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Abstract: Residual life estimation is an important problem in reliability engineering. Traditional
methods, which are based on time-to-failure distribution, have limitations for components of
on-orbit satellites characterized as high reliability with small sample size. Various types of reliability
information can be collected during test and operation, including historical lifetime data, degradation
data, similar data, expert information, etc. Therefore, making full use of multi-source information
is meaningful for improving estimation precision. However, research on residual life estimation
by fusing multi-source information is rare. No study has examined the overall process of fusing
all of the different kinds of information. In this paper, a Bayesian method is presented to estimate
the residual life of Weibull-distributed components of on-orbit satellites by fusing all the collected
information. Prior distributions are determined using different kinds of information. After fusing the
field data, posterior distributions can be obtained corresponding to each prior distribution. Then,
the joint posterior distribution is the weighted sum of these posterior distributions with weights
calculated using the second Maximum Likelihood Estimation (ML-II) method. Consistency is tested
to guarantee the safety of the information fusion. Furthermore, residual life is estimated by the
proposed sample-based method including both the Bayesian estimate and credible interval (CI).
A Monte Carlo simulation study is conducted to demonstrate the proposed methods and shows that
the Bayesian method is satisfactory and robust. Finally, a published dataset of the momentum wheel
in a satellite is analyzed to illustrate the application of the method.

Keywords: Bayesian method; multi-source information fusion; residual life estimation;
Weibull distribution

1. Introduction

Residual life estimation is crucial in reliability engineering [1,2] and is the key technology for
prognostic and health management (PHM), used to analyze, guarantee, and improve safety and
reliability [3]. Given the cumulative distribution function (CDF) F(t), probability density function (PDF)
f (t) of a component and the lifetime T, the CDF of the residual life Fτ (t) at time τ, can be calculated by

Fτ(t) = P(T < t + τ|T > τ) =
P(τ < T < t + τ)

P(T > τ)
=

F(t + τ) − F(τ)
1− F(τ)

. (1)

Hence, the PDF of the residual life at time τ is given by

fτ(t) =
dFτ(t)

dt
=

f (t + τ)

1− F(τ)
. (2)
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Then, the point estimation of the residual life can be represented as

µτ =

∞∫
0

t fτ(t)dt. (3)

Weibull distributions are widely used [4,5]. Therefore, in this study, we assume the lifetime of the
on-orbit component follows the Weibull distribution, denoted by W(λ, β), with the CDF [6]

F(t;λ, β) = 1− e−λtβ , t ≥ 0,λ > 0, β > 0. (4)

The residual life PDF can be obtained by substituting Equation (4) into Equation (2), which can be
written as [5]

fτ(t;λ, β) =
f (t + τ)

1− F(τ)
= λβ(t + τ)β−1 exp

(
λτβ − λ(t + τ)β

)
. (5)

With the development of the techniques of science and technology, the components in satellites
are highly reliable. Therefore, applications of traditional methods based on failure times are limited [7].
However, multi-source information can be collected for these components [8], including historical
lifetime data, degradation data, similar data, and expert information. The Bayesian method could be a
useful tool for the information fusion. Because of its strong ability at data fusion [9], it has received
considerable attention in various engineering fields [10,11].

For highly reliable components, it is difficult to estimate the residual life with data containing
a small number of failures and even zero failure. However, the available degradation data could
reflect the real-time state of components and could be used to enrich the information for residual
life estimation [12]. For example, a hierarchical Bayesian model was built and effectively fitted the
nonlinear paths of organic light-emitting diodes [13]. Parameters of the Wiener process and the field
data were fused to obtain the posterior distributions of degradation parameters [14]. In addition,
a systematic method for using a degradation-based model selection to analyze Bayesian reliability
was discussed by Li et al. [15]. Additionally, Bernoulli data, lifetime data, and degradation data
were integrated to improve the accuracy of reliability prediction [16]. Parameters of the degradation
model were determined by fusing prior degradation information and prior lifetime data, and prior
distribution was updated by the field degradation data [17]. By synthesizing multi-source data,
including bivariate degradation data and lifetime data, remaining useful life (RUL) was estimated
for a satellite rechargeable lithium battery [2]. The inverse Gaussian process was used to analyze
the accelerated degradation model and both the Jeffreys prior and reference prior were derived and
compared [18]. Based on the functional principal component analysis (PCA) and the Bayesian method,
a new prediction method for Li ion battery residual lifetime evaluation was presented [19].

Simultaneously, historical lifetime data and similar data can also obviously provide more reliability
information. Historical lifetime data, often obtained before test and use, and the similar data are
usually used to determine prior distribution based on empirical Bayes (EB) [20] and linear empirical
Bayes (LEB) methods [21]. In practical engineering, conjugate prior is also commonly used [22].
The moment method, as well as the ML-II method, are typically used to determine the parameters of
prior distribution [23]. Degradation data and historical lifetime data were fused to estimate the residual
life [24]. Based on the previous number of failures, the failure rate was obtained from a new software
reliability model [25]. The reliability of Weibull-distributed components was evaluated under the small
sample sizes and zero-failure data by fusing both the target and similar products [26]. By fusing the
prior information of similar products, the modified Bayesian method of assessing the reliability of
binomial components was proposed [27].

Expert information is also valuable especially when the field data are insufficient [28]. Integration
of expert knowledge into lifetime estimation was presented [29]. An expert-judgement process for
fusing multi-source prior information was developed by Yang et al. [30]. Various available sources of
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expert knowledge and data, at both subsystem and system levels, were integrated [31], and methods
for fusing lifetime data and expert information were discussed [32].

Prior information is important in Bayesian theory. After obtaining prior distributions according
to different kinds of reliability information, the next step is to aggregate these prior distributions to
eliminate the uncertainty of each multi-source information. Existing methods concerning the prior
distribution fusion are based on confidence level [33], correlation function [34], sufficiency measure [35],
expert judgement [36], maximum entropy-moment estimation [37], fuzzy logic operators [38], maximum
likelihood principle [39], and the ML-II method [40]. Peng [41,42] has made special contributions to
this field.

These models and methodologies have formed a solid foundation for the Bayesian estimation of
residual life. However, after extensive literature review, we found that (i) although work has been
done on Bayesian theory and its applications, most of the existing literature concentrates mainly on
certain aspects. The overall process and detailed illustration of the Bayesian method by fusing all
this multi-source information simultaneously have rarely been presented or analyzed. (ii) Research
on residual life estimation by fusing multi-source information is rare and needs further study. To fill
the gap of the existing research, a multi-source information fusion approach based on the Bayesian
theory is proposed to estimate the residual life of Weibull-distributed components of on-orbit satellites
by fusing historical lifetime data, degradation data, similar data, and expert information. Both the
Bayesian estimate and CI are considered.

The rest of this paper is organized as follows. Multi-source information and the Bayesian model
are introduced in Section 2. Section 3 contains the determination of prior distributions of multi-source
information. In Section 4, we describe how posterior distributions are obtained and fused after a
consistency test, and the residual life is estimated. Section 5 describes the Monte Carlo simulation
study, followed by the validation using an illustrative example in Section 6. Finally, the paper is
concluded in Section 7.

2. Multi-Source Information and the Bayesian Model

In this section, various kinds of reliability information and the Bayesian method are introduced.
The following reliability information can be collected for components of on-orbit satellites according to
engineering experience.

(i). Field data D =
{
tD
1 , tD

2 , · · · , tD
r , tD

r+1, · · · , tD
n

}
are collected during the operation of target components,

where n represents the sample size,
{
tD
1 , tD

2 , · · · , tD
r

}
are the failure times of the field data, and{

tD
r+1, · · · , tD

n

}
are the censored data. It should be noted that the censored data in this paper means

the correct censored data.
(ii). Historical lifetime data DH =

{
tH
1 , tH

2 , · · · , tH
d , tH

d+1, · · · , tH
p

}
are data for the end of operation of the

same kinds of existing products, where p represents the sample size,
{
tH
1 , tH

2 , · · · , tH
d

}
are the failed

data, and
{
tH
d+1, · · · , tH

p

}
are the censored data.

(iii). Similar data DS =
{
tS
1 , tS

2 , · · · , tS
k , tS

k+1, · · · , tS
m

}
are the data of similar components, where m denotes

the sample size,
{
tS
1 , tS

2 , · · · , tS
k

}
are the failed data,

{
tS
k+1, · · · , tS

m

}
are the censored data, and ρ is the

inheritance factor that reflects the similarity with the target components.
(iv). Degradation data X = {X1, X2, · · · , Xl} are collected from l components during the operation for a

single parameter, where Xd = {Xd1, Xd2, · · · , Xdh} (d = 1, 2, . . . l) are observed at time d1, d2, · · · , dh.
(v). Expert information is provided by expert experience, and usually includes two forms: (a) Point

estimation R0 of reliability at time τ0 and (b) the lower confidence limit RL for the reliability at
time τ0 with confidence level 100(1− γ)%.

There are four major steps to the Bayesian method proposed in this paper: (i) Prior distributions
are determined by historical lifetime data, degradation data, similar data, and expert information,
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which are denoted by πi(λ, β) (i = 1, 2, 3, 4); (ii) Corresponding posterior distributions πi(λ, β|D)

(i = 1, 2, 3, 4) are obtained by fusing the field data; (iii) Fusion weights are calculated using the ML-II
method, and the joint posterior distribution π(λ, β|D) can be obtained; and (iv) Residual life can
be estimated.

3. Prior Distributions of Multi-Source Information

In this section, the methods used for obtaining prior distributions based on multi-source
information are outlined.

3.1. Prior Distribution Obtained by Expert Information

Reliability at time τ is
Rτ = exp

(
−λτβ

)
. (6)

In this paper, using the idea of the conjugate prior, the negative log gamma (NLG) distribution is
assumed to be the prior distribution of Rτ with the PDF [43]

π(Rτ) =
ba

Γ(a)
(Rτ)

b−1(− ln Rτ)
a−1. (7)

To estimate the residual life, the NLG distribution for Rτ should firstly be transformed to the prior
distribution of the Weibull parameters λ and β. The derivative of Equation (6) with respect to λ is

dRτ
dλ

= −τβ exp
{
−λτβ

}
< 0. (8)

According to Equation (8), Rτ decreases with λ. Hence, we have

P(λ < x) = P
(
Rτ > exp

(
−xτβ

))
=

∫ 1

exp (−xτβ)
π(Rτ)dRτ. (9)

By taking the derivative of Equation (9) with respect to x, we have

fλ(x) =

(
bτβ

)a

Γ(a)
xa−1 exp

(
−bτβx

)
. (10)

Then,

π(λ|β) =

(
bτβ

)a

Γ(a)
xa−1 exp

(
−bτβx

)
. (11)

It is assumed that [43]

π(β) =
1

β2 − β1
, β ∈ [β1, β2], (12)

then we obtain the prior distribution of λ and β as

π(λ, β) =
1

β2 − β1

(
bτβ

)a

Γ(a)
λa−1 exp

(
−bτβλ

)
. (13)

where λ ∈ [0,∞] and β ∈ [β1, β2]. The next step is to determine the values of a and b by expert
information.

For case (a) of expert information described in the reliability information (v) of Section 2, we have∫ 1

0
Rτ0π(Rτ0)dRτ0 = R0. (14)
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By using the maximum entropy method (MEM), this problem could be represented by maxH = −
∫ 1

0 π(Rτ0) ln[π(Rτ0)]dRτ
s.t.

∫ 1
0 Rτ0π(Rτ0)dRτ0 = R0

. (15)

This constrained optimization problem can be simplified as maxH = −a1 ln(b1) + ln(Γ(a1)) +
a1(b1−1)

b1
−

(a1−1)b1
a1

Γ(a1)
B

s.t.
( b1

b1+1

)a1
= R0

, (16)

where B =
∫ 1

0 (Rτ0)
b1−1(− ln Rτ0)

a1−1
· ln[− ln(Rτ0)]dRτ0 . a1 and b1 satisfy a1 =

ln(R0)
ln(b1)−ln(b1+1) . Then

Equation (16) could be turned into a one-dimension optimization.
In addition, for case (b) of expert information, if the 100(1− γ)% lower confidence limit RL for the

reliability at time τ0 is given, then ∫ 1

RL

π(Rτ0)dRτ0 = 1− γ. (17)

Similarly, the constrained optimization problem can be represented as maxH = −
∫ 1

0 π(Rτ0) ln[π(Rτ0)]dRτ0

s.t.
∫ 1

RL
π(Rτ0)dRτ0 = γ

, (18)

which can be simplified as maxH = −a1 ln(b1) + ln(Γ(a1)) +
a1(b1−1)

b1
−

(a1−1)b1
a1

Γ(a1)
B

s.t.I−b1 ln (RL)(a1) = 1− γ
, (19)

where

I−b1 ln (RL)(a1) =
1

Γ(a1)

∫
−b1 ln(RL)

0
e−tta1−1dt (20)

is the incomplete gamma function. Parameters a1 and b1 can be calculated by intelligent optimization
algorithms.

According to Equation (13), the prior distribution using expert information can be represented by

π1(λ, β) =
1

β2 − β1

(
b1τβ

)a1

Γ(a1)
λa1−1 exp

(
−b1τ

βλ
)
,λ ∈ [0,∞], β ∈ [β1, β2]. (21)

3.2. Prior Distribution Obtained by Historical Lifetime Data

According to the definition of the non-informative prior, we have

π(Rτ) =
{

NLG(0, 0), d , 0
NLG(1/2, 0), d = 0

(22)

by setting a =

{
0, d , 0
1/2, d = 0

and b = 0 in Equation (7) [43]. Because likelihood function of the historical

lifetime data can be given by

L(DH |λ, β) = λdβd(EH)
β−1

exp
(
−λFH(β)

)
, (23)
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where EH =
d∏

i=1
tH
i and FH(β) =

p∑
i=1

(tH
i )

β, we can use the Bayesian theory to integrate the prior

distribution π2(λ, β), which takes the form of Equation (13), and the likelihood function as

π2(λ, β|DH)

=
π2(λ,β)·L(DH |λ,β)∫ β2

β1

∫
∞

0 π2(λ,β)·L(DH |λ,β)dλdβ

=
τa2ββd(EH)

β−1
λd+a2−1 exp[−λ(FH(β)+b2τ

β)]∫ β2
β1

∫
∞

0 τa2ββd(EH)
β−1λd+a2−1 exp[−λ(FH(β)+b2τβ)]dλdβ

=
τa2ββd(EH)

β−1
λd+a2−1 exp[−λ(FH(β)+b2τ

β)]∫ β2
β1
τa2ββd(EH)

β−1 Γ(d+a2)

(FH(β)+b2τ
β)

d+a2
dβ

,

(24)

where EH =
d∏

i=1
tH
i , FH(β) =

p∑
i=1

(tH
i )

β, a2 =

{
0, d , 0

1/2, d = 0
, and b2 = 0. This is the determined prior

distribution for the historical lifetime data.

3.3. Prior Distribution Obtained by Degradation Data

Assuming that the degradation process X(t) has an increasing tendency, and given the degradation
threshold D, the failure time can be defined as

T = inf
{
t|X(t) ≥ D

}
. (25)

The failure distribution is

P(T ≤ t) = P
(

sup
0≤s≤t

X(s) ≥ D
)
, (26)

where sup
0≤s≤t

X(s) represents the maximum value of degradation data, and X(s) in the time interval

of [0, t].
The next step is to model the degradation data X = {X1, X2, · · · , Xl}. In the existing literature,

the degradation path model, degradation distribution model, and stochastic process models are widely
used [22]. The failure times of l components DG =

{
tG
1 , tG

2 , · · · tG
l

}
can be predicted by Equation (25). Then,

the prior distribution π3(λ, β) can be similarly determined using the method described in Section 3.2.

3.4. Prior Distribution Obtained by Similar Data

Assuming the prior distribution of the similar data takes the form

π4(λ, β) = ρπ41(λ, β) + (1− ρ)π42(λ, β), (27)

where π41(λ, β) is the prior distribution of inheritance and π42(λ, β) is the updated prior distribution.
The former depicts the similarity and could be determined using the same method proposed in
Section 3.2 as

π41(λ, β) =
τa41ββkUβ−1λk+a41−1 exp

[
−λ(V(β) + b41τβ)

]
∫ β2

β1
τa41ββkUβ−1 Γ(k+a41)

(V(β)+b41τβ)
k+a41

dβ
, (28)

where U =
k∏

i=1
tS
i , V(β) =

m∑
i=1

(tS
i )
β

, a41 =

{
0, k , 0

1/2, k = 0
, and b41 = 0. In addition, π42(λ, β) could

describe the uncertainty and difference in the form of

π42(λ, β) =
1

β2 − β1

(
b42τβ

)a42

Γ(a42)
λa42−1 exp

(
−b42τ

βλ
)
,λ ∈ [0,∞], β ∈ [β1, β2]. (29)
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Generally, π42(λ, β) is assumed to follow a non-informative prior distribution with a42 = 1, and b42 = 1.
Then, we have

π42(λ, β) =
1

β2 − β1
τβ exp

(
−τβλ

)
. (30)

4. Information Fusion and Residual Life Estimation

In this section, different posterior distributions corresponding to each prior distribution are firstly
obtained by fusing field data. Then the Bayesian credible interval method is used to complete a
consistency test, which is essential for guaranteeing that all the fused data are from the same population.
Furthermore, the residual life is estimated after integrating all the information.

4.1. Joint Prior Distribution and Joint Posterior Distribution

As different prior distributions of historical lifetime data, degradation data, similar data and
expert information are obtained, the fusion of prior distributions is necessary to decrease uncertainty.
Usually, the joint prior distribution π(λ, β) can be calculated by

π(λ, β) =
4∑

i=1

εiπi(λ, β), (31)

where εi is the fusion weight of the ith prior distribution and
4∑

i=1
εi = 1. The core problem for

fusing these different prior distributions is to determine the weight εi. Considering that the
ML-II method is simple, it is adopted in this paper to determine the weight εi and to fuse prior
distributions. Under the prior distribution πi(i = 1, 2, 3, 4), the marginal likelihood function of field
data D =

{
tD
1 , tD

2 , · · · , tD
r , tD

r+1, · · · , tD
n

}
is

L(D|πi) =
r∏

j=1

f (tD
j |πi)

n∏
j=r+1

R(tD
j |πi), (32)

where

f (tD
j |πi) =

∫ β2

β1

∫
∞

0
f (tD

j |λ, β)πi(λ, β)dλdβ, (33)

and

R(tD
j |πi) =

∫ β2

β1

∫
∞

0
R(tD

j |λ, β)πi(λ, β)dλdβ. (34)

The bigger the L(D|πi), the bigger the fusion weight of πi. Then, we have

εi =
L(D|πi)

4∑
k=1

L(D|πk)

, i = 1, 2, 3, 4. (35)
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Then, the joint prior distribution can be obtained using Equation (31). Let P(D|λ, β) represent the
likelihood function of field data, by using Equations (31) and (35), we obtain

π(λ, β|D) =
4∑

i=1


L(D|πi)

4∑
i=1

L(D|πi)

∫ β2
β1

∫
∞

0 πi(λ,β)P(D|λ,β)dλdβ

4∑
i=1

L(D|πi)
4∑

i=1
L(D|πi)

∫ β2
β1

∫
∞

0 πi(λ,β)P(D|λ,β)dλdβ
πi(λ, β|D)


=

4∑
i=1


L(D|πi)

∫ β2
β1

∫
∞

0 πi(λ,β)P(D|λ,β)dλdβ

4∑
i=1

[
L(D|πi)

∫ β2
β1

∫
∞

0 πi(λ,β)P(D|λ,β)dλdβ
]πi(λ, β|D)

.

(36)

When wi =
L(D|πi)

∫ β2
β1

∫
∞

0 πi(λ,β)P(D|λ,β)dλdβ

4∑
i=1

[
L(D|πi)

∫ β2
β1

∫
∞

0 πi(λ,β)P(D|λ,β)dλdβ
] , we have

π(λ, β|D) =
4∑

i=1

wiπi(λ, β|D), (37)

where πi(λ, β|D) and
∫ β2

β1

∫
∞

0 πi(λ, β)P(D|λ, β)dλdβ are the posterior distribution and the marginal PDF
of the ith prior distribution.

Equation (37) indicates that the joint posterior distribution is equal to the weighted sum of
posterior distributions obtained from the corresponding prior distributions. Therefore, it is much
easier to obtain the joint posterior distribution, as it can be transformed to determine each posterior
distribution for each prior distribution.

4.2. Posterior Distributions of Multi-Source Information

In this subsection, the posterior distributions of historical lifetime data, degradation data, similar
data and expert information are described, respectively.

4.2.1. Posterior Distribution of Expert Information

Similar to Equation (23), the likelihood function of field data is

P(D|λ, β) = λrβrMβ−1 exp
(
−λN(β)

)
, (38)

where M =
r∏

i=1
tD

j and N(β) =
n∑

i=1
(tD

j )
β. Then, the posterior distribution of expert information is

π1(λ, β|D)

=
1

β2−β1

(b1τ
β)

a1

Γ(a4)
λa1−1 exp(−b1τ

βλ)·λrβrMβ−1 exp(−λN(β))∫ β2
β1

∫ ∞0 1
β2−β1

(b1τ
β)

a1

Γ(a1)
λa1−1 exp(−b1τβλ)·λrβrMβ−1 exp(−λN(β))dλ

dβ

=
(b1τ

β)
a1βrMβ−1λa1+r−1 exp(−λ(b1τ

β+N(β)))∫ β2
β1

(∫
∞

0 (b1τβ)
a1βrMβ−1λa1+r−1 exp(−λ(b1τβ+N(β)))dλ

)
dβ

=
(b1τ

β)
a1βrMβ−1λa1+r−1 exp(−λ(b1τ

β+N(β)))∫ β2
β1

(b1τβ)
a1βrMβ−1 Γ(a1+r)

(b1τ
β+N(β))

a1+r dβ
.

(39)



Appl. Sci. 2019, 9, 3017 9 of 20

To determine the fusion weight in Equation (37), the marginal likelihood function and marginal
PDF of field data under π1(λ, β) should be calculated. For the failure time of field data (tD

j , j ≤ r ),

the failure probability at time tD
j is

f (tD
j |π1(λ, β))

= 1
β2−β1

∫ β2

β1

∫
∞

0 λβ(tD
j )
β−1 exp[−λ(tD

j )
β
] ·

(b1τ
β)

a1

Γ(a1)
λa1−1 exp

(
−b1τβλ

)
dλdβ

= 1
β2−β1

∫ β2

β1
β(tD

j )
β−1
·
(b1τ

β)
a1

Γ(a1)
Γ(a1+1)(

b1τβ+tβj

)a1+1 dβ

= 1
β2−β1

∫ β2

β1
a1(tD

j )
β−1
β

(b1τ
β)

a1(
b1τβ+(tD

j )
β
)a1+1 dβ.

(40)

For the censored field data (tD
j , j > r), the reliability at time tD

j is

R(tD
j |π1(λ, β))

= 1
β2−β1

∫ β2

β1

∫
∞

0 exp
(
−λ((tD

j )
β
)
)
·
(b1τ

β)
a1

Γ(a) λa1−1 exp
(
−b1τβλ

)
dλdβ

= 1
β2−β1

∫ β2

β1

∫
∞

0
(b1τ

β)
a1

Γ(a1)
Γ(a4)(

b1τβ+(tD
j )
β
)a1

(
b1τ

β+(tD
j )
β
)a1

Γ(a4)
λa1−1 exp

(
−

(
b1τβ + (tD

j )
β
)
λ
)
dλdβ

= 1
β2−β1

∫ β2

β1

(b1τ
β)

a4(
b1τβ+(tD

j )
β
)a1 dβ.

(41)

The marginal PDF is∫ β2

β1

∫
∞

0 π1(λ, β)P(D|λ, β) dλdβ

=
∫ β2

β1

(∫
∞

0
1

β2−β1

(b1τ
β)

a1

Γ(a1)
λa1−1 exp

(
−b1τβλ

)
· λrβrMβ−1 exp

(
−λN(β)

)
dλ

)
dβ

= 1
β2−β1

1
Γ(a)

∫ β2

β1

(∫
∞

0

(
b1τβ

)a1
βrMβ−1λa1+r−1 exp

(
−λ

(
b1τβ + N(β)

))
dλ

)
dβ

= 1
β2−β1

Γ(a1+r)
Γ(a1)

∫ β2

β1

(b1τ
β)

a1βrMβ−1

(b1τβ+N(β))
a1+r dβ,

(42)

4.2.2. Posterior Distribution of Historical Lifetime Data

The posterior distribution of the historical lifetime data is

π2(λ, β|D)

=

τa2ββd(EH)
β−1

λd+a2−1 exp[−λ(FH(β)+b2τ
β)]∫ β2

β1
τa2ββd(EH)

β−1 Γ(d+a2)

(FH(β)+b2τ
β)

d+a2
dβ

λrβrMβ−1 exp(−λN(β))

∫ β2
β1

∫
∞

0

τa2ββd(EH)
β−1

λd+a2−1 exp[−λ(FH(β)+b2τ
β)]∫ β2

β1
τa2ββd(EH)

β−1 Γ(d+a2)

(FH(β)+b2τ
β)

d+a2
dβ

λrβrMβ−1 exp(−λN(β))dλdβ

=
τa2ββd(EH)

β−1
λd+a2−1 exp[−λ(FH(β)+b2τ

β)]λrβrMβ−1 exp(−λN(β))∫ β2
β1

∫
∞

0 τa2ββd(EH)
β−1λd+a2−1 exp[−λ(FH(β)+b2τβ)]λrβrMβ−1 exp(−λN(β))dλdβ

=
τa2ββd+r(EHM)

β−1
λd+r+a2−1 exp[−λ(FH(β)+N(β)+b2τ

β)]∫ β2
β1

∫
∞

0 τa2ββd+r(EHM)
β−1λd+r+a2−1 exp[−λ(FH(β)+N(β)+b2τβ)]dλdβ

=
τa2ββd+r(EHM)

β−1
λd+r+a2−1 exp[−λ(F(β)+N(β)+b2τ

β)]∫ β2
β1
τa2ββd+r(EHM)

β−1 Γ(d+r+a2)

(F(β)+N(β)+b2τ
β)

d+r+a2
dβ

.

(43)

where EH =
d∏

i=1
tH
i , FH(β) =

p∑
i=1

(tH
i )

β, a2 =

{
0, d , 0

1/2, d = 0
and b2 = 0.
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Similar to Section 4.2.1, for the failure time of field data (tD
j , j ≤ r), the failure probability at

time tD
j is

f (tD
j |π2(λ, β))

=
∫ β2

β1

∫
∞

0 f (tD
j |λ, β) ·π2(λ, β)dλdβ

=

∫ β2
β1
τa2β(tD

j )
β−1

βd+1Eβ−1(d+a2)
[
F(β)+(tD

j )
β
+b2τ

β
]−(d+a2+1)

dβ∫ β2
β1
τa2ββdEβ−1(F(β)+b2τβ)

−(d+a2)dβ
.

(44)

For the censored field data (tD
j , j > r), the reliability at time tD

j is

R(tD
j |π2(λ, β))

=
∫ β2

β1

∫
∞

0 exp
(
−λtβj

)
·π2(λ, β)dλdβ

=

∫ β2
β1
τa2ββdEβ−1(F(β)+(tD

j )
β
+b2τ

β)
−(d+a2)dβ∫ β2

β1
τa2ββdEβ−1(F(β)+b2τβ)

−(d+a2)dβ
.

(45)

The marginal PDF is ∫ β2

β1

∫
∞

0 π2(λ, β)P(D|λ, β) dλdβ

=
∫ β2

β1

(∫
∞

0 π2(λ, β) · λrβrMβ−1 exp
(
−λN(β)

)
dλ

)
dβ

=

∫ β2
β1

(∫
∞

0 τa2ββd+r(EHM)
β−1

λd+a2+r−1 exp[−λ(FH(β)+N(β)+b2τ
β)]dλ

)
dβ∫ β2

β1
τa2ββd(EH)

β−1 Γ(d+a2)

(FH(β)+b2τ
β)

d+a2
dβ

=

∫ β2
β1

τa2ββd+r(EHM)
β−1 Γ(d+r+a2)

(FH(β)+N(β)+b2τ
β)

d+r+a2

dβ∫ β2
β1
τa2ββd(EH)

β−1 Γ(d+a2)

(FH(β)+b2τ
β)

d+a2
dβ

,

(46)

4.2.3. Posterior Distribution of Degradation Data

As has been discussed, the failure time denoted by DG =
{
tG
1 , tG

2 , · · · tG
l

}
, can be predicted using the

degradation data. Then, similar to historical lifetime data, the posterior distribution of the degradation
data is

π3(λ, β|D) =
τa3ββl(EG)

β−1
λl+a3−1 exp

[
−λ(FG(β) + b3τβ)

]
∫ β2

β1
τa3ββl(EG)

β−1 Γ(l+a3)

(FG(β)+b3τβ)
l+a3

dβ
, (47)

where EG =
l∏

i=1
tG
i , FG(β) =

l∑
i=1

(tG
i )
β, a3 =

{
0, d , 0

1/2, d = 0
, b3 = 0, M =

r∏
i=1

ti, and N(β) =
n∑

i=1
tβi . l is the

sample size of Dd, and r is the number of failures of field data.
Similar to Section 4.2.1, for the failure time (tG

j , j ≤ l), we have

f (tG
j |π3(λ, β))

=
∫ β2

β1

∫
∞

0 f (tG
j |λ, β) ·π3(λ, β)dλdβ

=

∫ β2
β1
τa3β(tG

j )
β−1

βl+1(EG)
β−1

(l+a3)
[
FG(β)+(tG

j )
β
+b3τ

β
]−(l+a3+1)

dβ∫ β2
β1
τa3ββl(EG)

β−1
(FG(β)+b3τβ)

−(l+a3)dβ
.

(48)
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The marginal PDF is ∫ β2

β1

∫
∞

0 π3(λ, β)P(D|λ, β) dλdβ

=
∫ β2

β1

(∫
∞

0 π3(λ, β) · λrβrMβ−1 exp
(
−λN(β)

)
dλ

)
dβ

=

∫ β2
β1

(∫
∞

0 τa3ββl+r(EGM)
β−1

λl+a3+r−1 exp[−λ(FG(β)+N(β)+b3τ
β)]dλ

)
dβ∫ β2

β1
τa3ββl(EG)

β−1 Γ(l+a3)

(FG(β)+b3τ
β)

l+a3
dβ

=

∫ β2
β1

τa3ββl+r(EGM)
β−1 Γ(l+r+a3)

(FG(β)+N(β)+b3τ
β)

l+r+a3

dβ∫ β2
β1
τa3ββl(EG)

β−1 Γ(l+a3)

(FG(β)+b3τ
β)

l+a3
dβ

.

(49)

4.2.4. Posterior Distribution of Similar Data

The posterior distribution of the similar data is

π4(λ, β|D)

=
P(D|λ,β)(ρπ41(λ,β)+(1−ρ)π42(λ,β))∫ β2

β1

∫
∞

0 P(D|λ,β)(ρπ41(λ,β)+(1−ρ)π42(λ,β))dλdβ

=
p1

p1+p2
π41(λ, β|DS) +

p2
p1+p2

π42(λ, β|DS),

(50)

where p1 = ρ
∫ β2

β1

∫
∞

0 P(D|λ, β)π41(λ, β)dλdβ and p2 = (1− ρ)
∫ β2

β1

∫
∞

0 P(D|λ, β)π42(λ, β)dλdβ.
π41(λ, β|DS) and π42(λ, β|DS) are the posterior distributions corresponding to π41(λ, β) and π42(λ, β).
And

∫ β2

β1

∫
∞

0
π41(λ, β)P(D|λ, β) dλdβ =

∫ β2

β1

(
τa41ββk+r(UM)β−1 Γ(k+r+a41)

(V(β)+N(β)+b41τβ)
k+r+a41

)
dβ∫ β2

β1
τa41ββkUβ−1 Γ(k+a41)

(V(β)+b41τβ)
k+a41

dβ
, (51)

∫ β2

β1

∫
∞

0
π42(λ, β)P(D|λ, β) dλdβ =

1
β2 − β1

Γ(r + a42)

Γ(a42)

∫ β2

β1

(
b42τβ

)a42
· βrMβ−1

(N(β) + b42τβ)
r+a42

dβ, (52)

where U =
k∏

i=1
tS
i and V(β) =

m∑
i=1

(tS
i )
β.

Similarly, for the failure time of field data (tD
j , j ≤ r), the failure probability at time tD

j calculated
by π41(λ, β) and π42(λ, β), is

f (tD
j |π41(λ, β)) =

∫ β2

β1
τa41β(tD

j )
β−1
βk+1Uβ−1(k + a41)

[
V(β) + (tD

j )
β
+ b41τβ

]−(k+a41+1)
dβ∫ β2

β1
τa41ββkUβ−1(V(β) + b41τβ)

−(k+a41)dβ
, (53)

and

f (tD
j |π42(λ, β)) =

1
β2 − β1

∫ β2

β1

a42(tD
j )
β−1
β

(
b42τβ

)a42(
b42τβ + (tD

j )
β
)a42+1

dβ. (54)

Then, the failure probability at time tD
j is

f (tD
j |π4(λ, β))

=
∫ β2

β1

∫
∞

0 f (tD
j |λ, β)(ρπ41(λ, β) + (1− ρ)π42(λ, β))dλdβ

= ρ f (tD
j |π41(λ, β)) + (1− ρ) f (tD

j |π42(λ, β)).

(55)
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For the censored field data (tD
j , j > r), the reliability at time tD

j calculated by π41(λ, β) and
π42(λ, β) is

R(tD
j |π41(λ, β)) =

∫ β2

β1
τa41ββkUβ−1(V(β) + (tD

j )
β
+ b41τβ)

−(k+a41)
dβ∫ β2

β1
τa41ββkUβ−1(V(β) + b41τβ)

−(k+a41)dβ
, (56)

R(tD
j |π42(λ, β)) =

1
β2 − β1

∫ β2

β1

(
b42τβ

)a42(
b42τβ + (tD

j )
β
)a42

dβ. (57)

Then, the reliability at time tD
j is

R(tD
j |π4(λ, β))

=
∫ β2

β1

∫
∞

0 R(tD
j |λ, β)(ρπ41(λ, β) + (1− ρ)π42(λ, β)) dλdβ

= ρR(tD
j |π41) + (1− ρ)R(tD

j |π42).

(58)

4.3. Consistency Test

The consistency test is necessary after obtaining the prior distributions according to multi-source
information, which could guarantee that the prior information and field data are from the same
population. Typical methods, e.g., the graph comparison method [44], are not applicable here, as failure
times are not sufficient. Hence, the Bayes credible interval method is used here. The details of this
method are as follows.

(i). Calculate the 100(1− α)% Bayes credible interval for residual life (µLi,µHi) under different prior
distributions πi(θ), i = 1, 2, 3, 4.

(ii). Using field data, obtain the Bayesian estimate of residual life µτ0 under the non-informative
prior distribution.

(iii). If µτ0 ∈ (µLi,µHi), then the ith prior information is consistent with the field data under the
significance level α.

Methods for calculating the Bayes credible interval and the point estimate of residual life under
certain prior distributions are provided in Section 4.4.

4.4. Residual Life Estimation

The expectation of the Weibull distribution is λ−
1
β Γ(1 + 1

β ) [45]. Using Equation (3), the residual
life µτ can be calculated by

µτ =
∫
∞

0 t fτ(t)dt =
∫
∞

0
t f (t+τ)

R(τ) dl = 1
R(τ)

∫
∞

τ
(x− τ) f (x)dx

= 1
R(τ)

[∫
∞

τ
x f (x)dx− τR(τ)

]
=

∫
∞

0 x f (x)dx−
∫ τ

0 x f (x)dx
R(τ) − τ

=
λ
−

1
β Γ(1+ 1

β )−λ
−

1
β Γ(1+ 1

β )Iλτβ (1+
1
β )

R(τ) − τ,

(59)

where Iλτβ(1 +
1
β ) is the incomplete gamma function defined in Equation (29).

The 100(1− δ)% CI for the residual life [µL,µH] satisfies

Fτ(µL) =
δ
2

, Fτ(µH) = 1−
δ
2

. (60)
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Combining Equations (1) and (4), we have

µL =
(
−

1
λ

ln
(
(1− F(τ))(1−

δ
2
)
)) 1

β
− τ, (61)

and

µH =
(
−

1
λ

ln
(
(1− F(τ))

δ
2

)) 1
β
− τ. (62)

With the joint posterior distribution, the Bayesian estimate of residual life under the square loss
function is

µ̂τ =
t

t fτ(t;λ, β)π(λ, β|D)dλdβdt =
t

t fτ(t;λ, β)
4∑

i=1
wiπi(λ, β|D)dλdβdt

=
4∑

i=1
wi

t
t fτ(t;λ, β)πi(λ, β|D)dλdβdt =

4∑
i=1

wi
s
µτπi(λ, β|D)dλdβ,

(63)

where µτ is as in Equation (59). Therefore, the estimation of residual life is the weighted sum of
estimations of residual life under different posterior distributions. Similarly, concerning the 100(1− δ)%
Bayes credible interval [µ̂L, µ̂H] for the residual life, we have∫ µ̂L

0
(

∫ β2

β1

∫
∞

0
fτ(t;λ, β)π(λ, β|D)dλdβ)dt =

δ
2

, (64)

and ∫ µ̂H

0
(

∫ β2

β1

∫
∞

0
fτ(t;λ, β)π(λ, β|D)dλdβ)dt = 1−

δ
2

. (65)

It is important to emphasize that Equations (63)–(65) are not attractable, and the computation
is not an easy task. Therefore, we use a sample-based method to address this problem. As
illustrated by Guo et al. [46], this sample-based method can be achieved by drawing samples{
(λ1, β1), (λ2, β2), . . . (λS, βS)

}
from the joint posterior distribution π(λ, β|D).

This sample-based method is based on the Markov chain Monte Carlo (MCMC) method, and the
details for this method are shown in Algorithm 1.

Algorithm 1. Sample-based method for calculating the Bayes estimate and the credible interval of the
residual life.

1. Given the posterior distribution πi(λ, β|D) and simulation sample size S.
2. Step 1: Draw sample values (λv, βv) according to πi(λ, β|D).
3. Step 2: Compute µ̂τ, µ̂L, and µ̂H using Equations (59), (61), and (62), respectively.
4. Step 3: Repeat Steps 1 and 2 S times, and samples of µτ, µL, and µH with size S can be drawn, which are
denoted as µ̂τ j, µ̂Lj, and µ̂Hj ( j = 1, 2, 3, . . . , S), respectively.

The point estimation and Bayes credible interval can be calculated as:

µ̂τ =
1

S−M

S∑
j=M+1

µ̂τ j, (66)

µ̂L =
1

S−M

S∑
j=M+1

µ̂Lj, (67)
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and

µ̂H =
1

S−M

S∑
j=M+1

µ̂Hj, (68)

where M is the burn-in period that can guarantee the stability of the sample. Then, the final results
are the weighted sum of the results obtained by Equations (66)–(68). Drawing sample values (λv, βv)

according to πi(λ, β|D) is difficult and needs to be simplified. Taking the posterior distribution of
expert information in Section 4.2.1 as an example, Equation (39) could be rewritten as

π1(λ, β|D) ∝ π1(λ|β, D)π1(β|D), (69)

where

π1(β|D) =
τa1ββrMβ−1

(N(β) + b1τβ)
r+a1

, (70)

and

π1(λ|β, D) =
(N(β) + b1τβ)

r+a1

Γ(r + a1)
λr+a1−1 exp

[
−λ(N(β) + b1τ

β)
]
= Γ(λ; a1 +

n∑
i=1

δi, N(β) + b1), (71)

which means π1(λ|β, D) is the gamma distribution. Therefore, in Step 1 of Algorithm 1, given
π1(λ, β|D), βv can be generated using the Metropolis–Hasting (MH) sampling technique [47] according
to Equation (70). Then λv can easily be drawn by Equation (71).

5. Simulation Study

This section describes how a Monte Carlo simulation study is conducted to compare the Bayesian
estimates and the CI of residual life with the maximum likelihood estimate (MLE). The performance of
the Bayesian method and MLE are compared under different parameter settings. Parameter values
of λ, β, current time τ and sample size n are necessary for this simulation. The values of the Weibull
parameters (λ, β) are set to (2 × 10−8, 3), (4 × 10−8, 3), and (2 × 10−10, 4), respectively. τ is set to 100,
and the sample size n is set to 3, 5, and 10. For convenience, the sample size of the historical lifetime
data and the similar data is set to 5. The expert information is the true value of reliability at time τ.

The simulation steps are listed as follows:

Step 1: Draw historical lifetime data, similar data, expert information and lifetime data predicted by
degradation data from W(λ, β). Generate field data with size n.

Step 2: The Bayesian estimate and 90% CI of the residual life, denoted by µ̂r
τ, and (µ̂r

L, µ̂r
H), can be

calculated by Algorithm 1.
Step 3: MLEs of the Weibull parameters λ and β can be obtained by field data. Then the point estimate

and the 90% CI of the residual life, denoted by µ̂r
m and (µ̂r

Lm, µ̂r
Hm), can be calculated by

Equations (59), (61) and (62).
Step 4: Repeat Steps 1–3 100 times and compare the collected results using bias, mean absolute error

(MAE), and mean square error (MSE) of the point estimate, coverage probability (CP) and the
average interval width (AIW) of the CI [48].

More detailed comparing results are provided in Tables 1–3.
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Table 1. The results of the residual life estimation using Bayesian method and MLE with n = 10.

Parameters Method Bias MAE MSE AIW CP

λ = 2× 10−8 Bayes −1.1480 23.9 868.8 361.4 0.87
β = 3 MLE −0.7568 28.0 1242.8 350.0 0.83

λ = 4× 10−8 Bayes 1.4438 18.2 527.9 272.3 0.84
β = 3 MLE 1.1924 20.4 678.5 273.6 0.84

λ = 2× 10−10 Bayes −0.3157 12.3 226.1 131.5 0.87
β = 4 MLE 0.1472 16.0 379.9 185.3 0.82

Table 2. The results of residual life estimation using Bayesian method and MLE with n = 5.

Parameters Method Bias MAE MSE AIW CP

λ = 2× 10−8 Bayes −1.3760 30.0 1362.0 345.8 0.84
β = 3 MLE −5.3046 40.6 2497.0 319.6 0.72

λ = 4× 10−8 Bayes −0.8615 20.9 687.8 265.6 0.87
β = 3 MLE −1.7226 28.3 1276.5 247.3 0.83

λ = 2× 10−10 Bayes 1.5557 16.6 418.5 195.6 0.82
β = 4 MLE 2.2144 23.4 869.0 175.2 0.72

Table 3. The results of residual life estimation using Bayesian method and MLE with n = 3.

Parameters Method Bias MAE MSE AIW CP

λ = 2× 10−8 Bayes 6.0742 29.0 1274.0 342.8 0.82
β = 3 MLE 12.8385 47.4 3884.9 272.3 0.64

λ = 4× 10−8 Bayes −1.3443 24.6 973.10 255.8 0.81
β = 3 MLE −3.3908 35.7 1999.2 197.6 0.59

λ = 2× 10−10 Bayes −4.1098 20.1 605.9 190.1 0.72
β = 4 MLE −5.8645 32.5 1639.9 147.9 0.52

From Tables 1–3, the following conclusions can be found.

(i). The sample size of lifetime data has a remarkable effect on both the Bayesian method and the MLE
method. Generally, the bias, MAE, and MSE decrease as the sample size increases. Simultaneously,
the CP increases, which means that a more accurate interval can be obtained.

(ii). The difference between these two point estimates is gradually eliminated as the sample size of the
field data increases. When the sample size is small, the advantage of using Bayesian estimation is
obvious. The bias, MAE, and MSE found using Bayesian estimation are apparently smaller than
those found using the MLE method, which indicates that the former estimation is more accurate,
stable and robust. Also, when the number of failures of the field data is equal to one or zero,
MLE is restricted and cannot be used.

(iii). Generally, the CP of the Bayesian method is larger than that of the MLE method, indicating
that the Bayesian CI is more useful as it fuses various kinds of prior information. Therefore,
the simulation results indicate that the multi-source information fusion method could significantly
outperform other conventional approaches that are based on any single input [49].

6. Illustrative Example

As a critical component of a satellite platform, it is meaningful to estimate the residual life of the
momentum wheel [50]. Characterized as being highly reliable and having a long life, the failure of the
momentum wheel is rare and failure data are usually nonexistent [51]. The traditional method for
residual life estimation, which is based on failure distribution, is limited. Therefore, prior information
is useful and can be fused to estimate the component’s residual life. As a typical electromechanical
component, the lifetime of the momentum wheel follows the Weibull distribution. Lifetime data and
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degradation data were fused by Liu et al. [52]. To illustrate the method introduced in this paper,
we consider the data published in [52], which include the right censored life data on 15 components.
This is shown in Table 4.

Table 4. The right censored life data of momentum wheels.

Satellite Code Number of Components Censored Time (Months)

S1 5 51.95
S2 5 38.14
S3 5 27.29

We choose the momentum wheels on S3 as the research objects. The right censored life data
on S1 and S2 are the historical life data. Using the Bayesian method, the reliability estimation at
current time τ = 24 months is 0.9954 [52], which is taken as the expert information. Simultaneously,
by analyzing the degradation data, the CDF of the lifetime was obtained, and its life was estimated,
(i.e., 537 months). The point estimation and 95% CI were calculated: 512.85 months and [47.9, 1288.0]
months, respectively [52]. By fusing multi-source information, Bayesian estimation and 95% CI of
residual life corresponding to each prior information can be calculated. These results are shown
in Table 5.

Table 5. Estimation results of residual life for the momentum wheels on S3.

Information Source Bayesian Estimation (Months) CI (Months) Weight

Historical lifetime data 451.26 [56.09, 1103.85] 0.3079
Degradation data 605.43 [158.05, 1154.84] 0.3525

Expert information 533.23 [55.59, 1395.33] 0.3396

To guarantee the safety of the data fusion, a consistency test is necessary. We can obtain the 95%
Bayesian CI under each prior distribution determined by the corresponding prior information using
Algorithm 1. The results are tabulated in Table 6.

Table 6. Consistency test of multi-source information.

Information Source 95% CI (Months)

Historical lifetime data [20.5, 1737.2]
Degradation data [78.6, 1265.2]

Expert information [17.0, 1351.6]

Under the non-informative prior distribution, the point estimation of residual life is 177.5 months.
All of them pass the consistency test and can be fused. The sample of residual life drawn by the
sample-based method is depicted in Figure 1.

Bayesian estimation and 95% CI results of the residual life by fusing multi-source information
are 533.44 months and [91.87, 1220.79] months, respectively. Compared with the previous results [52],
the effectiveness and the accuracy of the proposed method are validated. By comparing the weights of
multi-source information, the lifetime predicted by the degradation data and expert information
provides more reliability information because the historical lifetime dataset is extremely small
and zero-failure.
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7. Conclusions

In this paper, a Bayesian method is proposed to estimate the residual life of Weibull-distributed
components of on-orbit satellites by fusing multi-source information. The contributions of this paper
were concluded as follows:

(i). By fusing prior information, including historical lifetime data, degradation data, similar data
and expert information, a more precise estimation of residual life is produced. Both the Bayesian
estimate and credible interval are considered in this paper.

(ii). The Monte Carlo simulation validated the accuracy of the method. The results proved that the
Bayesian approach provided more satisfactory and robust estimates than MLE, especially when the
sample size of the lifetime data was small. The precision can be improved by fusing multi-source
reliability information.

(iii). The momentum wheel of an on-orbit satellite was taken as an example. The applicability and
flexibility of the proposed method were illustrated in the case study. The results were in agreement
with those of the simulation study.

This method can be applied to many problems of survival time prediction, and will be of interest to
readers in many applications. To extend our research, we think that various kinds of expert information,
including point estimation and the CI of the lifetime, merits further research.
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