a task is reached.
In other words, the agent learns how to choose the action at different states to achieve the best reward
or the minimum punishment by repeatedly interacting with the environment.
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3.3.2. Q-Learning-Based Dynamic ABS (QD-ABS) Scheme

In this work, we proposed a Q-learning-based dynamic ABS scheme to learn the appropriate
ABS configuration for a global ABS ratio setting. The key idea is inspired from the literature [33].
In [33], the ABS ratio was dynamically adjusted based on the throughput of Macro BS and pico BS.
Since the UE distribution in each sector of a macro station is different, the ABS ratio will also be
different. Furthermore, the difference in ABS ratios will affect the throughput of each BS. Thus, we can
define the difference between the distribution of the throughput as the cost parameter in Q-learning.
The agent finally chooses the best ABS ratio when Q-learning is converged to the minimum cost.

The detailed steps of Q-learning-based dynamic ABS scheme consists of two steps:
(1) It estimates the required ABS ratio in each sector of the Macro station first. Let the total

bandwidth requirement of the UEs in Macro BS and pico BS be NMUE and NPUE, respectively. Assume
that the sum of the throughput allocated by the Macro BS and pico BS in the previous frame to the UEs
is Th ∗MUE and Th ∗PUE, respectively. Thus, the difference between the required bandwidth and the actual
assigned throughput can be expressed as follows.

∆ThMUE = Th ∗

MUE −NMUE (14)

∆ThPUE = Th ∗

PUE −NPUE. (15)

In order to meet the QoS requirements of the UE, the Equation (16) illustrates the opportunity
of using ABS, which contains two conditions. The first one is that all of the MUEs must satisfy QoS
requirement, and there are remaining resources in the Macro BS (∆ThMUE > 0). The other one is that
some PUEs have not satisfied QoS requirement after resource allocation in pico BS (∆ThPUE < 0).
Let the set of Macro BSs be denoted by M. If the above two conditions are met, then we can first give
the parameter µb (b ∈M) as the ABS ratio in each sector of the Macro station.

ABS ratio
{
µb, i f ∆ThMUE > 0 and ∆ThPUE < 0

0, others.
. (16)

Assuming that the throughput of the radio resource is evenly distributed across each TTI in
a frame. For example, the allocation of 1000 bits by a frame is equivalent to an average transmission of
100 bits in 10 TTI. The formula of the ABS µb is described as follows:

µb = argmax
µb


(1− µb )Th ∗

MUE −NMUE ≥ 0
[1 + µb (ε− 1)]Th ∗

PUE −NPUE ≤ 0
0 < µb < 1

(17)

where ε is the gain factor and µb (ε− 1) is the ratio of increased data transfer rate of the PUE after
using ABS over the original data rate. Through the difference in the throughput and the restriction of
the QoS requirement, ABS µb can be calculated by solving the simultaneous inequalities. Equation (17)
consists of three conditions: (1) The decreased throughput of MUEs will not be less than their required
bandwidth (NMUE); (2) the increased throughput of PUEs will not be more than their required
bandwidth (NPUE); (3) the value of µb must be between 0 and 1. The aim is to avoid wasting the
resources of the MUE after using ABS.

(2) With the ABS µb of each sector of the Macro station, the next step is to learn the unified ABS
ratio by Q-learning algorithm. The state, action, and cost of the Q-learning algorithm based on the ABS
configuration are defined as follows:

• Agent: The system.
• State: The state is defined as s, which is the satisfaction ratio of PUEs in the system. The satisfaction

ratio of PUEs is defined as the number of PUEs whose QoS requirements can be met over the total
number of PUEs.
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• Action: The action is defined as at, which is the ABS ratio.
• Cost: The cost is defined as c, which is the new calculated throughput of each sector of the Macro

BS after using the unified ABS ratio.

The cost c estimates the immediate return incurred due to action at at state s. The cost function is
calculated as:

∆µ = at − µb (18)

Costb


0, i f ∆µ = 0∣∣∣∆µThMUE

∗
∣∣∣, i f ∆µ > 0∣∣∣∆µ (ε− 1) ThPUE
∗
∣∣∣, i f ∆µ < 0

(19)

c =
∑

Costb (20)

where Equation (18) represents the difference before and after adjusting the ABS ratio. In Equation
(19), ∆µ > 0 indicates that the actual ABS ratio chosen by the system (at) is greater than that of the
sector of the Macro BS estimated by itself (µb), thus losing the excessive throughput of MUEs. On the
contrary, ∆µ < 0 indicates that the actual ABS ratio chosen by the system is less than that of the sector
of the Macro BS estimated by itself, thus losing the expected throughput of PUEs. Finally, the sum of
these costs in each sector of the Macro BS is calculated in Equation (20).

Given aforementioned parameters, the Q-value Q(st, at) can be defined as the expected cost of
taking action at at state st. Then Q-value is updated as follows:

Q(st, at) = (1− ρ)Q(st, at) + ρ

[
c + min

at+1

{
Q(st+1, at+1)

}]
(21)

where st+1 is the next state after taking the action at, and ρ is the learning rate, which denotes the willing
to learn from the environment. Eventually, a Q-table will be built as shown in Table 4. Once these
values in a Q-table have been learned and converged, the optimal action at each state is the one with
the lowest Q-value.

Table 4. Q-table in Q-Learning-Based Dynamic ABS (QD-ABS) scheme.

Dynamic ABS Ratio

PUE satisfaction ratio

a1 a2 a3 . . . an

< 25% Q(s1, a1) Q(s1, a2) Q(s1, a3) . . . Q(s1, an)
25~50% Q(s2, a1) Q(s2, a2) Q(s2, a3) . . . Q(s2, an)
50~75% Q(s3, a1) Q(s3, a2) Q(s3, a3) . . . Q(s3, an)
> 75% Q(s4, a1) Q(s4, a2) Q(s4, a3) . . . Q(s4, an)

The detailed pseudo-code is given as follows:
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Algorithm: Q-learning dynamic ABS (QD-ABS)

Initialize:
1 for each b ∈M do
2 calculate the initial ABS ratio µb based on Equations (23) and (24)
3 end for
4 for each s ∈ S, α ∈ A do
5 initialize the Q-value as the Q(st, αt)
6 end for
Learning:
7 loop
8 get the current state st ∈ S
9 select the action at ∈ A which has the minimum Q-value
10 calculate ∆µ based on Equation (18)
11 for each b ∈M do
12 calculate the cost of changing the ABS ratio from µb to αt based on Equation (19)
13 sum the cost to c based on Equation (20)
14 end for
15 observe the next state st+1 and update the Q-table entry as follows:

16 Q(st, at) = (1− ρ)Q(st, at) + ρ

[
c + min

at+1

{
Q(st+1, at+1)

}]
17 end loop
18 select the action αt which has the minimum Q-value for state s

QD-ABS algorithm

4. Evaluation

4.1. Simulation Assumption

In this work, we adopted the system level simulation [34] to validate our proposed schemes.
Specifically, we used Vienna LTE-A Downlink System Level Simulator version v2.0 Q3-2018 as our
simulator [35]. The LTE-A downlink macro-pico HetNet with seven cell sites wrapped around and
three hexagonal sectors per cell site was considered here. In each cell, two pico BSs with fixed
position were deployed at the cell edge with a distance of 8/15 ISD (Inter-site Distance) from the macro
BS, as shown in Figure 7. In addition, mobile UEs that were nonuniform were distributed in the
network. The total number of UEs was 315 in the simulated scenario with 15 UEs deployed in each
sector of a Macro BS. Two traffic types were considered among 315 UEs, 158 UEs generating GBR
traffic and 157 UEs generating MBR traffic. Each simulation was run for 10,000 TTIs and 30 runs of
simulations were conducted. The 95% confidence interval of each simulation case was also calculated.
System parameters of the simulation are summarized in Table 5.

Appl. Sci. 2019, 9, x 14 of 22 

In this work, we adopted the system level simulation [34] to validate our proposed schemes. 
Specifically, we used Vienna LTE-A Downlink System Level Simulator version v2.0 Q3-2018 as our 
simulator [35]. The LTE-A downlink macro-pico HetNet with seven cell sites wrapped around and 
three hexagonal sectors per cell site was considered here. In each cell, two pico BSs with fixed position 
were deployed at the cell edge with a distance of 8/15 ISD (Inter-site Distance) from the macro BS, as 
shown in Figure 7. In addition, mobile UEs that were nonuniform were distributed in the network. 
The total number of UEs was 315 in the simulated scenario with 15 UEs deployed in each sector of a 
Macro BS. Two traffic types were considered among 315 UEs, 158 UEs generating GBR traffic and 157 
UEs generating MBR traffic. Each simulation was run for 10,000 TTIs and 30 runs of simulations were 
conducted. The 95% confidence interval of each simulation case was also calculated. System 
parameters of the simulation are summarized in Table 5. 

 
Figure 7. Layout of network topology. 

Table 5. System parameters of the simulation. 

Parameter Configuration 
Cellular layout Wrap around, 7 Macros, 3 sectors per site 
Carrier frequency 2.14 GHz 
Bandwidth 10 MHz 
ISD 500 m 
Macro transmit power 46 dBm 
Pico transmit power 30 dBm 
Number of picos per sector 2 
Number of UEs per sector 15 
Cell selection HCI and SINR 
Scheduler MTS and PF 
ABS Q-learning dynamic and Static 
Thermal noise −174 dBm/Hz 
UE speed 3 km/hr 
Pathloss model As in 3GPP TS 36.942 
Traffic model VoIP (GBR for 1.5 Mbps) and  

Video (MBR for 3 Mbps–7 Mbps) 
Duplex model FDD 
Number of RBs C = 50 
Learning rate 𝜌 = 0.5 

4.2. Q-Learning-Based Dynamic Almost Blank Subframe 

Figure 7. Layout of network topology.



Appl. Sci. 2019, 9, 3018 15 of 22

Table 5. System parameters of the simulation.

Parameter Configuration

Cellular layout Wrap around, 7 Macros, 3 sectors per site
Carrier frequency 2.14 GHz
Bandwidth 10 MHz
ISD 500 m
Macro transmit power 46 dBm
Pico transmit power 30 dBm
Number of picos per sector 2
Number of UEs per sector 15
Cell selection HCI and SINR
Scheduler MTS and PF
ABS Q-learning dynamic and Static
Thermal noise −174 dBm/Hz
UE speed 3 km/hr
Pathloss model As in 3GPP TS 36.942
Traffic model VoIP (GBR for 1.5 Mbps) and

Video (MBR for 3 Mbps–7 Mbps)
Duplex model FDD
Number of RBs C = 50
Learning rate ρ = 0.5

4.2. Q-Learning-Based Dynamic Almost Blank Subframe

For performance comparison of our proposed schemes, the following simulation scenarios were
considered (see Table 6). The purpose of designing the five scenarios is illustrated as follows.

• Scenario 1: It is designed to verify the performance of the HCI cell selection scheme, which is
compared with the SINR scheme.

• Scenario 2: It is designed to verify the performance of the MTS resource allocation scheme,
which is compared with the Max-min scheme.

• Scenario 3: It is designed to verify the performance of the PF resource allocation scheme in dual
connectivity environment, which is compared with our proposed MTS scheme. In addition, it is
also compared with itself in single connectivity environment.

• Scenario 4: It is designed to verify the performance of the QD-ABS scheme in single connectivity,
which is compared with the static ABS scheme.

• Scenario 5: It is designed to verify the performance of dual connectivity combined with CRE
and ABS.

Table 6. Simulation scenarios.

Connection Cell Selection Scheduler E-ICIC CRE Bias

Scenario 1 DC
HCI

MTS Non-ABS 0 dBSINR

Scenario 2 DC HCI
MTS

Non-ABS 0 dBMax-min

Scenario 3 DC HCI
MTS

Non-ABS 0 dBPF
SC HCI PF Non-ABS 0 dB

Scenario 4 SC SINR PF
Non-ABS 0 dB
QD-ABS 6 dB

Static ABS = 0.5 6 dB

Scenario 5

SC SINR PF Non-ABS 0 dB
SC SINR PF Static ABS = 0.5 6 dB
DC HCI MTS Non-ABS 0 dB
DC HCI MTS QD-ABS 6 dB
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4.3. Output Indicators

In this work, the QoS requirement of each UE was considered. We analyzed the UE individual
satisfaction ratio per frame, by recording how many UEs met their QoS requirements in the simulation
time. The details are described as follows:

• System: The QoS satisfaction ratio of the system. The ratio was defined as the percentage of UEs
that met their QoS requirements.

• VoIP: The QoS satisfaction ratio of UEs generating voice traffic (GBR).
• Video: The QoS satisfaction ratio of UEs generating video traffic (MBR).
• MUE: The QoS satisfaction ratio of MUEs.
• PUE: The QoS satisfaction ratio of PUEs.
• RE: The QoS satisfaction ratio of UEs in the coverage of the CRE signal. A positive CRE bias 6 dB

was added to the downlink received signal strength from pico BS.

4.4. Simulation Results

4.4.1. Evaluation for the Cell Selection of HCI Scheme

The initial distribution of UE population in Macro BSs and pico BSs were 60% and 40%, respectively.
To compare the HCI scheme with the SINR cell selection scheme, we let Macro BSs have higher load
in order to assess whether pico BSs could offload the bandwidth requirements from UEs to Macro
BSs. Figure 8 shows the population ratio of MUEs and PUEs of the two cell selection schemes. In the
HCI scheme, more UEs could be offloaded to pico BSs from Macro BSs due to the consideration of
the cell load. As a result of load balancing between Macro BSs and pico BSs, Figure 9 shows that the
HCI scheme was able to achieve better QoS satisfactions from different aspects, in particular the QoS
satisfaction of the whole system was increased by 3%. Notably, there was one exception, which was
the PUE’s QoS satisfaction. Clearly, since pico BSs were less loaded, the HCI scheme associated more
UEs to pico BSs which resulted in less QoS satisfaction for PUEs as compared to the SINR scheme.
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4.4.2. Evaluation for the Resource Allocation of MTS Scheme

In this scenario, the distribution of UE population was the same as that of the cell selection scenario.
We verified our proposed MTS scheme by comparing to the original max-min scheduling. As shown
in Table 3, the max-min scheme can achieve almost optimal radio resource scheduling. In the MTS
scheme, we added a threshold to protect the MUEs’ QoS in dual connectivity mode. Figure 10 shows
that the MTS scheme yielded higher QoS satisfactions from all aspects. Especially, the MTS scheme
yielded 5.07% higher QoS satisfaction of the whole system as compared to the max-min scheme.Appl. Sci. 2019, 9, x 17 of 22 
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4.4.3. Evaluation for the Resource Allocation of PF Scheme

Scenario 3 was designed to show the effectiveness of the MTS scheme as compared to the PF
scheduling. In addition, it also tries to demonstrate that the PF scheduling is not suitable in dual
connectivity (DC) mode. Figure 11 compares the QoS satisfaction of the MTS scheme in DC mode as
well as that of the PF scheme in both DC and signal connectivity (SC) modes. Clearly, the MTS scheme
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outperformed the PF scheduling, in particular, it outperformed the PF scheme by at least 34.55% in
the QoS satisfaction of the whole system. Since the PF scheduling is based on the fairness principle
among UEs, it suffered the disadvantage that some UEs with poor CQI may have participated in
competition of the radio resources. As a consequence, it was interesting to observe that the simulation
results showed that the system satisfaction of the PF scheme was better in the SC mode than that in the
DC mode.

While the MTS scheme achieved better QoS satisfaction, we may wonder its fairness. The fairness
index of a scheme is defined as follows.

Fairness index =

(∑n
i=1 xi

)2

n×
∑n

i=1 x2
i

(22)

where xi is the throughput of the ith UE and n is the number of UEs in the system.
Table 7 shows the fairness index of the MTS in DC mode as well as the PF scheduling in both DC

and SC modes. We observed that PF in SC mode had the best fairness index, while the MTS in DC
mode had the lowest fairness index. However, the difference was not very significant. In other words,
the MTS scheme could achieve much higher QoS satisfaction by sacrificing a little fairness as a tradeoff.
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Table 7. Fairness index of the Max–min Threshold Scheduler (MTS) scheme and the Proportional Fair
Scheduler (PF) scheduling.

MTS in DC Mode PF in DC Mode PF in SC Mode

Fairness index 0.50623 0.64226 0.68495

4.4.4. Evaluation for the E-ICIC of QD-ABS Scheme

Scenario 4 compares the performance of the Q-learning-based dynamic ABS (QD-ABS) scheme
with that of the static ABS scheme. For the static ABS scheme, the ABS ratio was set to 0.5 according to
most of the literature. Recall that the QD-ABS scheme adopts the Q-learning mechanism to dynamically
adjust the ABS ratio according to the feedback of the system. Two scenarios were simulated, we first
simulated the case where more UEs were MUEs. Specifically, the UE population of Macro BS was three
times more than that of pico BS. In the second case, all UEs were evenly distributed.

Figure 12 presents that the system QoS satisfaction ratio of the QD-ABS scheme was 4.06% higher
than that of the Static ABS scheme in the first scenario. In the second scenario where UEs were evenly
distributed, the proposed QD-ABS scheme was still better than the static ABS scheme, as shown in
Figure 13.
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4.4.5. Evaluation for the Dual Connectivity Combined with CRE and ABS

Both the dual connectivity and the e-ICIC can improve the performance of the UE at the edge
of BSs. For this reason, we propose a comprehensive scheme to explore the feasibility of combining
the dual connectivity with CRE and ABS, and evaluate whether it can effectively improve the QoS
bandwidth requirements of edge UEs via a scenario 5 simulation. Since the comprehensive scheme is
based on the connection mode, cell selection, resource allocation, e-ICIC, and CRE bias, we compared
its performance with individual schemes, including SC, DC, non-ABS and Static ABS, and Q-learning
dynamic ABS.

In this scenario, we focused on the dual connectivity mode. Notably, the DC mode with CRE and
ABS did not yield better system QoS satisfaction, but it was useful to increase the QoS satisfaction
of edge UEs. Figure 14 shows the QoS satisfaction of different combinations of schemes of different
aspects where the labels RE, RE VoIP, RE Video on the x-axis denote the UEs in the CRE region, the UEs
of type GBR in the CRE region, and the UEs of the type MBR in the CRE region respectively. UEs in
CRE region are referred to as cell edge UEs. We can observe from Figure 14 that by integrating the
mechanisms of dual connectivity, CRE, and ABS, the QoS satisfaction ratio of cell edge UEs can be
improved by 10.76% as compared to the traditional approach.
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5. Conclusions and Future Works

In this work, we discussed the development of spectrum utilization in the future. For heterogeneous
network research, we designed how to integrate dual connectivity, cell selection, resource allocation,
and e-ICIC in the co-channel networks. On the other hand, we studied UEs with different QoS
requirements and traffic characteristics, such as voice traffic (low data transfer rate) and video traffic
(high data transfer rate). In the resource allocation mechanism, we propose the MTS scheduling to
meet the QoS requirement, considering the resource integration across the base stations to enhance the
data transfer rate. In the cell selection mechanism, we propose the HCI scheme to consider not only the
signal quality received by the UE, but also the remaining RBs of each base station, and further achieve
the load balancing between the base stations. In the e-ICIC mechanism, we propose the QD-ABS
scheme to adjust the ABS ratio dynamically according to system feedback.

The ultimate goal of the proposed mechanisms is to improve the QoS satisfaction ratio of UEs.
Our simulation results showed that our MTS scheduler was able to achieve 31.44% higher rate than
the Proportional Fairness scheduler; our HCI cell selection scheme yielded 2.98% higher rate than the
SINR cell selection scheme; the QoS satisfaction ratio of our Q-learning-based dynamic ABS scheme
was 4.06% higher than that of the static ABS scheme. Finally, by integrating the mechanisms of dual
connectivity, CRE, and ABS, the QoS satisfaction ratio of cell edge UEs could be improved by 10.76%
as compared to the traditional approach.

We are expecting to see some small-scale commercial deployments for the fifth generation (5G)
networks by some leading operators in 2019 worldwide. The 5G air interface, called new radio (NR),
is expected to interwork with different wireless technologies where UEs will have multiconnectivity
capabilities. In particular, in the early stage of 5G deployment, interworking with LTE-A based on
dual connectivity will be necessary to boost the deployment and has been proposed by 3GPP as
a 5G operational requirement [2,36]. Extending the dual connectivity to multi-connectivity in 5G will
become an important technique and require further study [37].
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