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Abstract: There are difficulties in obtaining accurate modeling of ship trajectories with traditional
prediction methods. For example, neural networks are prone to falling into local optima and there are
a small number of Automatic Identification System (AIS) information samples regarding target ships
acquired in real time at sea. In order to improve the accuracy of ship trajectory predictions and solve
these problems, a trajectory prediction model based on support vector regression (SVR) is proposed.
Ship speed, course, time stamp, longitude and latitude from AIS data were selected as sample features
and the wavelet threshold de-noising method was used to process the ship position data. The adaptive
chaos differential evolution (ACDE) algorithm was used to optimize the internal model parameters
to improve convergence speed and prediction accuracy. AIS sensor data corresponding to a certain
section of the Tianjin Port ships were selected, on which SVR, Recurrent Neural Network (RNN)
and Back Propagation (BP) neural network model trajectory prediction simulations were carried out.
A comparison of the results shows that the trajectory prediction model based on ACDE-SVR has
higher and more stable prediction accuracy, requires less time and is simple, feasible and efficient.

Keywords: vessel trajectory prediction; AIS sensor data; support vector regression (SVR); adaptive
chaos differential evolution algorithm (ACDE)

1. Introduction

With the rapid development of economic globalization, shipping has become the main
form of international trade. As an important means of transportation at sea, ships have made
tremendous contributions to economic development and social progress. The large-scale and diversified
development of ships has also brought great security risks to maritime navigation. According to
statistics from relevant departments [1], in recent years, more than 200 ships have been involved in
shipwrecks at sea each year and more than half of the losses were caused by collisions. Investigation [1]
of these marine collision accidents has found that the actual situations encountered during maritime
navigation are often highly complicated. Especially in multi-ship collision avoidance, the ambiguity of
a target ship’s intentions and inability to make real-time and effective collision avoidance decisions
are two of the largest factors contributing to the frequent occurrence of collision accidents at sea.
Considering these factors, collision avoidance decisions cannot be based only on the current navigational
information but should instead be integrated into the target ship’s future navigational behavior for
a certain period of time. This allows for collision avoidance decisions to be made ahead of time to
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some extent, which effectively improves the reliability of the decisions and reduces the collision risk.
Therefore, a ship trajectory prediction model with high precision and real-time prediction capability is
an urgent necessity.

Current trajectory prediction methods usually adopt the traditional Markov model [2–5], particle
filter algorithm [6,7], simulated annealing algorithm [8] and Kalman filter algorithm [9]. These methods
often have the following shortcomings: First, the ship kinematic equations must be established and
consideration of hydrological environmental factors such as wind and current greatly increases the
modeling complexity and difficulty; Second, according to the needs of marine collision avoidance
decision-making, trajectory prediction must often occur in real time. It is often difficult to establish
real-time and accurate mathematical models, as many are only suitable for ideal research. In contrast
to traditional modeling methods, with the rapid rise of the artificial intelligence era, more machine
learning algorithms are being gradually applied to trajectory prediction, among which back propagation
(BP) neural networks are common [10,11]. However, these algorithms fall easily into local optima
and a problem often arises where the amount of data is too small for accurate BP neural network
training [12]. As a result, the accuracy is insufficient for real-time data training and modeling at sea.

Considering these limitations, a vessel trajectory prediction model based on adaptive chaos
differential evolution algorithm [13] support vector regression (ACDE-SVR) is proposed herein.
The SVR model ensures high prediction accuracy despite the limited samples; this solve the problem
of insufficient accuracy of models such as neural network by the real-time acquisition of AIS data for
track prediction at sea. The prediction accuracy of the support vector regression (SVR) is closely related
to the selection of parameters in the model. To further improve the prediction accuracy, the heuristic
algorithm is used to optimize the parameters of the SVR model. The improved differential evolution
(DE) algorithm-ACDE algorithm is used for parameter optimization. The speed, course, ship position
and Unix time from AIS information are used as model sample characteristics and a multi-dimensional
trajectory time series during maritime navigation is successfully predicted. The results provide
a better understanding of ship dynamics and contribute to improved determination of collision
avoidance decisions.

2. Related Concepts

2.1. SVM System and SVR

SVM (Support Vector Machine) is a novel supervised learning algorithm that was first proposed
by Cortes and Vapnik [14] in 1995. It is based on the statistical theory concept of the VC (Vapnik
Chervonenkis) dimension and can improve the generalization performance of learning machines
by seeking structural risk minimization [15]. The VC-dimension of the set of indicator functions
f (x, a), a ∈ Λ, is the maximum number of a set of vectors x1, x2, x3, ..., xh that can be separated into two
classes in all 2h possible ways using functions of the set. If for any n there exists a set of n vectors
that can be shattered by the set of the set f (x, a), a ∈ Λ, then the VC dimension is equal to infinity [16].
VC dimension measures the capacity of a hypothesis space. Capacity is a measure of complexity and
measures the expressive power, richness or flexibility of a set of functions by assessing how wiggly
its members can be. Notably, SVM can obtain good statistical laws under the premise of limited
samples [17]. SVM is divided into support vector classification (SVC) and SVR, which are used to solve
data classification and data regression problems, respectively. This paper uses an SVR model for vessel
trajectory prediction.

Given a set of sample data
{
(xi, yi)| i = 1, 2, ..., n

}
for prediction, where xi ∈ Rn are the input

variables and yi ∈ R are the output variables. The core of the SVR model is the kernel function.
By introducing a kernel function, SVM subtly solves the inner product operation in high-dimensional
feature space, which solves the problem of nonlinear classification and prediction. Commonly used
kernel functions mainly include linear kernel functions, polynomial kernel functions, Radial Basis
Function (RBF) and sigmoid kernel functions. Among them, RBF is the most widely used kernel



Appl. Sci. 2019, 9, 2983 3 of 22

function, which can realize nonlinear mapping [18,19]. It has better performance for both large samples
and small samples and has fewer parameters than polynomial kernel functions. In this study, RBF
function is employed as the kernel function for the SVR model [20]:

K(x, xi) = ϕ(x)·ϕ(xi) = exp
(
−g‖x− xi‖

2
)
, (1)

where K stands for kernel function; x and xi are the vectors in initial low-dimensional feature space
and g is the kernel function parameter; ϕ(xi) is the nonlinear mapping function, which can map the
input data into the high dimensional feature space; The operator · is the inner symbol. Through RBF
kernel function mapping, each sample point (xi, yi) is fitted as closely as possible to the following SVR
linear model:

f (x) = ωTx + b, (2)

where ω is the weight vector, with ω ∈ Rn; and b is the bias, with b ∈ R.
SVR takes an ε-insensitive function as a loss function. First, a constant ε is defined for a specific

problem, where ε > 0. For a sample (xi, yi), if
∣∣∣yi −ωTϕ(xi) − b

∣∣∣ ≤ ε, there is no loss; otherwise, the
corresponding loss is

∣∣∣yi −ωTϕ(xi) − b
∣∣∣− ε. That is, the ε-insensitive loss function can be written as:

err(xi, yi) =

{
0∣∣∣yi −ωTϕ(xi) − b

∣∣∣− ε
∣∣∣yi −ωTϕ(xi) − b

∣∣∣ ≤ ε∣∣∣yi −ωTϕ(xi) − b
∣∣∣ > ε . (3)

As shown in Figure 1, an interval band with f (x) as the center and a width of 2ε is established.
If the training sample falls into the interval band, the prediction is considered correct.
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Figure 1. SVR schematic diagram. The area between the two dashed lines represents the ε-interval
band; the predicted loss of samples falling into this area is not calculated.

In order to minimize the loss function, based on the criterion of structural risk minimization [21],
determining the constraints ω and b and optimizing the objective function, the following optimization
criterion is constructed:

min
ω,b,ξ,ξ∗

1
2
ωTω+ C

n∑
i=1

(
ξi + ξ∗i

)
, (4)

s.t. yi −
(
ωTxi + b

)
≤ ε+ ξi(

ωTxi + b
)
− yi ≤ ε+ ξ∗i

ξi, ξ∗i ≥ 0
(5)
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This is the convex quadratic programming problem of the original problem of SVR, where C is
the penalty factor and C > 0, which aims to find a compromise between generalization performance
and training error; ε is the maximum tolerance value; and ξi and ξ∗i are slack variables to avoid
over-training. Combining these variables allows the model a certain degree of fault tolerance [22].
The Lagrange function can be obtained by introducing Lagrange multipliers:

L
(
ω, b,αi,α∗i , ξi, ξ∗i ,µi,µ∗i

)
= 1

2ω
Tω+ C

n∑
i=1

(
ξi + ξ∗i

)
−

n∑
i=1

µiξi −
n∑

i=1
µ∗iξ
∗

i

+
n∑

i=1
αi

(
ωTϕ(xi) + b− yi − ε− ξi

)
+

n∑
i=1

α∗i

(
yi −ωTϕ(xi) − b− ε− ξ∗i

) (6)

where α(∗)i and µ(∗)i are Lagrange multipliers and 0 ≤ α(∗)i ,µ(∗)i ≤ C.
The partial derivatives of ω, b,αi and ei are solved separately. Letting the partial derivatives be

equal to zero [23] yields:

ω =
n∑

i=1

(
α∗i − αi

)
xi,

n∑
i=1

(
α∗i − αi

)
= 0,

C = α
(∗)
i + µ

(∗)
i .

(7)

Substituting Equation (7) into Equation (6) gives the SVR dual problem as:

max
α,α∗

n∑
i=1

yi
(
α∗i − αi

)
− ε

(
α∗i + αi

)
−

1
2

n∑
i=1

n∑
j=1

(
α∗i − αi

)(
α∗j − α j

)
K
(
xi, x j

)
, (8)

s.t.
n∑

i=1

(
α∗i − αi

)
= 0. (9)

The above process must satisfy KKT conditions [24], that is:
αi(ωxi + b− yi − ε− ξi) = 0
α∗i

(
yi −ωxi − b− ε− ξ∗i

)
= 0

αiα
∗

i = 0, ξiξ
∗

i = 0
(C− αi)ξi = 0,

(
C− α∗i

)
ξ∗i = 0

. (10)

Select the component α j of α(∗) in the open interval (0, C) to calculate the parameter b:

b = y j −

n∑
i=1

(
α∗i − αi

)
K
(
xi, x j

)
+ ε, (11)

Finally, substitute the values of ω and b into the formula (2):

f (x) =
n∑

i=1

(
α∗i − αi

)
K(xi, x) + y j −

n∑
i=1

(
α∗i − αi

)
K
(
xi, x j

)
+ ε, (12)

which is called the decision function of SVR.

2.2. ACDE Algorithm

Differential evolution (DE) is a stochastic parallel optimization algorithm [25,26] based on
population differences proposed by Storn and Price in 1997 [27] on the basis of evolutionary ideas
such as the genetic algorithm. DE solves optimization problems by imitating the heuristic swarm
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intelligence generated by competition and cooperation among organisms [28]; the algorithm has strong
usability, global optimization capability and stability [29] and is widely used in clustering optimization
calculations, neural network optimizations, constrained optimization calculations and filter designs.
However, the DE algorithm also has two defects: (1) the fixed scaling factor hinders the full search
performance of the algorithm when performing mutation operations [30]; (2) in the later stage of
optimization, the population diversity is reduced and the algorithm falls easily into local optima [31,32].
Among them, the first defect has been basically solved by Brest et al. 13 years ago. Brest et al. [33].
They assign a separate scaling factor to each individual, so that it can be automatically adjusted
according to two thresholds during the running of the algorithm but this will inevitably have some
randomness and blindness [34]. To solve these problems, this study uses an improved DE algorithm,
ACDE, which improves upon DE in two aspects. First, in the mutation operation stage, the adaptive
scaling factor can be changed with the number of iterations, thus addressing the insufficient searching
ability caused by the fixed scaling factor. In the standard differential evolution algorithm, increasing
the scaling factor can expand the search range and speed up the individual update in the population.
The reduction of the scaling factor can enhance the ability of local search and improve the convergence
of the algorithm. Based on this, in the early stage of algorithm evolution, the search range can be
expanded by increasing the scaling factor. In the later stage of algorithm evolution, the scaling factor
is reduced to speed up the convergence of the algorithm. At the same time, in order to avoid the
destruction of the genetic structure of the dominant individual, the scaling factor of the individual
with higher fitness should be reduced; in order to promote the improvement of the structure of the
disadvantaged individual, the scaling factor of the individual with lower fitness should be increased.
Second, chaotic motion has the characteristics of sensitivity, randomness, regularity and ergodicity
and it can traverse the entire space state without repeating within the specified range. Based on chaos
theory, a chaotic fine search strategy is proposed to improve the local search efficiency of the algorithm
in order to avoid premature population.

For any optimization problem,

min f (x1, x2, ..., xN)

s.t. x j ∈
[
L j, U j

]
, 1 ≤ j ≤ N

(13)

where N is the dimension of the solution space and L j and U j represent the upper and lower bounds of
the range of x j values, respectively. The specific process of the ACDE algorithm is as follows:

Step 1: Population initialization. D individuals randomly satisfying the constraint condition are
generated in the N-dimensional solution space as the i-th individual of the 0-th generation population:{
xi(0)

∣∣∣∣x j,i(0) ∈
[
L j,i, U j,i

]
, i = 1, 2, 3, ..., D; j = 1, 2, 3, ..., N

}
. At the same time, the maximum number of

iterations is assumed to be M. The value of the j-th dimension of the i-th individual is calculated
according to the following formula:

x j,i(0) = L j,i + rand(0, 1) ·
(
L j,i −U j,i

)
, (14)

where rand(0, 1) represents a random number between [0,1] and obeys a uniform distribution.
Step 2: Chaos initialization [13]. Chaotic motion has the characteristics of randomness, regularity

and ergodicity and can traverse the entire space state without repetition within a specified range.
Generally speaking, the chaotic variable is first mapped to the value interval of the optimization
variable and then the chaotic variable is used for optimization. Here, we use the logistic mapping
commonly used by chaotic systems, with the basic expression as follows:

xt+1 = ηxt(1− xt), (15)

where xt ∈ [0, 1], t is a natural number and η ∈ [0, 4]; when η= 4, the system is completely chaotic.



Appl. Sci. 2019, 9, 2983 6 of 22

Step 3: Mutation. Different from the genetic algorithm, the DE algorithm realizes individual
mutation by differential means. That is, two different individuals in the population are selected and
the vector difference is scaled to perform vector synthesis with the individuals to be mutated [35]. The
k-generation population generated by k iterations is denoted as:{

xi(k)
∣∣∣∣x j,i(k) ∈

[
L j,i, U j,i

]
, i = 1, 2, 3, ..., D; j = 1, 2, 3, ..., N

}
. (16)

Three individuals xi1(k), xi2(k) and xi3(k) are randomly selected from the population and the
mutation operations are performed according to the following equations:

vi(k + 1) = xi1(k) + F(k) · (xi2(k) − xi3(k)), (17)

F(k) = Fmin + (Fmax − Fmin)
Fi1(k) − Fi2(k)
Fi1(k) − Fi3(k)

, (18)

where F(k) is the adaptive scaling factor, which controls the influence of the difference vector and
changes as the number of iterations k changes; i1, i2, i3 ∈ [1, D] and i1 , i2 , i3 , i; Fmin and Fmax

are the upper and lower limits of the scaling factor, respectively; and Fi1(k), Fi2(k) and Fi3(k) are the
optimal, suboptimal and worst-case fitness, respectively, with random selection for the current k-th
generation sub-population. Through the mutation operations, an intermediate individual is created:{

vi(k + 1)
∣∣∣∣∣v j,i(k + 1) ∈

[
vL

j,i, vU
j,i

]
, i = 1, 2, 3, ..., D; j = 1, 2, 3, ..., N

}
. (19)

In the process of evolution, in order to ensure the validity of the solution, it is necessary to judge
whether the “genes” in the “chromosome” satisfy the boundary conditions. If the boundary condition
is not met, the “gene” is generated in the same way as the initial population, that is, it is regenerated
by a random method.

Step 4: Crossover. The inter-individual crossover operation is performed on the g-generation
population

{
xi(k)

}
and the intermediate individual

{
vi(k + 1)

}
produced by the mutation operations [36].

The specific method is as follows:

ui(k + 1) =
{

vi(k + 1), if rand(0, 1) ≤ cr or j = jrand
xi(k), otherwise

, (20)

where cr is the probability of crossover and cr ∈ [0, 1]; and jrand is a random integer on the interval [1, 2,
3, ..., N].

Step 5: Selection. Using the principle of greedy choice, the better individuals [37] are selected to
form the next generation population according to the following evaluation function:

xi(k + 1) =
{

ui(k + 1), if f (ui(k + 1)) ≤ f (xi(k))
xi(k), otherwise

. (21)

Step 6: Chaotic fine search. Letting η = 4, a chaotic fine search is performed on the decision
variable xk

j,i and xk
j,i is mapped to a chaotic variable according to the following formula:

sk
j,i =

(
xk

j,i − L j,i

)
(
U j,i − L j,i

) . (22)

The next generation iterative chaotic variables sk+1
j,i are calculated according to Equation (15)

and the chaotic variables sk+1
j,i are converted into decision variables xk+1

j,i according to Equation (22).
Determine whether the chaotic search has reached the maximum number of iterations, if not, continue
to iterate.
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2.3. ACDE-SVR Prediction Model

One important factor affecting the prediction accuracy of the SVR model is the selection of
model parameters. Based on its strong stability, superior global optimization performance and higher
convergence speed, this study uses the ACDE algorithm to optimize the parameters of the SVR
trajectory prediction model with the penalty factor C, insensitive factor ε and kernel function parameter
g. Figure 2 is the flow diagram of ACDE-SVR algorithm. The steps of the ACDE-SVR algorithm are
as follows:
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Step 1: The trajectory prediction sample is input after de-noising and the current number of
iterations is set to k. The ACDE parameters including population size D, maximum number of iterations
M, adaptive scaling factor F(k) and crossover probability cr are set according to the actual situation.

Step 2: The optimal range of parameters (C, ε, g) is set and the population is initialized randomly
and uniformly.

Step 3: The SVR algorithm is used to predict each individual. The MSE (mean square error)

between the predicted value yi and real value Yi is calculated according to: MSE = 1
l

l∑
i=1

(yi −Yi)
2.

The MSE is used as the fitness function [38]. The fitness value, individual extremum of each individual
Yindividual(i), global extremum Yglobal and global extremum points Xglobal are recorded.

Step 4: If the number of iterations is less than the maximum number of iterations, that is, k < M,
the algorithm proceeds to the next step. Otherwise, it proceeds to step 7 and outputs the global extreme
point as the searched optimal parameter, (C∗, ε∗, g∗).

Step 5: According to Equations (17)–(22), mutation, crossover, selection and chaotic fine search
operations are carried out to generate new populations. The fitness of individuals within the population,
individual extremum Yindividual(i), global extremum Yglobal and global extremum Xglobal are calculated.

Step 6: Iterations are set as k = k + 1 and the algorithm returns to step 4.
Step 7: The SVR prediction model is built based on the calculated parameters.
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2.4. Setting of Parameters in ACDE Algorithm

For the ACDE algorithm, the parameters should be reasonably set to obtain better parameter
optimization results. The main parameters of the ACDE algorithm are scaling factor F, population size
D, maximum iteration number M and crossover probability cr. Among them, the selection of scaling
factor is introduced in Part 2.2, which is related to the number of iterations k. The bases for setting the
remaining three parameters are as follows:

(1) Population size D. According to experience, D should be 5 to 10 times the dimension of the
problem but not less than 4; otherwise, the mutation operation will not be possible. Generally speaking,
as D increases, the population diversity will gradually increase along with the probability of reaching
an optimal solution. However, this will also greatly increase the calculation time. In general, D ranges
from 20 to 50.

(2) Maximum number of iterations M. This parameter is the termination condition of the
evolutionary operation. A larger M increases running time of the program and yields a more accurate
optimal solution. However, when M is too large, the accuracy of the optimal solution will not increase
correspondingly, because the population has reached an extremely single state at this time and the
algorithm cannot jump out of the local optimal solution [39].

(3) Crossover probability cr. The value range of this parameter is [0, 1] and the value range of
this parameter is (0.0, 0.2) when the objective function is separable [40]. If cr is large, the population
convergence is gradually accelerated and precocity is prone to occur.

2.5. ACDE Algorithm Superiority Verification

In order to verify the excellent global optimization performance of the proposed ACDE
algorithm, which is compared with the current state-of-the-art differential evolution algorithm,
the LSHADE algorithm [41]. The ACDE algorithm and LSHADE algorithm are evaluated using
a set of problems presented in the CEC2017 competition on single objective bound constrained
real-parameter optimization. This benchmark contains 30 test functions with multiple characteristics.
T is the dimensionality of the problem and the functions are tested on 50T. In short, functions 1–3
are unimodal, functions 4–10 are multimodal, functions 11–20 are hybrid functions and 21–30 are
composition functions. More details can be found in Reference [42].

The parameters values of ACDE algorithm are set as follows: population size D of the ACDE
algorithm set to 50, maximum iteration number M set to 10,000*T, the upper and lower limits of
the scaling factor are 1.2 and 0.3 and crossover probability cr set to 0.9. While the parameters of the
LAHADE algorithm are set as shown in Reference [41].

The two algorithms perform 51 simulation tests on 30 benchmark problems, respectively.
The statistical results of the comparisons on the benchmarks with ACDE algorithm and LSHADE
algorithm are summarized in Table 1. It includes the mean and the standard deviations of error. The
best results are marked in bold for all problems. As can be seen from Table 1, the ACDE algorithm is
significantly better or flatter than the LSHADE algorithm on 18 functions. The ACDE algorithm is less
accurate than the LSHADE algorithm on 12 functions. In general, the optimization performance of the
ACDE algorithm is slightly higher than the LSHADE algorithm.
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Table 1. Performance comparison of ACDE and LSHADE algorithms of the 50T benchmark.

Function
ACDE LSHADE

Mean Std. Mean Std.

Unimodal
Functions

F1 0.00 0.00 0.00 0.00
F2 0.00 0.00 0.00 0.00
F3 0.00 0.00 0.00 0.00

Simple
Multimodal
Functions

F4 5.14 × 101 4.43 × 101 5.64 × 10−1 1.46 × 100

F5 2.52 × 101 1.41 × 100 6.19 × 100 2.08 × 100

F6 8.15 × 10−8 1.09 × 10−6 0.00 0.00
F7 4.12 × 101 1.00 × 100 5.67 × 101 1.15 × 100

F8 2.63 × 101 1.58 × 100 5.95 × 100 2.24 × 100

F9 0.00 0.00 0.00 0.00
F10 3.10 × 102 3.41 × 101 3.62 × 100 6.71 × 100

F11 2.14 × 100 1.08 × 100 9.07 × 100 3.36 × 100

F12 1.48 × 100 3.65 × 100 1.58 × 100 4.42 × 100

F13 6.94 × 101 3.45 × 101 3.43 × 100 1.50 × 100

F14 2.41 × 101 2.47 × 100 2.90 × 101 3.94 × 100

F15 2.56 × 101 4.06 × 100 1.56 × 101 6.70 × 100

F16 2.76 × 102 9.73 × 101 4.13 × 102 1.68 × 102

Hybrid
Function

F17 2.09 × 102 7.32 × 101 2.94 × 102 1.20 × 102

F18 2.58 × 101 2.55 × 100 3.30 × 101 7.23 × 100

F19 1.74 × 101 2.48 × 100 2.18 × 101 4.82 × 100

F20 1.14 × 102 3.95 × 101 1.65 × 102 1.11 × 102

F21 2.67 × 102 8.42 × 100 2.15 × 102 9.23 × 100

F22 2.13 × 103 2.17 × 103 8.17 × 102 1.49 × 103

Composition
Function

F23 4.39 × 102 6.95 × 100 4.39 × 102 7.19 × 100

F24 5.13 × 102 5.67 × 100 5.12 × 102 5.80 × 100

F25 4.97 × 102 2.45 × 100 4.63 × 102 8.50 × 100

F26 1.07 × 103 5.43 × 101 1.14 × 103 6.93E × 101

F27 4.18 × 102 9.94 × 100 5.03 × 102 8.99 × 10−5

F28 4.59 × 102 1.28 × 101 4.04 × 105 8.49 × 100

F29 1.24 × 102 9.14 × 100 2.75 × 102 5.96 × 101

F30 6.55 × 103 5.15 × 102 6.57 × 102 4.10 × 102

3. AIS Sensor Data Acquisition and Preprocessing

3.1. AIS Sensor Navigation Trajectory Data Extraction and Separation

In contrast to actual maritime navigation, the Automatic Identification System (AIS) trajectory
data of a target ship can be directly obtained as sample data. In the simulation experimental stage, the
route data from within the massive AIS sensor data from a certain sea area must be extracted to screen
out ship trajectories that meets the model requirements. The shore-based AIS has navigational data
for all ships passing through the sea and a ship may travel back and forth several times between the
starting and end points of a certain area. Thus, the route data are numerous and complicated and it is
difficult to directly extract ship routes to create a sample set for model training.

The trajectories of different ships are distinguished according to their unique maritime mobile
service identification (MMSI) numbers. According to reference [43], the time intervals between two
adjacent data points of the same ship were preliminarily calculated and the route trajectories were
identified by the speed and time interval. Data points with long time intervals and instantaneous
velocities of 0 or close to 0 were selected as the starting points of the route. Considering the abnormal
recording of time data, the starting point of the route was determined by combining the speed
and change in ship position based on a time difference judgment. An AIS sequence is denoted as
T =

{
(t1, v1,λ1, ...), (t2, v2,λ2, ...), ..., (tn, vn,λn, ...)

}
, where tn denotes the time interval from the next
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point, vn denotes the speed of ship and λn denotes the longitude of the ship. The specific algorithm for
extracting trajectory data is as follows:

Step 1: In sequence T, ti is traversed until data points ti and t j satisfy
∣∣∣ti − t j

∣∣∣ ≥ 12h. Then, the i
and j data points in the time series are set as sequence tangent points and the steps are repeated until
all data points in the sequence are traversed.

Step 2: If there is an abnormality in the time data, this step is used for assistance. In sequence
T, vi is traversed until the data point satisfies vi ≈ 0; this point is then set to the tangent point in the
sequence. Step 1 is then repeated until all data points in the sequence have been traversed.

3.2. AIS Sensor Data Cleaning

AIS sensor data unavoidably contains data anomalies, missing data and other issues that necessitate
cleaning of the data after trajectory extraction. After trajectory extraction, the original cluttered AIS
data are processed into trajectory data sets. In each trajectory data set, if the acquisition time of two data
points is quite different, this indicates that data in the sequence are missing and must be interpolated.
According to the experimental error results of linear interpolation, Lagrange interpolation, median
interpolation and mean interpolation discussed in reference [42], the Lagrange interpolation method
has the lowest interpolation error for missing data. Therefore, the Lagrange interpolation method was
used to interpolate missing values of ship latitude, longitude, heading and speed.

3.3. Wavelet Threshold De-Noising

The AIS system obtains ship trajectory information by accessing GPS signals. Owing to the mutual
interference and signal attenuation of maritime communication equipment, ship position information
may also be affected by noise interference and data distortion.

For a long time, people often choose Fourier transform to process signals. However, because
the function constructed by Fourier transform is periodic sine wave and cosine wave, it can only be
applied to those signals with periodic or approximate periodicity but the effect is not very good on
those signals with non-periodic or strong local characteristics.

The wavelet transform developed from Fourier transform can solve the above problems well.
It not only retains many advantages of Fourier transform but also improves and develops on the
original basis, so that it can process signals in time-frequency domain. The remarkable advantage
of wavelet transform is that it can process the signal more subtly and show some characteristics of
the signal better. It realizes the requirement of localization and multi-scale analysis of the signal in
time-frequency domain. The signal de-noising method developed on the basis of wavelet shows good
de-noising effect, which is the perfection and development of Fourier transform in the field of signal
processing. Based on this, we choose the wavelet threshold de-noising method based on wavelet
analysis theory. The advantage of this method is that the noise is almost completely suppressed and
the characteristic peaks of the original signal are well preserved. Moreover, de-noising using soft
threshold can minimize the maximum mean square error of the estimated signal, that is, the estimated
signal after de-noising is the approximate optimal estimate of the original signal and the estimated
signal is at least as smooth as the original signal without additional oscillation. In addition, the method
is fast in calculation and has wide adaptability and is the most widely used one of many wavelet
de-noising methods.

The main theoretical basis of wavelet threshold de-noising is as follows. The wavelet transform has
a strong decorrelation, which concentrates the energy of the signal in some small wavelet coefficients
in the wavelet domain, while the energy of the noise is distributed in the entire wavelet domain.
Therefore, after the wavelet decomposition, the amplitude of the wavelet coefficient of the signal is
greater than the amplitude of the coefficient of the noise. Wavelet coefficients with larger amplitudes
can be considered to be generally dominated by signals, while coefficients with smaller amplitudes are
largely noise. Thus, the threshold can be used to preserve the signal coefficients, while reducing the
noise to almost zero.
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3.4. Data Normalization

To accelerate model convergence and solve errors caused by large differences in magnitude
between model samples, the sample data were linearly normalized by the following formula to the
interval [0, 1]:

x′ =
x− xmin

xmax − xmin
, (23)

where x is the sample data and x ∈ Rn; x′ is the normalized data and x′ ∈ [0, 1]; and xmax and xmin are
the maximum and minimum values in the sample points, respectively.

4. Trajectory Prediction Model Based on AIS Data and ACDE-SVM

4.1. Trajectory Prediction Model

When a ship is sailing, it mainly determines its navigational behavior by receiving the AIS data of
a target ship to make timely and accurate collision avoidance decisions under harsh sea conditions and
complicated encounter situations. In an actual voyage, the navigational behavior of different ships
is mainly reflected in the time series changes in ship position, heading and speed. The navigational
behavior of a ship at time t can be characterized as

Nt = {lont, latt, Ct, vt, Tt}, (24)

where lont, latt, Ct, vt and Tt represent the longitude, latitude, course, speed over ground and Unix
time of the ship, respectively, at time t. Aiming at the SVM characteristics of multivariable input and
single variable output, the ship longitude and latitude parameters should be separately optimized.
That is to say, in order to separately predict the longitude and latitude of the ship characterizing the
nature of the ship, two SVR prediction models need to be established. The input characteristics of the
two models are the same and the output characteristics are different. Generally speaking, the future
navigational behavior of a ship is often the result of the interaction between current and previous
navigational behaviors. Therefore, in order to improve the accuracy of trajectory prediction, the
navigation behavioral of the past four moments, Nt−3, Nt−2, Nt−1 and Nt and the time stamp of the next
moment, t + 1, were used as input variables and the longitude and latitude of the next moment were
used as the model output variables respectively:

Input =
{
Nt−3, Nt−2, Nt−2, Nt, Tt+1

}
Output1 =

{
lont+1

}
Output2 =

{
latt+1

} (25)

where Nt−3, Nt−2, Nt−1 and Nt represent the navigational behaviors at times t − 3, t − 2, t − 1 and t,
respectively, from Equation (24).

The model uses the root mean square error (RMSE), mean absolute error (MAE) and maximum
absolute error (EMAX) to measure the prediction accuracy, which are calculated as:

RMSE =

√√√
1
S

S∑
t=1

(yt −Yt)
2, (26)

MAE =
1
S

N∑
i=1

∣∣∣yt −Yt
∣∣∣, (27)

EMAX= max
∣∣∣yt −Yt

∣∣∣, (28)

where S represents the total sample size and yt and Yt represent the predicted and actual
values, respectively.
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4.2. Analysis of Experimental Process

This study used the libsvm toolbox developed by Professor Lin Chih-Jen [44] of Taiwan University
for modeling and simulations. AIS trajectories were extracted from 2,346,643 sets of AIS data from
Tianjin Port waters in March 2015 using the algorithm described in Section 2.1. A certain trajectory
of the ship with an MMSI of 538,004,758 was randomly selected as the research object; the trajectory
was cleaned and missing values were interpolated. To satisfy the collision avoidance requirements, it
was found that there may have been a collision risk with the target ship during maritime navigation.
The AIS data of the target ship acquired in real time were used as the sample data to establish a
prediction model, for which there may be a problem related to the small number of training samples.
To simulate accurately, a part of the trajectory data was selected as the sample and 226 sets of AIS data
were selected as the sample data. Figure 3 is ship trajectory with sample data sets. Among these, 200
groups were used as the training set and 26 groups were used as the test set to carry out simulation
experiments. The sample data structure is summarized in Table 2.
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Figure 3. Ship trajectory with sample data sets. The purple line refers to the Automatic Identification
System (AIS) trajectory of ship. The purple hollow circle refers to the trajectory point of the selected
trajectory segment and the arrow indicates the ship’s navigation direction. Input ti refers to the
trajectory point of the current ti time and the past three times (ti−1, ti−2, ti−3) as the input data of the
model and output ti refers to the trajectory of the next time ti+1 The point is used as the output data of
the model; Input ti+1 refers to the track point of the ti+1 time and the past three times (ti, ti−1, ti−2) as
the input data of the model and the output ti+1 means The track point of ti+2 at the next moment is
used as the output data of the model.

Table 2. Sample data structure.

Serial
Number

Ship
Name MMSI Course/(◦) Speed/(kn) Longitude/(◦) Latitude/(◦) Unix

Time/(s)

1 STELLA
JADE 538004758 279.1 11.9 120.019533 38.710583 1,426,284,921

2 STELLA
JADE 538004758 278.2 11.8 119.934217 38.720833 1,426,286,160

3 STELLA
JADE 538004758 278.5 11.8 119.886767 38.726333 1,426,286,873

4 STELLA
JADE 538004758 278.4 11.7 119.86145 38.729283 1,426,287,221

5 STELLA
JADE 538004758 278.3 11.7 119.838133 38.731967 1,426,287,560

6 STELLA
JADE 538004758 278.4 11.7 119.8326 38.732633 1,426,287,641

7 STELLA
JADE 538004758 278.5 11.7 119.813617 38.734850 1,426,287,920
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The original sequence was constructed from 226 sets of ship position data from AIS information
and de-noised by wavelet threshold. Owing to the strong continuity of the ship sequence, the sym8
wavelet basis function, with strong continuity and symmetry, was used for threshold de-noising.
The number of noise reduction times was set to 3, the heuristic threshold function was used to select
the threshold and the soft threshold function was used for wavelet de-noising. Figure 4 shows a noise
sequence and Figure 5 is a comparison between original and de-noised sequences. As can be seen
from Figure 5, the presence of noise causes a slight disturbance in the position signal. To verify the
effectiveness of wavelet de-noising, we used ship position sequences with and without de-noising to
predict ship trajectories and compared the results. The comparison shows that the data predicted with
de-noising are more accurate.
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To reduce the influence of the order of magnitude on prediction accuracy, the training set and
test set data were normalized to the interval [0, 1] and the RBF was selected as the kernel function.
The ACDE algorithm was used to optimize the parameters of the longitude and latitude prediction
models and the optimal penalty factor C, insensitive factor ε and kernel function parameter g were
searched. According to Section 2.4, the parameters of the ACDE algorithm were set as follows:
population size D of the ACDE algorithm set to 30, maximum iteration number M set to 200, the
upper and lower limits of the scaling factor are 1.2 and 0.3 and crossover probability cr set to 0.9.
The optimization results are summarized in Table 3. As can be seen from Table 3, the parameters of the
two models are different. As shown in Equation (24), the input variables of the two models are the
same but the output variables are different and the difference of the output variables determines the
difference between the optimized parameters of the two models.
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Table 3. Parameter optimization results of the ACDE algorithm.

Parameter Penalty Factor C Insensitive Factor ε Kernel Function Parameter g

Latitude 20.7043 0.016 652.1897
Longitude 81.4909 0.0075 905.7929

4.3. Results Analysis

4.3.1. Verification of De-Noising Effect

To verify the de-noising effect, trajectory sequences with and without de-noising were used for
trajectory prediction according to the above prediction steps and the errors were compared. The results
are summarized in Table 4.

Table 4. Comparison of trajectory sequence prediction errors with and without de-noising.

Sample Data Maximum Absolute Error
EMAX/(◦)

Mean Absolute Error
MAE/(◦)

Mean Square Error
RMSE/(◦)

With de-noising Longitude 3.475414 × 10−5 1.216385 × 10−5 1.562460 × 10−5

Latitude 3.957327 × 10−5 1.345339 × 10−5 1.660051 × 10−5

Without de-noising Longitude 6.785011 × 10−5 4.477475 × 10−5 2.201641 × 10−5

Latitude 7.387650 × 10−5 5.524124 × 10−5 2.932073 × 10−5

4.3.2. Comparison of Prediction Results from Different Optimization Algorithms

To verify the superiority of the ACDE algorithm for optimization of SVR trajectory prediction
model parameters, parameters determined by other optimization methods were used for comparison.
Parameters optimized by the standard DE algorithm, PSO (particle swarm optimization) algorithm,
grid search algorithm and GA (genetic algorithm) and the default parameters of the libsvm toolbox
were used for trajectory prediction simulations. The predicted results were compared and analyzed
and the error indicator values are given in Table 5. First, the prediction results of the ACDE-SVR model
are compared with the standard DE-SVR model. The ACDE-SVR algorithm converges faster than the
DE-SVR algorithm and each error index is smaller than that of the DE-SVR, which indicates that the
ACDE-SVR trajectory prediction model has the advantages of faster convergence and higher prediction
accuracy. In addition, the ship trajectory prediction models based on the parameters optimized
by grid search and default toolbox values require less run time but have low prediction accuracies.
Using parameters optimized by GA and PSO algorithms to build the model greatly improves the
prediction accuracy but also increases the convergence time. The model based on the parameters
optimized by the ACDE algorithm has the highest prediction accuracy, lowest run time and the best
overall performance.

Table 5. Influence of different parameter optimization methods on prediction accuracy of SVR model.

Parameter Optimization Method for
SVR Model EMAX/(◦) MAE/(◦) RMSE/(◦) Run Time/s

ACDE
Longitude 5.475414 × 10−5 3.216385 × 10−5 3.562460 × 10−5

38.14Latitude 5.957327 × 10−5 3.345339 × 10−5 3.660051 × 10−5

DE
Longitude 6.749311 × 10−5 4.314214 × 10−5 4.465213 × 10−5

45.21Latitude 6.964512 × 10−5 4.657491 × 10−5 5.041521 × 10−5

PSO
Longitude 7.495242 × 10−5 5.745210 × 10−5 5.954213 × 10−5

74.59Latitude 6.935740 × 10−5 5.526796 × 10−5 5.631453 × 10−5

Grid search
Longitude 1.465548 × 10−4 1.642193 × 10−4 2.146923 × 10−4

24.71Latitude 1.941526 × 10−4 2.145237 × 10−4 3.461430 × 10−4

GA
Longitude 7.041523 × 10−5 5.042750 × 10−5 5.546311 × 10−5

87.91Latitude 7.352207 × 10−5 6.004726 × 10−5 6.421012 × 10−5

Default toolbox values
Longitude 1.942751 × 10−4 1.945221 × 10−4 3.047522 × 10−4

6.77Latitude 2.545720 × 10−4 2.541201 × 10−4 3.948753 × 10−4
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4.3.3. Comparison of Prediction Results between ACDE-SVR Model and Neural Network
Prediction Model

Sections 4.3.1 and 4.3.2 respectively verify that wavelet threshold de-noising and ACDE algorithm
optimization yield an SVR model with a higher prediction accuracy; thus, the model was used to
predict the trajectory sample data. A comparison between predicted results and actual results is shown
in Figure 6 and the longitude and latitude prediction errors are shown in Figure 7, where the error value
refers to the absolute error, that is, the difference between the predicted value and actual value. It can
be seen from Figures 6 and 7 that the results of trajectory prediction using the ACDE-SVR algorithm
are basically consistent with the actual values. The magnitude of the longitude and latitude prediction
error is 10−5 and the maximum absolute values of 20 points longitude and latitude, respectively, are
3.475414 × 10−5◦ (3.86 m) and 3.957327 × 10−5◦ (4.394 m). This error is within the acceptable range
and thus the prediction accuracy satisfies the requirements for making collision avoidance decisions
during actual maritime navigation.
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To verify the prediction accuracy of the model, the BP neural network, recurrent neural network
(RNN) and SVR prediction models were also compared. As the preferred neural network for processing
time series data, RNN has good timing prediction performance [45–47]. Because the initial weights
and thresholds of each BP neural network layer are set randomly [12], it has some problems such
as a low prediction accuracy and ease of falling into local optima. To solve the influence of initial
parameter settings on the BP neural network prediction model, the ACDE optimization algorithm
was used to optimize the weights and thresholds of the BP neural network. In summary, the RNN
trajectory prediction model and ACDE-BP neural network model were established under the premise
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of limited data samples and the prediction errors were calculated and compared with the ACDE-SVR
prediction results as shown in Table 6. Under the premise of limited sample data, the ACDE-SVR
trajectory prediction model has the highest training accuracy and the shortest run time. Therefore, the
ACDE-SVR trajectory prediction model proposed in this paper has good prediction results in regard to
both prediction accuracy and operation time.

Table 6. Comparison of prediction error indicators between three trajectory prediction models.

Model EMAX/(◦) MAE/(◦) RMSE/(◦) Time/s

ACDE-SVR
Longitude 5.475414 × 10−5 3.216385 × 10−5 3.562460 × 10−5

33.51Latitude 5.957327 × 10−5 3.345339 × 10−5 3.660051 × 10−5

ACDE-BP
Longitude 7.484621 × 10−5 5.257410 × 10−5 5.745215 × 10−8

85.94Latitude 8.145272 × 10−5 5.547871 × 10−5 5.945120 × 10−8

RNN
Longitude 7.124120 × 10−5 4.945211 × 10−5 5.457329 × 10−5

65.41Latitude 7.844572 × 10−5 5.247560 × 10−5 5.842124 × 10−5

4.3.4. Comparison of Different Trajectory Sequences

To verify the generalization performance of the model, the ACDE-SVR algorithm was used to
predict and compare different trajectories. Six trajectory sequences from different ships were randomly
selected and some of the six trajectories were arbitrarily selected as sample data for model training and
prediction. In order to facilitate the comparison of the prediction results of different trajectories, the
six ship trajectories are respectively marked as a-f trajectories. Comparisons between the predicted
values of the six trajectories and actual values are shown in Figures 8–13 and the specific prediction
errors are shown in Table 7. It can be roughly seen from Figures 8–13 that the prediction error orders
of magnitude are −4 or −5 and the predicted values are essentially consistent with the actual values.
To further analyze the prediction errors of the different trajectory sequences, the analysis in Table 6 was
carried out, which clearly shows that the prediction error of the a-trajectory is the largest. The MAE of
latitude and longitude is 3.007 × 10−4◦ (33.41 m), which is within the allowable range and can thus
meet the collision avoidance requirement. The other trajectory errors are smaller than that of the
a-trajectory and thus can also meet the collision avoidance requirement. In summary, the trajectory
prediction model based on ACDE-SVR has high generalization capability and can be applied for
collision avoidance.
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Table 7. Comparison of prediction results for different ship trajectory sequences.

Serial
Letter

Ship Name Training
Set/Group

Test
Set/Group

EMAX/(◦) MAE/(◦) Time/s
Longitude Latitude Longitude Latitude

a ANASA 143 26 3.007 × 10−4 2.119 × 10−4 3.470 × 10−5 5.048 × 10−5 46.5
b BULK INDIA 159 26 1.025 × 10−4 4.090 × 10−5 1.593 × 10−5 6.592 × 10−6 50.7
c KAI ZHOU1 184 26 2.288 × 10−5 1.655 × 10−5 3.736 × 10−6 6.817 × 10−6 62.1
d CLYDE 171 26 4.317 × 10−5 3.581 × 10−5 1.846 × 10−5 1.186 × 10−5 60.8
e DE PU 182 26 1.117 × 10−4 5.676 × 10−5 1.575 × 10−5 4.347 × 10−5 64.4
f Star sirius 123 26 2.019 × 10−5 3.953 × 10−5 7.394 × 10−6 1.522 × 10−5 41.3

5. Conclusions

This paper analyzes and summarizes the problems existing in current ship trajectory prediction
methods. Considering the good global optimal fitting performance of SVR and its characteristics
suitable for small sample training, an offline trajectory prediction method based on SVR was proposed.
The speed, course, longitude, latitude and Unix time from AIS information were selected as the
sample characteristic variables in the model to predict the time series of a ship’s trajectory toward a
better understanding of current and future trends of other ships and generating collision avoidance
decisions with a certain foresight. However, the model proposed in this study is an offline model,
which assumes that all samples are acquired at one time and cannot be modified once the model
has been trained. AIS information is collected intermittently based on speed and heading. If newly
acquired AIS data are significantly different from the original sample data, the prediction error is large.
Therefore, establishing an incremental SVR-based trajectory prediction model is the next step that
should be explored.
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