
applied  
sciences

Article

Adaptive Bat Algorithm Optimization Strategy for
Observation Matrix

Zhihua Cui *, Chunmei Zhang, Yaru Zhao and Zhentao Shi

Complex System and Computational Intelligent Laboratory, Taiyuan University of Science and Technology,
Taiyuan 030024, China
* Correspondence: cuizhihua@tyust.edu.cn; Tel.: +0351-699-8016

Received: 3 June 2019; Accepted: 23 July 2019; Published: 26 July 2019
����������
�������

Featured Application: This paper proposes an adaptive bat algorithm to optimize the observation
matrix and achieve signal reconstruction. By introducing the theory of compressed sensing, the
adaptive bat algorithm is designed to realize the signal reconstruction process. The proposed
algorithm has been extensively evaluated. In particular, the effects of different algorithms on
different algorithms with different signals and the effects of different transform bases on the
proposed method are studied.

Abstract: Bat algorithm, as an optimization strategy of the observation matrix, has been widely
used. Observation matrix has a direct impact on the reconstructed signal accuracy as a projection
transformation matrix, and it has been widely used in various algorithms. However, for the traditional
experimental process, randomly generated observation matrices often result in a larger reconstruction
error and unstable reconstruction results. Therefore, it is a challenge to retain more feature information
of the original signal and reduce reconstruction error. To obtain a more accurate reconstruction
signal and less memory space, it is important to select an effective compression and reconstruction
strategy. To solve this problem, an adaptive bat algorithm is proposed to optimize the observation
matrix in this paper. For the adaptive bat algorithm, we design a dynamic adjustment strategy of the
optimal radius to improve its global convergence ability. The results of our simulation experiments
verify that, compared with other algorithms, it can effectively reduce the reconstruction error and has
stronger robustness.

Keywords: adaptive bat algorithm; observation matrix; reconstruction error; signal reconstruction

1. Introduction

With signals, images and video data are gradually increasing in contemporary life. To reduce the
cost of data storage, transmission and processing, signals are often represented with less storage space
at an acceptable level of distortion. Compressed sensing, as a technique for finding sparse solutions of
underdetermined linear systems, is widely used in many fields, such as image processing, medical
imaging, computer science, signal processing. Particularly, compressed sensing is used in signal
processing to obtain and reconstruct sparse or compressible signals. For example, studies [1–4] have
shown that it is feasible to directly obtain a compressed representation with a variety of assumptions.

The sparse observation matrix plays an important role in the reconstruction algorithm. In [5],
Wang et al. expounded the advantages of the compressed sensing theory in solving the problem of
information redundancy for the traditional signal acquisition process. They analyzed the construction
of the compressed sensing measurement matrix from four aspects. Donoho et al. [6] proposed a method
for linear measurement of a given vector and returned it to the Euclidean accuracy range. Moreover,
they suggested that the observation matrix should satisfy the restricted isometry property (RIP), and
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the random Gaussian matrix was employed as the usual observation matrix. Then, the discriminant
rules of the observation matrix and the sparse representation transformation basis were proposed by
Candès et al. [7]. Fang et al. [8] took advantage of the tail boundedness of the sub-Gaussian distribution
to design the sub-Gaussian distribution sparse observation matrix. Candès et al. [9] revealed the
relationship between the random Bernoulli matrix and the restricted isometry property (RIP) criterion.
And to reduce storage space, Yin [10] designed a Toeplitz matrix in the RIP criterion, which was
generated by a single row vector loop.

The random Gaussian observation matrix is an important method in the reconstruction process,
which has received much attention and shown some advantages. Peng et al. [11] decomposed the
observation matrix by using singular value and increased the observation matrix independence of each
column by adopting the mean value improvement strategy. Duarte et al. [12] proposed the evaluation
index between the observation matrix and transform basis, and used the eigenvalue decomposition
method to optimize the random Gaussian observation matrix. Abolghasemi et al. [13] proposed the
Gram matrix to make the observation matrix close to the unit matrix by optimizing iteration. Lan
et al. [14] used a gradient descent method to convert the Gram matrix to the unit matrix. And in
order to reduce the correlation between the observation matrix and the transform basis, the orthogonal
triangulation (QR) decomposition was proposed. According to the characteristics of the MIMO radar
signal, Yu et al. [15] optimized the signal-to-interference ratio and reduced the correlation and noise.

In recent years, a large number of bio-inspired optimization algorithms have been proposed, such
as the genetic algorithm (GA) [16,17], bat algorithm (BA) [18–21], differential evolution (DE) [20,21],
firefly algorithm (FA) [22], artificial bee colony (ABC) [23,24], cuckoo algorithm (CS) [25–27], and so
on [28–32], which have been applied to various fields, including the optimization problems [33–37],
practical application problems [38–41], LEACH (Low Energy Adaptive Clustering Hierarchy) protocol
optimization [42], and so on [43–46]. Particularly, Cui et al. [47] designed an optimization method
based on the bat algorithm to optimize the random Gaussian observation matrix and reduced the
reconstruction error.

The remainder of this paper as follows. Section 2 gives an overview of the related work and our
motivations. Section 3 introduces the proposed adaptive bat algorithm (ABA) in detail and indicates
the specific method flow. In Section 4, the simulation experiments are extensively tested, and the
performance of this algorithm is compared. Conclusions are given in Section 5.

2. Related Works

To analyze the influence of the observation matrix on the algorithm, five different observation
matrices and two algorithm optimized observation matrices are used for reconstructing the signal.
It includes the random Gaussian observation matrix [6], random Bernoulli observation matrix [9],
singular value decomposition, mean optimization random Gaussian observation matrix [11], the
observation matrix optimized by the standard bat algorithm, and the observation matrix optimized by
the adaptive bat algorithm.

The signal recovery, as an important process of compressed sensing, has an essential impact
on reconstruction accuracy. Therefore, researchers have proposed many improvement strategies to
improve the accuracy of signal recovery, which include the following four categories: (1) Greedy
algorithm based on local search strategy [48,49]; (2) convex optimization algorithm based on linear
programming problem [50,51]; (3) non-convex optimization algorithm based on linear programming
problem [52,53]; and (4) reconstruction algorithm based on natural heuristic algorithm [54,55]. In the
process of reconstruction [56], the signals can be compressed and sampled in real-time; moreover, the
original signals also can be recovered by some specific reconstruction algorithms.

Orthogonal matching pursuit algorithm (OMP) [57], due to its fast reconstruction velocity and
simple implementation, is widely used in the field of compressed sensing. In this paper, the OMP
algorithm is employed to optimize the observation matrix. Its process is as follows:
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1. Calculate the correlation coefficient between the sensing matrix (ACS) and residual projection,
and select the maximum correlation coefficient atomic as updated support sets.

2. Use the Schmidt orthogonalization processing for the sensing matrix to eliminate interference on
subsequent atoms.

3. Least-square method is used to update residuals and obtain the reconstructed signals.

The bat algorithm can obtain better results when solving continuous optimization problems.
However, for a large number of discrete problems in practical engineering, it often tends to cause
slow convergence and fall into local optimum. Therefore, discrete bat algorithms have been proposed.
Mirjalili et al. [58] proposed a binary bat algorithm to deal with discrete problems and introduced
a binary coding strategy to update the velocity and position of bats individuals. Osaba et al. [59]
proposed a discrete bat algorithm and introduced Hamming code distance to enhance the ability to
learn from optimal bats. Xu et al. [60] applied the discrete bat algorithm to the flexible shop scheduling
problem. To accelerate the convergence velocity of the algorithm, they also proposed to introduce the
bat’s position mutation strategy into the position update strategy and calculated the fitness value by
using the clock algorithm.

To jump out of the local extremum solution, Liu et al. [61] introduced the Lévy flight strategy
and updated the speed and position of the individual by randomly increasing the step size. Different
from the above work, Xie et al. [62] directly used the Lévy flight strategy to update the speed and
position. In order to enhance the local search ability, Wang et al. [63] proposed a novel variant of the
bat algorithm based on global search and introduced a weighting factor. According to the requirements
of numerical optimization problems, Tsai et al. [64] redefined the updated equation of velocity and
position, and proposed an evolutionary bat algorithm, which makes the algorithm achieve higher
accuracy in the optimization process.

In addition, for multi-objective optimization problems, many multi-objective bat algorithms
have been proposed. Yang [65] proposed a multi-objective bat optimization algorithm (MOBA) to
solve continuous optimization problems and introduced the weighted method into the algorithm.
Wang et al. [66] proposed a multi-objective bat algorithm based on decomposition (MOBA/D), which is
to decompose multiple problems into sub-problems and then reaggregate. Besides, differential evolution
operators are introduced to increase the population diversity and the convergence velocity. According to
the trade-off between two objectives in data mining of association rules, Heraguemi et al. [67] proposed
the multi-objective bat algorithm based on NSGA-II (Non dominated sorting genetic algorithm-II), and
the flight frequency and velocity of bat individuals in the algorithm are improved.

As we have known, the observation matrix is an important factor in the signal reconstruction
process; however, most scholars ignore the optimization of the observation matrix. Moreover, to
achieve better signal reconstruction, according to the RIP theorem, we can obtain the correlation
between the transformed base and the observation matrix. However, the experiment of the influence of
the choice of different transform bases on the optimization algorithm has not been found in previous
works. Therefore, in order to obtain a higher reconstruction accuracy and smaller reconstruction
error, an adaptive bat algorithm to optimize the observation matrix is designed. In addition, we also
tested the effects of different observation matrix reconstructions and different transform based on the
proposed algorithm. Finally, signal reconstruction is achieved.

3. Adaptive Bat Algorithm Optimizes Observation Matrix

In the field of signal processing, compressed sensing technology has been widely used as the
latest technology. Since the observation matrix and reconstruction algorithm have a certain influence
on the effect of signal reconstruction, this paper designs a novel observation matrix and reconstruction
algorithm for this phenomenon. In order to avoid the individual falling into local extremum and
achieve better reconstruction effect of the optimized observation matrix, the paper designs the
comparison of different observation matrices with different algorithms, so as to compare the signal
reconstruction effect.
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To enhance the reconstruction accuracy and minimize the reconstruction error, an adaptive bat
algorithm is proposed to optimize the observation matrix. In this section, compressive sensing theory
and the search method of ABA are introduced in detail; additionally, the strategy of optimizing the
observation matrix based on the adaptive bat algorithm is described.

3.1. Compress Sensing

In this subsection, the process of compressed sensing is introduced. Firstly, the sparse signals are
calculated as follows:

X = ΨΘ (1)

where Θ (Θ ∈ RN×1) represents a sparse representation of the signal X on the transform base Ψ, and
the length of signal X is N.

Then, observation signal (where, the dimension of observation signal is M) can be compressed
with Equation (2).

Y = ΦΨΘ = ACSΘ (2)

where Y represents the observation signals, Φ ∈ RM×N is observation matrix, ACS = ΦΨ is
sensing matrix.

Finally, the reconstruction process model is described as shown in Equation (3). min
Θ
‖Θ‖0

s. t. Y = ACSΘ
(3)

where ‖Θ‖0 represents the l0 − norm.

3.2. The Search Methods of Adaptive Bat Algorithm

To improve the global search ability, an adaptive bat algorithm is designed in this paper. The
main search method for ABA is that firstly, the optimization center and a preferred radius for the
global optimal position are determined; then, update the velocity and position for individuals within
the search radius, inherit the information of the previous generation and the optimal position, and
accelerate the search of the global optimal solution by the algorithm. For an individual outside
the optimization radius, since the individual is not closest to the optimal solution, the individual is
randomly searched within the defined domain. This strategy avoids the individual falling into local
extremum and increases the global search ability of the algorithm. However, when the position of
the optimal global solution is unknown, the optimal position of each generation of bat individuals is
taken as the optimization center, and the optimization radius of the optimization center is calculated.
Finally, when the individual does not have a search center, a random search is used to increase the
global search ability of the population. Next, the search methods of ABA are introduced.

For the individuals within the optimization center, velocity and position updates are as follows:

vt
i = vt−1

i + (xt−1
i − xgbest) × fi (4)

xt
i = xt−1

i + vt
i (5)

where xt
i represents the position of bat i at time t, vt

i represents the velocity of bat i at time t, xgbest
represents the global optimal solution, fi represents the pulse frequency.

The optimization process of the observation matrix is based on the transformation base Ψ and
OMP reconstruction algorithm. Equation (6) is considered the objective function (fitness).

f (x) = ‖ACSα−Y‖22 (6)
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where f (x) represents the fitness value function, Y represents the observed signal, α represents the
sparse representation of the original signal on the transformation base. And the individuals with the
minimum fitness value are selected as the optimal solution.

Additionally, the dynamic adjustment of the radius is achieved by the following:

radius =
fxt

gbest

P∑
i=1

fxt
i

(7)

where xt
gbest represents the optimal position at time t, P represents individual number, radius represents

the search radius. Apparently, the radius decreases as the objective function decreases.
To reduce the reconstruction failures probability, the flow of the proposed adaptive bat algorithm

search is shown in Figure 1.
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Figure 1. The flow chart of the adaptive bat algorithm search.

In this process, a new optimization center and radius are added in each generation of bat algorithm,
and the local and global search ability is enhanced.

3.3. Observation Matrix Optimization Based on Adaptive Bat Algorithm

3.3.1. Population Initialization and Coding Strategy

In this section, the bat algorithm is used to optimize the observation matrix to determine the
position and velocity of bats individual, and Gaussian random matrices (the size M×N). In addition,
according to the fitness values, the better individuals are selected (the fitness values stored in the last
dimension of the matrix, e.g., Equation (8)). At the same time, the new position is disturbed in the
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first M ×N dimension and the M ×N + 1 dimension is updated. In this way, the most appropriate
observation matrix and corresponding error for different signals is selected.

x =





a1

a2

a3

a4

. . .
aMN

fxt
1





b1

b2

b3

b4

. . .
bMN

fxt
2





c1

c2

c3

c4

. . .
cMN

fxt
3


. . .


(8)

where x represents the bat individual, M×N + 1 represents the individual dimension.

3.3.2. Define Population Interval

The foraging behavior of bats is to find relatively better food in an area; the area setting can ensure
that bats do not fly out of this area during the foraging process. In this algorithm, the initial position
of the bat population is the Gaussian random observation matrix, which obeys the standard normal
distribution, and the algorithm defines the domain interval as [−3, 3].

3.4. The Design of Adaptive Bat Algorithm Optimal Observation Matrix

In this section, the flow chart of the adaptive bat algorithm based on observation matrix
optimization is described. The adaptive bat algorithm, to realize the observation matrix optimization
search method by dynamically adjusting the size of the optimization radius, is as shown in Algorithm 1.

Algorithm 1: Adaptive Bat Algorithm

Input: The bat’s loudness A, flight frequency f and pulse transmission frequency r, the maximum iterations
number is max.
Initialization parameters;
While t < max

Calculate the fitness value by Equation (6) and find the best individual;
Select the optimization center fxgbest and calculate the radius with Equation (7);
Update new position of bats individual;

if
∣∣∣∣∣ fxt

i
− fxt

gbest

∣∣∣∣∣ ≤ radius

Update the velocity and position with Equations (4) and (5);
else

Individual escapes from the search center and randomly generates new positions;
end (if)
Local disturbance: For each individual, generate a random number rand1;
if rand1 > rt

i
The position of the bat is disturbed near the optimal individual with Equation (9):

else
Calculate the fitness value of the new position with Equation (6);

end (if)
Generate random numbers rand2 for each bat individual;
if rand2 < At

i and f (xt
i new) < f (xt

i)

Accept new solution and update loudness and pulse frequency with Equations (10) and (11);
else

Update the global optimal solution with Equation (5);
end (if)

end (while)
Output: the observation matrix and the optimal fitness value (minimum reconstruction error).
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Among them, the position of the bat individual is disturbed near the optimal individual with
Equation (9):

xt
i new = xgbest + ρAt (9)

where ρ ∈ [−1, 1], At represents the average pulse loudness of bat individual at time t.
And then, the updated pulse frequency and loudness equation are as follows:

rt+1
i = rt

i(1− e−γt) (10)

At+1
i = ψAt

i (11)

where γ represents the growth rate of pulse transmission frequency, and the value is an integer with
greater than 0, ψ represents the decrease rate of the pulse frequency.

Algorithm 2 describes the process of the proposed adaptive bat algorithm for signal reconstruction
based on transform base and OMP algorithm. Among them, the main process of reconstructing is
introduced in Algorithm 2.

Algorithm 2: Reconstruction Process

Input: Original signal: X, sparse transformation base: Ψ.
Initialization: Generate p column of random Gaussian distribution with size of M×N dimension as the bat’s
initialization velocity v0

i and position x0
i ;

Select sparse transform base and sparse representation signal X with Equation (1);
Generate p random Gaussian observation matrices as the initial velocity and position;

Turn the position of each bat individual xt
i to a matrix Φt

l of M×N;
While t < max

Compress observation original signal X with Φt
l matrix;

Generate observation signals with Equation (2);
The reconstructed signal is obtained by the OMP reconstruction algorithm (Algorithm 2);

end (While)
Output: The observation matrix and the optimal fitness value (minimum reconstruction error).

3.5. The Flow Chart of Adaptive Bat Algorithm Optimal Observation Matrix

In the previous section, we proposed an adaptive bat algorithm to optimize the observation
matrix. Firstly, the algorithm parameters and reconstructed signal are initialized. Secondly, the
compression projection is carried out based on the relevant principles of compressed sensing, and
signal reconstruction is realized. Thirdly, according to the search method of our adaptive bat algorithm,
the optimization radius and new position are constantly updated. Finally, the optimal global solution
is obtained. In our model, the observation matrix is optimized and the reconstruction error value is
updated by generating the optimal position and the optimal fitness value. The process of the adaptive
bat algorithm optimal observation matrix is shown in Figure 2.
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4. Experimental Simulation

To verify the performance optimization of the observation matrix by the ABA, this paper conducted
two groups of experiments: Signal reconstruction experiment and the selection of transform bases
for the ABA to optimize the performance of the observation matrix. All simulation experiments were
carried out in MATLAB environment.

4.1. Experimental Design

4.1.1. Comparison Algorithm

In this paper, the effect of signal reconstruction is compared with the following observation
matrices:

• Gaussian random observation matrix (Gaussian),
• Bernoulli random observation matrix (Bernoulli),
• Singular value decomposition and the average value of optimization random gaussian observation

matrix [37] (SVD-M),
• Standard bat algorithm (BA) optimization random Gaussian observation matrix [36],
• Adaptive bat algorithm optimization the observation matrix (ABA).

4.1.2. Signal Test

In the signal reconstruction experiment, four unidimensional sparse signals are selected,
respectively, as shown in Table 1.
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Table 1. Sparse signals.

The Test of Sparse Signal:

S1 = 0.3 cos(2π f1Tsts) + 0.6 cos(2π f2Tsts) + 0.1 cos(2π f3Tsts) + 0.9 cos(2π f4Tsts)

S2 = 6 cos(80π f1Tsts) − 7 cos(10 sin(π f2)Tsts) − 3 cos(20 sin(π f4Tsts))

S3 = sin(11π f1Tsts) + cos(17π f2Tsts) − 0.4 cos(6π f3Tsts)

S4 = 32 sin(4π f1Tsts) + 60 cos(π f2Tsts) − 2.2 sin(60π f3Tsts) + 0.2 sin(2 sin(16π f4)Tsts)

Fs represents sampling frequency, ts =
1
Fs

represents sampling interval, Ts = 1 : N represents sampling sequence,
f1, f2, f3, and f4 represent signal frequency, respectively, rate = M

N represents the compression ratio, K represents
the sparse degree and K =

⌈
M

log N

⌉
.

4.1.3. Parameter Setting

In the experiment, some parameters are shown in Table 2.

Table 2. Parameter setting.

Parameter Value Parameter Value

signal length N 256 signal frequency f1 50 Hz
compression rate 0.3, 0.35, 0.4, 0.45, 0.5 signal frequency f2 100 Hz

sampling frequency Fs 800 signal frequency f3 200 Hz
population size P 100 signal frequency f4 400 Hz

4.2. Signal Reconstruction Experiment

In the signal reconstruction experiment, four sparse unidimensional signals (S1, S2, S3 and S4)
are selected. And the ABA performance is tested by comparing the error values of five observation
matrices and the curve fluctuation amplitude with different compression ratios.

4.2.1. Evaluation Index Design

Reconstruction error (RE) is used to evaluate the quality of reconstructed signals, and Equation
(12) is used to calculate. The smaller the RE value is, the smaller the reconstruction error is and the
better the reconstruction accuracy is.

RE =
‖X −X∗‖2
‖X‖2

(12)

where X represents the original signal, X∗ represents the reconstructed signal.

4.2.2. Signal Reconstruction Experiment and Analysis

Figure 3 shows the performance comparison of four signals reconstructed by the adaptive bat
algorithm with a compression ratio of 0.3. And the randomly generated 30 observation matrices
corresponding to the various observation matrices are used for the test experiments. The trend of the
original signal and the recovered signal are compared by calculating the mean and variance. As can
be seen from Figure 3, the ABA has a better reconstruction effect on the original signal. In addition,
the proposed algorithm can effectively reconstruct the original signal in a relatively uniform area and
achieve stable characteristics. Therefore, the ABA optimized observation matrix below is introduced.
However, since the test process of the signal reconstruction has not selected a good observation matrix,
there will be a case where the algorithm fluctuates in the signal reconstruction effect. This also reflects
the innovation of the paper using the proposed algorithm to optimize the observation matrix. The
difference in reconstruction accuracy for each algorithm and different observation matrices is shown in
Figures 4–7.
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We can see from Figures 4–7 that it is feasible for the ABA to optimize the observation matrix in
terms of improving the stability of the observation matrix or enhancing the reconstruction accuracy of
the signal. Therefore, the observation matrix optimized by ABA is more reliable.
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Figure 4 shows the reconstructed error values obtained for the S1 with different compression
ratios. It can be seen from Figure 4 that the reconstructed error curves of Gaussian, Bernoulli, and
SVD-M have large amplitude fluctuations and poor error values. However, the BA and ABA have
smaller error values and a minor fluctuation. This also proves that the reconstruction effects of BA and
ABA are better than observation matrixes.
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For the S2 signals, Figure 5 depicts a reconstruction error plot of the observation matrix and
algorithms with different compression ratios. It can be seen from Figure 5 that the reconstruction error
of Gaussian, Bernoulli, and SVD-M fluctuates greatly and the stability of reconstruction error is poor.
Conversely, BA and ABA have better reconstruction error values and the variation is stable.
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Figure 6 shows the reconstructed error values obtained for the signals S3 under each observation
matrix and algorithm. It can be seen from Figure 6 the poor reconstruction error and the larger error
value for Gaussian, Bernoulli, and SVD-M. For BA and ABA, the reconstruction effects are significantly
better than the observation matrices.
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Figure 7 illustrates the reconstruction error plots for several observation matrices and algorithms
for the S4 signals. Comparing the BA and ABA, the reconstruction error values and stability of
Gaussian, Bernoulli, and SVD-M are poor, which also shows that the reconstruction effects of BA and
ABA are obviously better from Figure 7. Moreover, it can be seen from the above Figures 4–7 that the
ABA has better stability and error value than the BA algorithm.

4.3. Analysis and Selection of Transformation Basis

The selection of the transform base, as the preliminaries of the compressed sensing process, has
a great influence on the signal reconstruction effect. A good transform base can well represent the
original signal containing a large amount of information, and obtain a better reconstruction algorithm.
Therefore, to get better transform bases, this section performs signal reconstruction experiments by
comparing different transform bases. In addition, it proves the robustness of the ABA to optimize the
observation matrix relative to different transformation basis.

4.3.1. Transform Base Setting

In this section, the transformation bases involved are as follows:

• Discrete Hartley transform matrix [68] (DHT),
• Discrete Fourier transform matrix [69] (FFT).
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4.3.2. Evaluation Index Design

The performance improvement rate PI is used to improve the reconstruction effect, the calculation
Equation (13) is as follows.

PI j =

∣∣∣Mean0 −Mean j
∣∣∣

Mean j
(13)

where Mean0 represents the average fitness value of proposed algorithm, Mean j represents the average
fitness value of comparison algorithm j. In addition, the experimental parameters are set as in
Section 4.1.3, another indicator (RE) is calculated as shown in Section 4.2.1 and the fitness function is
shown in Equation (6).

4.3.3. Selection of Transform Bases in Signal Reconstruction Experiments

In signal reconstruction experiments, signal reconstruction experiments are performed on signals
S1 and S3 with different transform bases. And the observation matrix used is the same as the ABA
optimized observation matrix. The experimental results are shown in Table 3.

Table 3. Reconstruction effect of different transform based on signal.

Signal Rate Data DHT FFT

S1

0.30 mean 3.6916 × 10-15 3.1462 × 10−15

0.35 mean 3.4521 × 10−15 3.1030 × 10−15

0.40 mean 3.4700 × 10−15 3.1139 × 10−15

0.45 mean 3.3844 × 10−15 3.0513 × 10−15

0.50 mean 3.3120 × 10−15 3.0155 × 10−15

S3

0.30 mean 5.0519 × 10−14 4.6387 × 10−14

0.35 mean 4.9979 × 10−14 4.4886 × 10−14

0.40 mean 4.8152 × 10−14 4.3008 × 10−14

0.45 mean 4.7886 × 10−14 4.2642 × 10−14

0.50 mean 4.7102 × 10−14 4.1672 × 10−14

The bold indicates that signals can be reconstructed with better results under different observation matrices and
transform bases.

It can be seen from Table 3 that DHT and FFT reconstruction are successful. Furthermore, both
signal reconstruction errors are superior to DHT transform bases when using FFT transform bases.
Therefore, the FFT transform base is more suitable for signal reconstruction. In this paper, we select the
FFT transform basis as the signal sparse tool.

4.3.4. Analysis of the Influence of Transformation Basis on ABA

The correlation between the transformation base and the observation matrix directly affects the
reconstruction effect. Gaussian matrix is not related to most transform bases [70]. Therefore, our
experiments employ Gaussian matrix as the observation matrix to prove the robustness of the ABA
algorithm to optimize the observation matrix with different transform bases.

In the signal reconstruction experiment, to test the effectiveness of different observation matrices
with different transform bases, we take the S1 and S3 signals and tests the effects of different
observation matrices under transform bases DHT and FFT. According to the proposed evaluation
index reconstruction error (RE) and performance improvement rate (PI) values, the optimization effect
of the observation matrix is reflected, and the smaller mean and reconstruction error are selected as the
optimal values, and then the conversion comparison is performed. The selection and reconstruction
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effects of different transform bases based on adaptive bat algorithm are compared, and the robustness
of the algorithm is fully proved. The results of the experiment are shown in Table 4.

Table 4. Reconstruction effect of different observation matrices and transform bases.

Signal Rate Data
DHT FFT

Gaussian ABA Gaussian ABA

S1

0.30
RE 4.5714 × 10−14 3.6916 × 10−14 4.0586 × 10−15 3.1462 × 10−15

PI 19.25% – 22.48% –

0.35
RE 4.3217 × 10−14 3.4521 × 10−14 3.8985 × 10−15 3.1030 × 10−15

PI 20.12% – 20.41% –

0.40
RE 4.2001 × 10−14 3.4700 × 10−14 3.8786 × 10−15 3.1139 × 10−15

PI 17.38% – 19.72% –

0.45
RE 4.1711 × 10−14 3.3844 × 10−14 3.8565 × 10−15 3.0513 × 10−15

PI 18.86% – 20.88% –

0.50
RE 4.1014 × 10−14 3.3120 × 10−14 3.8174 × 10−15 3.0155 × 10−15

PI 19.25% – 21.01% –

S3

0.30
RE 6.5552 × 10−14 5.0519 × 10−14 6.1340 × 10−15 4.6387 × 10−15

PI 22.93% – 24.38% –

0.35
RE 6.5499 × 10−14 4.9979 × 10−14 5.9468 × 10−15 4.4886 × 10−15

PI 23.70% – 24.50% –

0.40
RE 6.4900 × 10−14 4.8152 × 10−14 5.7716 × 10−15 4.3008 × 10−15

PI 25.81% – 25.48% –

0.45
RE 6.4718 × 10−14 4.7886 × 10−14 5.6797 × 10−15 4.2642 × 10−15

PI 26.01% – 24.92% –

0.50
RE 6.4152 × 10−14 4.7102 × 10−14 5.4878 × 10−15 4.1672 × 10−15

PI 26.58% – 24.06% –

The bold indicates that signals can be reconstructed with better results under different observation matrices and
transform bases.

It can be seen from Table 4 that the reconstruction effect of the ABA optimization observation
matrix is optimal for different transform bases. Moreover, the reconstructed error values are equivalent
by comparing the two transform bases, which proves the feasibility of the ABA on different transform
bases in the signal reconstruction experiment.

5. Conclusions

As we know, it is critical to select an appropriate observation matrix to ensure high signal
reconstruction accuracy. In this paper, an adaptive bat algorithm is proposed to optimize the
observation matrix. To improve the global search ability, the position of the optimal solution is updated
continuously by designing the adaptive bat algorithm search method. Further, the adaptive bat
algorithm is used to optimize the observation matrix. Finally, we verify our model on four different
signals, the optimized observation matrix and the smaller reconstruction error value are obtained. The
simulation results fully show that the adaptive bat algorithm optimization observation matrix can
obtain higher signal reconstruction accuracy and better robustness, compared with other algorithms.
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