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Abstract: Photonic integrated circuits (PICs) play a key role in a wide range of applications. Very often,
the performance of PICs depends strongly on the state of polarization of light. Classically, this is
regarded as undesirable, but more and more applications emerge that make explicit use of polarization
dependence. In either case, the characterization of the polarization properties of a PIC can be a
nontrivial task. We present a way of characterizing PICs in terms of their full Müller matrix, yielding
a complete picture of their polarization properties. The approach is demonstrated by carrying out
measurements of fabricated PICs.

Keywords: photonic integrated circuits; polarimetry; optical polarization; photonics; optical
characterization

1. Introduction

The characterization of the polarization properties of photonic integrated circuits (PICs) can be
a challenging task. Fiber-based systems introduce unknown rotations in the fibers, while free-space
systems are challenging to align and automate. This is why typically, measurements are carried out in
terms of extinction ratios between the transverse electric and transverse magnetic components (TE and
TM) rather than full polarimetric measurements [1–5]. Consequently, information on the relative phase
between TE and TM gets lost, leaving the birefringence of a device impossible to characterize directly.

In this work, we present a methodology to fully characterize PICs via the Stokes–Müller formalism
using a fiber-based measurement setup. By measuring the Müller matrix of a given PIC, we obtain
information on its polarization dependent loss (PDL), birefringence, rotation of the propagating
modes as well as depolarization. We demonstrate this type of measurement with two kinds of
integrated devices: polarization rotators and electro-absorption modulators (EAMs). We find that
our measurement approach allows deep insight into both device types that go beyond the usual
characterizations carried out for those devices [6,7].

Our polarimetric approach is based on a setup calibration consisting of the following three major
steps: in the first two steps we collect measurement data for arbitrary but distinct states of polarization
(SOP) at different positions in the fiber link. This is achieved by rotating the linear polarizer (LP),
quarter-wave plate (QWP) and half-wave plate (HWP) in a polarization controller. The third step is to
fit this data to the mathematical model we use to describe the setup. Once this calibration is performed,
we use classical polarimetric techniques to characterize a device under test.

In the following, we call ψ and χ the angle of the major axis and the ellipticity of the polarization
ellipse, respectively. This makes 2ψ and 2χ the spherical coordinates of a SOP in Stokes space.
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2. Measurement Methodology

2.1. Setup Calibration

The basic approach in this work was to, first, fully characterize a measurement setup in Stokes
space in the absence of any device under test (DUT). Then, this characterization was used as a calibration
to characterize actual DUTs.

The measurement setup is shown in Figure 1. It consisted of a tunable laser source (TLS),
a polarization controller (PC), tapered fibers coupling in and out of the DUT, and a polarimeter (PM).
All devices were in series in that order, interconnected by single-mode fiber (SMF). Note that no
polarization maintaining SMF was used. We define Stokes vectors as follows:

→
s tls is incident to the PC

described by MPC,
→
s in is incident to the DUT,

→
s out exits the DUT, and

→
s meas is the PM measurement.

The polarization rotations of the SMFs are described by the Müller matrices M f iber,in and M f iber,out for
the fibers before and after the DUT, respectively. SMF Müller matrices are modelled via

MSMF = M λ
4
(θ3)M λ

2
(θ2)M λ

4
(θ1) (1)

where, Mλ/4 and Mλ/2 are the Müller matrices of quarter- and half-wave plates, respectively. They are
given in Appendix A. This model is inspired by the popular “mickey mouse” polarization controllers,
which consist of three fiber coils of different winding number that can be rotated relative to one another.
Thus, the two fibers in the setup are parametrized by three angles each. The model accounts for any
possible polarization rotation that can occur [8].
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Figure 1. Schematic overview of the measurement setup.

The particular PC used here (HP 8169A) uses a linear polarizer LP, and a quarter- and a half-wave
plate (in that order) to control the SOP. These three elements can be rotated by the respective angles
θLP, θλ/4 and θλ/2. We found that the modelling accuracy was improved significantly by taking
into account their residual ellipticity. In addition, the two waveplates were found to be not exactly

quarter- and half-wave retarders. For example, the fast axis of the HWP should be
(

1 1 0 0
)T

and it should retard by half a wavelength. Therefore, its fast axis
→
u would have spherical angles

ψ→
u
= 0 and χ→

u
= 0 and the retardation would be δ = π. The imperfections of the waveplate are

modelled via ψ→
u
= ∆ψ λ

2
and χ→

u
= ∆χ λ

2
for its fast axis and δ = π+ ∆δ λ

2
for its retardation. The QWP

is treated analogously. Similarly, the fast axis of the LP has residual angles ∆ψLP and ∆χLP. We call
the Müller matrices of the PC LP, QWP, and HWP M̃LP, M̃ λ

4
, and M̃ λ

2
, respectively. The tilde denotes

the inclusion of residual ellipticity and retardation errors. A final refinement of the model is to
include the polarization dependent loss (PDL) of the PC. It is modelled by an elliptical diattenuator
(see Appendix A and [9]) with DPDL, ψPDL, and χPDL. Then, the PC Müller matrix is written as a
composite as follows:

MPC

(
θLP,θ λ

4
,θ λ

2

)
= M̃ λ

2

(
θ λ

2

)
M̃ λ

4

(
θ λ

4

)
M̃LP(θLP) (2)

With that, we get
→
s in = M f iber,inMPC

→
s tls (3)

Since the absolute orientation of
→
s tls is arbitrary, we find that ∆ψ λ

2
can be absorbed in it. Now, all

open parameters of the setup model are given. They are summarized in Table 1. In total, the model has
18 degrees of freedom.
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Table 1. Summary of the open parameters to describe the measurement setup.

Parameter(s) Occurs In Description

ψtls, χtls before PC SOP incident to the PC
∆ψLP, ∆χLP in PC residual rotation LP diattenuation vector

∆χλ/4 in PC residual rotation QWP retardation vector
∆ψλ/2, ∆χλ/2 in PC residual rotation HWP retardation vector

DPDL, ψPDL, χPDL in PC PDL of PC
αFS, αF2F after input fiber scalar loss

θ1, f iber in, θ2, f iber in, θ3, f iber in in input fiber SMF model as in Equation (1)
θ1, f iber out, θ2, f iber out, θ3, f iber out in output fiber SMF model as in Equation (1)

The first step of the setup calibration procedure was to replace the DUT, PM, and the interconnecting
fiber by a free-space path, as shown in (1) in Figure 2. A lens collimates the beam, which is then filtered
by an LP that is set to transmit only TE. A photodetector (PD) measures the transmitted optical power
PFS. The three angles θLP, θλ/4, θλ/2 in the PC are swept in the ranges [−45◦,45◦], [−90◦,90◦], and
[−45◦, 45◦] with 5, 5, and 3 equidistant steps, respectively, yielding 5 × 5 × 3 = 75 measurement steps in
total. For each step, i, the free space power, PFS,i, is recorded and stored.
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Figure 2. Summary of the calibration strategy pursued in this work. In (1), the output stage of the
setup is replaced by a free-space path including a linear polarizer LP. Seventy-five combinations of
(θLP,θλ/4,θλ/2) are set in the PC, the power PFS is measured each time. In (2), the same combinations
are set but with the setup in the final fiber-based configuration including the output path. In (3), the
setup model as in Equations (4) and (5) s fitted to the data.

The second step is to replace the free-space path by the actual SMF + PM link that is intended for
device characterization, see (2) in Figure 2. The same PC angles are swept in the same 75 steps as in (1).
Now, however, the Stokes vectors

→
s meas,i are recorded for each measurement.

The measurements are used as input for a numerical solver that is implemented in python using
the SciPy package [10]. The solver fits the model to the measurement with

PFS,i = αFS
(

1 0 0 0
)
MLPMfiber, inMPC

(
θLP,i,θ λ

4 ,i,θ λ
2 ,i

)
→
s tls (4)

and
→
s meas,i = αF2FMfiber, outMfiber, inMPC

(
θLP,i,θ λ

4 ,i,θ λ
2 ,i

)
→
s tls (5)
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With these equations, the 2 × 75 measurements give rise to 5 × 75 equations. i.e., 1 × 75 via
Equation (4) and 4 × 75 via Equation (5). With that, the 18 open parameters are fitted and the
overdetermination of the equation system is used to reduce the sensitivity to measurement noise via
least squares fitting. Note that the equation system is nonlinear in the open parameters due to the
occurring trigonometric functions.

All of the above is performed on a per wavelength basis. The TLS in the setup can be swept
over an optical bandwidth of 100 nm spanning from 1.47 µm to 1.57 µm. The calibration, as above,
is performed every 5 nm in this wavelength range. For intermediate wavelengths, the open parameters
are interpolated using cubic spline fits.

2.2. Device Measurement

With the setup calibrated, it can be used to characterize actual PICs in transmission experiments.
The goal of this section is to show the path towards the measurement of the Müller matrix of a given
DUT as well as the interpretation of the results.

With the knowledge of the entire setup polarization behavior, the SOP exiting a DUT when
measuring

→
s meas at the PM is

→
s out = α−1

F2FM−1
f iber, out

→
s meas (6)

The SOP incident to the DUT
→
s in can be set arbitrarily via the PC angles (θLP,θλ/4,θλ/2). To achieve

this, we numerically solve Equations (2) and (3) for (θLP,θλ/4,θλ/2) to yield the desired
→
s in.

With arbitrary control over
→
s in and complete knowledge of the corresponding

→
s out, the DUT is

characterized in terms of its Müller matrix via

→
s out = MPIC

→
s in (7)

To obtain MPIC, we follow the solution to the polarimetric measurement equation (PME) as in [11].
We use a special case of the PME here (see Equations (A7) and (A8) in Appendix B) that directly gives
the elements of the Müller matrix. We call

→
s out, 0,

→
s out, 1,

→
s out, 2, and

→
s out, 3 the SOPs exiting the DUT

when setting
→
s in to TE-, +45◦ linearly-, right-hand circularly, and TM, respectively. Then it can be

shown that the elements mi, j of MDUT are:

m0,0

m1,0

m2,0

m3,0

m0,1

m1,1

m2,1

m3,1

m0,2

m1,2

m2,2

m3,2

m0,3

m1,3

m2,3

m3,3



=
1
2



sout,0,0 + sout,3,0

sout,0,0 − sout,3,0

−sout,0,0 + 2sout,1,0 − sout,3,0

−sout,0,0 + 2sout,2,0 − sout,3,0

sout,0,1 + sout,3,1

sout,0,1 − sout,3,1

−sout,0,1 + 2sout,1,1 − sout,3,1

−sout,0,1 + 2sout,2,1 − sout,3,1

sout,0,2 + sout,3,2

sout,0,2 − sout,3,2

−sout,0,2 + 2sout,1,2 − sout,3,2

−sout,0,2 + 2sout,2,2 − sout,3,2

sout,0,3 + sout,3,3

sout,0,3 − sout,3,3

−sout,0,3 + 2sout,1,3 − sout,3,3

−sout,0,3 + 2sout,2,3 − sout,3,3



(8)

This enables the direct calculation of MDUT from the four measurements. The measurement
principle is illustrated in Figure 3.
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MDUT. TE-, +45◦ linearly-, right-hand circularly, and TM SOPs are launched into the DUT, giving

four respective SOPs
→
s out,i at the DUT output. The polarimetric measurement equation (PME) as in

Equation (8) is used to calculate MDUT from these four measured SOPs.

2.3. Measurement Analysis

Once MDUT is obtained, it is desirable to extract tangible parameters from it like retardation, PDL,
or rotation. To do this, we make use of the work of Lu and Chipman in [9]. They have shown that any
experimental MDUT has a polar decomposition

MDUT = MDM∆MR (9)

MD, M∆ and MR represent an elliptical diattenuator, depolarizer, and retarder, respectively.
From the eigenvectors of MD and MR, the total diattenuation and retardation and their respective fast
axes can be deduced. M∆ contains information on the depolarizing power of an element, which can be
related to its noise performance [12].

3. Results

3.1. Calibration Validation

With the measurement methodology in place, the experimental results are presented in this section.
The wavelength dependent values of the 18 parameters fitting Equations (4) and (5) are plotted in
Appendix C. To verify the fits, we compare the measured free space powers PFS and SOPs

→
s meas with

the predicted values by the fitted model. For this validation, 37 steps per element (LP, QWP and HWP)
and wavelength are measured. This is much more than during calibration, where between three and
five steps per element and wavelength are recorded. Therefore, we validate if the fit holds for settings
that have not been measured during calibration. The results for PFS are summarized in Figure 4 and
the results for

→
s meas are shown in Figure 5. For the latter, the setup is brought into its back-to-back

configuration, i.e., no DUT.
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Figure 4. Comparison of the measured values (markers) and the fitted model for the free space
power behind the linear polarizer transmitting TE (see top left) for all wavelengths. The three plots
show sweeps of the linear polarizer (top right), quarter-wave plate (bottom left) and half-wave plate
(bottom right). The average error between measurement and model is below 1% for all wavelengths
and angles.
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(SOP) at the polarimeter (PM) (see top left) for all wavelengths. The three plots show sweeps of
the linear polarizer (top right), quarter-wave plate (bottom left) and half-wave plate (bottom right).
The average error between measurement and fitted model is 2◦.

The final validation step is to set
→
s in using the PC and measure

→
s out in the back-to-back case.

Ideally, these two SOPs should be identical. To quantify any error between the two, we use the spherical
distance of the two SOPs on the Poincaré sphere and call it ∆ξ, see Figure 6. We call this the angular
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error and it stays below 3◦ for all wavelengths and over the entire Poincaré sphere, with an average
of 1.5◦.
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Figure 6. Validation of the calibrated setup accuracy by setting
→
s in and measuring

→
s out in the

back-to-back case (no DUT). We express the error in terms of the angular error ∆ξ between the two
SOPs, see illustration top left. Ideally

→
s in =

→
s out, i.e., ∆ξ = 0. The angular error over the entire

Poincaré sphere at 1.55 µm is shown in the top right. Plots for all wavelengths for zero longitude χin

(zero latitude ψin) on the Poincaré sphere are shown on the bottom left (bottom right). The average
angular error is 1.5◦ for all wavelengths and over the entire Poincaré sphere.

3.2. PIC Characterization

To demonstrate the setup capabilities, we give experimental results that are obtained from
integrated devices in indium phosphide (InP). They are fabricated in our generic integration
technology [13,14]. The devices are already published elsewhere [15,16], but here we pay special
attention to the Müller matrix properties.

3.2.1. Integrated Polarization Rotator

The results obtained from integrated polarization rotators as in [16,17] are shown in Figure 7.
The devices are designed to have a retardance of 0.5 (180◦) and a fast axis of 45◦.
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bias voltage. Results obtained from an EAM with an active length of 200 µm are shown in Figure 8. 
The birefringence is deduced from the retardance measurement together with the device length. 

 

Figure 7. Polarization rotator measurements. The DUT temperature is 20 ◦C and the input power is
3 dBm. (Left) results in terms of polarization extinction ratio (PER) and excess loss. The excess loss is
dominated by a crystal defect in the input waveguide of the device. (Right) results in terms of fast axis
and retardance. The ideal values for both parameters are depicted as dashed lines. The fast axis is
measured with respect to the TE state on the Poincaré sphere, so a 45◦ fast axis in real space corresponds
to a 90◦ fast axis in Stokes space.

3.2.2. Electro-Absorption Modulator

The characterization of EAMs enables insight into their birefringence and PDL as a function of
bias voltage. Results obtained from an EAM with an active length of 200 µm are shown in Figure 8.
The birefringence is deduced from the retardance measurement together with the device length.
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Figure 8. Electro-absorption modulators (EAM) measurements. The active length of the EAM is 200 µm,
the substrate temperature is 20 ◦C and the input power is 3 dBm. (Left) Birefringence (orange) and loss
(purple) at a wavelength of 1.57 µm. (Right) summary of the birefringence and polarization dependent
loss (PDL) for all measured wavelengths. The band edge of the device is at 1.54 µm.

By assuming that the refractive index and loss change induced by the bias voltage in an EAM is
negligible along TM as compared to TE, one can show that the chirp ν may be written as

ν = 2
∂ϕ

∂α
≈

4π
λ

∂∆n
∂PDL

(10)

Together with the measured depolarization of the EAM, the deduced chirp parameter is given in
Figure 9.
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Figure 9. EAM measurements. (Left) Chirp parameter according to Equation (10). (Right) Depolarization.
For some wavelength-bias combinations, the exiting signal power was below the polarimeter sensitivity
and therefore some data points are missing.

4. Discussion

The polarimetric approach proposed in this work makes use of a complete polarization model
of our measurement setup. Other setup configurations may be implemented, but for our particular
setup, the three-step calibration technique proves successful. The first step involves free space optics
to distinguish the input path from the output path. The second step is to bring the setup into its final
configuration. Both steps involve a considerable amount of measurement data. In the third step, we
use a numerical least-squares fit for the 18 open parameters. During this work, we find this amount
of parameters necessary to achieve the highest accuracy possible. We also find that the calibration
remains stable over the duration of two weeks, if one takes care fixating all fibers to the optical table.
To validate the stability, we rerun the measurement as in Figure 6 after two weeks. The maximum
error increased from below 3◦ to below 5◦. This excellent stability is achieved by carefully fixating all
SMFs, allowing a robust measurement schedule.

As shown in Section 3.2, polarimetry allows the extraction of a wide variety of device parameters
of integrated devices. We could retrieve retardance, birefringence, fast axis, PDL, and depolarization
of a given DUT. Under the assumption of strong polarization dependence (∆nTE � ∆nTM) the chirp
parameter can be extracted. New insights into device performance can be gained this way. For instance,
we find that the depolarization of the EAM decreases with stronger bias voltages at most wavelengths.
This could be attributed to the fact that photocarriers are depleted faster, decreasing their probability to
recombine radiatively, and therefore to contribute to spontaneous emission noise. However, this needs
further investigation. Furthermore, since the fast axis of the DUT is readily accessible, any polarization
conversion can be revealed and analyzed.

5. Conclusions

We have shown a new way of measuring the polarization characteristics of PICs. To the authors’
best knowledge, this is the first demonstration of true polarimetry being applied to PICs. We find that
an accurate model of the entire fiber setup can be obtained by taking into account residual ellipticity of
the involved elements. Doing so, we achieve a measurement accuracy of better than 3◦ over the entire
Poincaré sphere and 100 nm wavelength span, with a typical accuracy around 1◦.
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Appendix A. Müller Matrices

M λ
2
=


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

; M λ
4
=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

 (A1)

Rotation of an element is written as

Mδ,θ = R(θ)·Mδ·R(−θ) (A2)

with

R(θ) =


1 0 0 0
0 cos(2θ) sin(2θ) 0
0 − sin(2θ) cos(2θ) 0
0 0 0 1

 (A3)

We write elliptical retarders (diattenuators) in terms of their retardation (diattenuation) vectors.
Their length is given by δ (D) and their spherical coordinates on the Poincaré sphere by 2ψR, 2χR (2ψD,
2χD). The derivation of how to compute the Müller matrices from these vectors can be found in [9].

Appendix B. Polarimetric Measurement Equation

Suppose that for a given DUT, we carry out N measurements, each with an input polarization
→
s in,q, with q = 0, 1, . . . , 15. We record each output polarization

→
s out,q. By defining N analyzer vectors

→
a q, N measured powers are defined as:

Pq =
→
a

T
q ·
→
s out,q =

→
a

T
q MDUT

→
s in,q (A4)

By rewriting MDUT as a vector
→
m, the powers Pq can be written as

Pq =
→
wq·
→
m =



aq,0sin,q,0

aq,0sin,q,1

aq,0sin,q,2

aq,0sin,q,3

aq,1sin,q,0
...

aq,3sin,q,3


·



m00

m01

m02

m03

m10
...

m33


(A5)

Writing all powers Pq in the N-vector
→

P , we finally arrive at the PME

→

P = W
→
m (A6)

In this work, we use N = 16 and

→
a 0, . . . ,

→
a 3 =


1
0
0
0

;
→
a 4, . . . ,

→
a 7 =


0
1
0
0

;
→
a 8, . . . ,

→
a 11 =


0
0
1
0

;
→
a 12, . . . ,

→
a 15 =


0
0
0
1

 (A7)
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as well as

→
s in,0,

→
s in,4,

→
s in,8,

→
s in,12 =


1

1

0

0

;
→
s in,1, . . . ,

→
s in,13 =


1

0

1

0

;
→
s in,2, . . . ,

→
s in,14 =


1

0

0

1

;
→
s in,3, . . . ,

→
s in,15 =


1

−1

0

0

 (A8)

For this special case, the W can be written down in closed form and inverted to give Equation (8).
For the full derivation of the PME and more details refer to [11].

Appendix C. Setup Model Parameters

Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 11 

 

In this work, we use 𝑁 =  16 and 

�⃗� , … , �⃗� = 1000 ; �⃗� , … , �⃗� = 0100 ; �⃗� , … , �⃗� = 0010 ; �⃗� , … , �⃗� = 0001  (16) 

as well as 

𝑠 , , 𝑠 , , 𝑠 , , 𝑠 , = 1100 ; 𝑠 , , … , 𝑠 , = 1010 ; 𝑠 , , … , 𝑠 ,
= 1001 ; 𝑠 , , … , 𝑠 , = 1−100  

(17) 

For this special case, the 𝑊 can be written down in closed form and inverted to give Equation 
(8). For the full derivation of the PME and more details refer to [11]. 

Appendix C: Setup Model Parameters 

 
Figure A1. Experimental values of the fitted setup parameters after setup calibration. 

References 

1. Anderson, S.P.; Webster, M. Silicon Photonic Polarization-Multiplexing Nanotaper for Chip-to-Fiber 
Coupling. J. Light. Technol. 2016, 34, 372–378. 

2. Augustin, L.M. Polarization Handling in Photonic Integrated Circuits; Technical University of Eindhoven: 
Eindhoven, The Netherlands, 2008. 

3. Majumder, A.; Shen, B.; Polson, R.; Menon, R. Ultra-compact polarization rotation in integrated silicon 
photonics using digital metamaterials. Opt. Express 2017, 25, 19721–19731. 

Figure A1. Experimental values of the fitted setup parameters after setup calibration.

References

1. Anderson, S.P.; Webster, M. Silicon Photonic Polarization-Multiplexing Nanotaper for Chip-to-Fiber Coupling.
J. Light. Technol. 2016, 34, 372–378. [CrossRef]

2. Augustin, L.M. Polarization Handling in Photonic Integrated Circuits; Technical University of Eindhoven:
Eindhoven, The Netherlands, 2008.

3. Majumder, A.; Shen, B.; Polson, R.; Menon, R. Ultra-compact polarization rotation in integrated silicon
photonics using digital metamaterials. Opt. Express 2017, 25, 19721–19731. [PubMed]

4. Naeem, M.A.; Haji, M.; Holmes, B.M.; Hutchings, D.C.; Marsh, J.H.; Kelly, A.E. Generation of High Speed
Polarization Modulated Data Using a Monolithically Integrated Device. IEEE J. Sel. Top. Quantum Electron.
2015, 21, 207–211. [CrossRef]

5. Dzibrou, D.O. Building Blocks for Control of Polarization in Photonic Integrated Circuits; Technische Universiteit
Eindhoven: Eindhoven, The Netherlands, 2014.

http://dx.doi.org/10.1109/JLT.2015.2498528
http://www.ncbi.nlm.nih.gov/pubmed/29041660
http://dx.doi.org/10.1109/JSTQE.2014.2375492


Appl. Sci. 2019, 9, 2987 12 of 12

6. Dzibrou, D.O.; Van Der Tol, J.J.G.M.; Smit, M.K. Extremely efficient two-section polarization converter for
InGaAsP-InP photonic integrated circuits. In Proceedings of the Lasers and Electro-Optics Europe (CLEO
EUROPE/IQEC), 2013 Conference on and International Quantum Electronics Conference, Munich, German,
12–16 May 2013; p. 1.

7. Theurer, M.; Przyrembel, G.; Sigmund, A.; Molzow, W.-D.; Troppenz, U.; Möhrle, M. 56 Gb/s L-band
InGaAlAs ridge waveguide electroabsorption modulated laser with integrated SOA. Phys. Status Solidi A
2016, 213, 970–974. [CrossRef]

8. Walker, N.G.; Walker, G.R. Polarization control for coherent communications. J. Light. Technol. 1990, 8, 438–458.
[CrossRef]

9. Lu, S.-Y.; Chipman, R.A. Interpretation of Mueller matrices based on polar decomposition. JOSA A 1996,
13, 1106–1113. [CrossRef]

10. SciPy.org—SciPy.org. Available online: https://www.scipy.org/ (accessed on 12 January 2018).
11. Chipman, R.A. Polarimetry. In Handbook of Optics; Bass, M., Ed.; McGraw-Hill, Inc.: New York, NY, USA,

2010; Volume 1, ISBN 978-0-07-149889-0.
12. Petersson, M.; Sunnerud, H.; Karlsson, M.; Olsson, B.E. Performance monitoring in optical networks using

Stokes parameters. IEEE Photonics Technol. Lett. 2004, 16, 686–688. [CrossRef]
13. Soares, F.M.; Baier, M.; Gaertner, T.; Feyer, M.; Möhrle, M.; Grote, N.; Schell, M. High-Performance InP PIC

Technology Development based on a Generic Photonic Integration Foundry. In Proceedings of the Optical
Fiber Communication Conference, San Diego, CA, USA, 11–15 March 2018; p. 3.

14. Soares, F.M.; Baier, M.; Gaertner, T.; Franke, D.; Moehrle, M.; Grote, N. Development of a versatile InP-based
photonic platform based on Butt-Joint integration. In Proceedings of the 2015 11th Conference on Lasers and
Electro-Optics Pacific Rim (CLEO-PR), Busan, Korea, 24–28 August 2015; Volume 2, pp. 1–2.

15. Baier, M.; Soares, F.M.; Gaertner, T.; Schoenau, A.; Moehrle, M.; Schell, M. New Polarization Multiplexed
Externally Modulated Laser PIC. In Proceedings of the 2018 European Conference on Optical Communication
(ECOC), Rome, Italy, 23–27 September 2018; pp. 1–3.

16. Baier, M.; Soares, F.M.; Gaertner, T.; Moehrle, M.; Schell, M. Fabrication Tolerant Integrated Polarization
Rotator Design Using the Jones Calculus. J. Light. Technol. 2019, 37, 3106–3112. [CrossRef]

17. Baier, M.; Soares, F.M.; Moehrle, M.; Grote, N.; Schell, M. A New Approach to Designing Polarization Rotating
Waveguides; European Conference on Integrated Optics: Warsaw, Poland, 2016.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/pssa.201532568
http://dx.doi.org/10.1109/50.50740
http://dx.doi.org/10.1364/JOSAA.13.001106
https://www.scipy.org/
http://dx.doi.org/10.1109/LPT.2003.822244
http://dx.doi.org/10.1109/JLT.2019.2910931
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Measurement Methodology 
	Setup Calibration 
	Device Measurement 
	Measurement Analysis 

	Results 
	Calibration Validation 
	PIC Characterization 
	Integrated Polarization Rotator 
	Electro-Absorption Modulator 


	Discussion 
	Conclusions 
	Müller Matrices 
	Polarimetric Measurement Equation 
	Setup Model Parameters 
	References

