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Featured Application: Screen-Based Sports Simulation.

Abstract: In this paper, we introduce a novel acoustic source localization in a three-dimensional (3D)
space, based on a direction estimation technique. Assuming an acoustic source at a distance from
adjacent microphones, its waves spread in a planar form called a planar wavefront. In our system,
the directions and steering angles between the acoustic source and the microphone array are estimated
based on a planar wavefront model using a delay and sum beamforming (DSBF) system and an array
of two-dimensional (2D) microelectromechanical system (MEMS) microphones. The proposed system
is designed with parallel processing hardware for real-time performance and implemented using
a cost-effective field programmable gate array (FPGA) and a micro control unit (MCU). As shown
in the experimental results, the localization errors of the proposed system were less than 3 cm when
an impulsive acoustic source was generated over 1 m away from the microphone array, which is
comparable to a position-based system with reduced computational complexity. On the basis of the
high accuracy and real-time performance of localizing an impulsive acoustic source, such as striking
a ball, the proposed system can be applied to screen-based sports simulation.

Keywords: acoustic source localization; impulsive sound; delay and sum beamforming;
microelectromechanical system; screen-based sports simulation

1. Introduction

The screen-based simulation is becoming popular for various sports as it requires less play time
and space in any weather condition [1,2]. For example, various golf simulators have been developed
mainly for pleasure [3]. Active studies have been conducted to track ball motion as it is a core technique
for screen-based sport simulations. Most current commercial simulators are based on a computer
vision technique using high-speed cameras [4,5] or a radar-based technique using the doppler effect [6].
However, these systems have a limited range to locate a ball position in three-dimensional (3D) space.
For example, computer vision-based systems require a user to place a ball in the field of view of the
cameras. This restricts the ball placement to a small area on the ground and is not suitable for active
sports such as soccer or baseball. The radar-based systems require a ball flying over a long distance
(i.e., several meters or more) for accurate measurement [7], which is not suitable for indoor simulation.
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On the other hand, acoustic source localization provides more flexible placement and can be used to
develop an indoor system for screen-based sports simulation.

The technique of acoustic location was first utilized as an air defensive device during World War I
with the aim of tracking the position of enemy aircraft. In recent years, acoustic source localization has
been adopted in various industrial fields such as sonar [8], car repair service [9], sports simulators [10],
and musical instruments [11]. Different types of localization estimation methods have been developed
for each purpose.

The methods of locating an acoustic source is divided into two categories according to the acoustic
function type: parametric and nonparametric. Acoustic holography [12] is one of the nonparametric
methods that detects not only the position of the acoustic source but also the characteristics of the
acoustic field. However, it requires a lengthy calculation time and many microphones to locate the
source. On the other hand, the parametric method finds the origin of the acoustic source faster than the
nonparametric method by using the signal parameters with a small number of sensors. These methods
are classified as a frequency domain approach and a delay and sum beamforming (DSBF) method
using the concept of the time difference of arrival (TDOA) in a temporal domain.

Loesch et al. proposed a method that estimates the direction and distance based on the frequency
domain [13]. However, it was difficult to distinguish the background noises from impulsive sources
such as gunshots, clapping, or hitting a ball. On the other hand, an approach based on TDOA estimates
the source position using the time difference of the sound signals from a small number of samples.
Heilmann et al. proposed a technique to locate the source in 3D space by using a set of microphones
arranged in a spherical form [9]. However, their system required many expensive microphones and
careful placement, which made it difficult to use for a sports simulation. Recently, a deep neural
network was introduced to locate an acoustic source from a noisy and reverberant environment [14,15].
However, it demanded a large amount of training data in advance and was not effective with acoustic
data that has a very short duration.

The main use of the proposed system is to estimate the ball position from the impact sound
in an indoor sports simulation. For this, we utilized the TDOA technique to recognize an instant length
of the feature source such as the impulsive sound of striking a ball, which only lasts milliseconds.
Seo and Kim adopted the TDOA-based technique to estimate the position and direction of an acoustic
source using wavefront models based on the distances and degrees between the acoustic source
candidates and microphones [16]. In their approach, a DSBF method with many two-dimensional (2D)
planes was used to estimate an accurate source position in 3D space. Porteous et al. proposed a 3D
position estimation technique by applying a dual position-based beamforming technique without using
the candidate 2D planes [17]. However, their approach demanded a large number of microphones,
making the system complicated for use in sports simulation. Rizzo et al. proposed a system based on
a direction-based scheme [18]. In their approach, various factors such as sound pressure, calibration,
sensitivity, and signal-to-noise ratio (SNR) of the microphone array were used for the position
estimation process.

In this paper, we introduce a novel acoustic source localization in a 3D space, based on a direction
estimation technique. Assuming the distance an acoustic source is from adjacent microphones, its waves
spread in a planar form called planar wavefront. In our system, the directions and steering angles
between the acoustic source and the microphone array are estimated based on the planar wavefront
model using a delay and sum beamforming (DSBF) system and an array of 2D microelectromechanical
system (MEMS) microphones. The proposed system is designed with a small number of input
parameters such as time delays for candidate degrees between the acoustic source and the microphones,
and it is implemented using a cost-effective field programmable gate array (FPGA) and a micro control
unit (MCU). The experimental results show that the localization errors of the proposed system are less
than 3 cm when an impulsive acoustic source is generated over 1 m away from the microphone array,
which is comparable to a position-based system with reduced computational complexity.
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One of the main contributions of this paper is to analyze and compare two different types of
DSBF algorithms in terms of computation complexity, processing performance, and accuracy to locate
the accurate 3D source location of impulsive sounds between the position-based and direction-based
methods. Furthermore, we introduce a low-cost high-speed DSBF hardware engine that processes the
DSBF algorithm in real time, making our system suitable for use in time critical systems such as sports
simulation. On the basis of the high accuracy and real-time performance of localizing an impulsive
acoustic source, such as striking a ball, the proposed system is applied to improve the user’s sports
skills. As shown in the experimental results, users trained with the simulation program demonstrated
noticeable improvements in their soccer kicks and baseball hits as compared with outdoor users.

The remainder of this paper is organized as follows: The direction and position-based estimation
methods of an impulsive acoustic source are analyzed in Section 2. The proposed system to locate
the 3D position of an impulsive acoustic source based on a geometric model is described in Section 3.
An overview of proposed system and the detailed architecture of our hardware design is described
in Section 4. The experimental results are presented in Section 5. We conclude this paper with ongoing
improvements in Section 6.

2. Impulsive Sound Estimation

2.1. Direction-Based DSBF

Figure 1 shows an example model of the planar wavefront to estimate the direction of the acoustic
source using a microphone array that is arranged in a 2D x-y plane. Sound has the property of
spreading spherically from the originally generated position. However, when |rs|, the distance between
the acoustic source and the microphone array, is far away as compared with the distance between two
adjacent microphones, it is assumed that the wavefront of the sound is planar, as shown in Figure 1.

Figure 1. Planar wavefront model on a uniformly arranged microphone array in the x-y plane.

To utilize the planar model, |rs| should be satisfied as follows:

|rs| >
(d×M)2

λ
, (1)

where, d is the distance between two adjacent microphones, M is the number of microphones in a single
axis, and λ is the wavelength of the sound. The time, τ, which the time it takes for sound waves to
pass through microphones separated by d, is defined as d·cosθ

c , where c is the speed of the sound waves.
The measured signal at each microphone in the free acoustic field, where i = [1, . . . , M], is defined
as follows:

p(t) = s[t− (i− 1)τ], (2)
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where, s is the source location in 3D space. If Inequality (1) is satisfied, the planar model-based
beamforming output for a single axis at t with respect to candidate steering angles θ is defined
as follows:

b f (θ, t) =
1
M

M∑
i=1

pi[t− (i− 1)τ]. (3)

For the impulsive sound samples at a sampling frequency, fs, Equation (3) is rewritten as follows,

b f (θ, k) =
1
M

M∑
i=1

s[sk − (i− 1)τ fs], (4)

where, sk is the kth sound sample measured at t. The direction-based DSBF for valid impulsive sound
samples with length L is expressed as follows:

DSBF(θ) =
1
L

L∑
k=1

b f (θ, k). (5)

The steering angle, θs, for n candidate θ between the acoustic source and the microphone array is
defined as follows:

θs = max
n

[DSBF(θ)]. (6)

Finally, the unit vector,
→
v , is expressed as follows:

vx = cosθxz × sinθyz

vy = cosθyz

vz = sinθxz × sinθyz

, (7)

where, θxz and θyz are the direction between the acoustic source and the microphone array in the x and
y axes, respectively.

2.2. Position-Based DSBF

The acoustic source location on a 2D plane is estimated from the spherical wavefront model at the
certain depth away from the microphone array. The beamforming output is defined as follows:

b f (Ps, si) =
1
M

M∑
j=1

p j

[
si −

fs
c

∣∣∣Ps − Pmj
∣∣∣], (8)

where, si is the ith sample from the jth microphone, Ps is the position of the candidate acoustic
source, and Pmj is the position of the jth microphone. This method requires many more microphones
and candidate acoustic source locations than the direction-based DSBF to achieve high accuracy,
which results in a higher computational cost, as the time complexity of the beamforming algorithm is
defined as M × C, where M is the number of microphones and C is the number of candidate acoustic
source locations. This beamforming is one of the general approaches to localize an acoustic source and
can be implemented in different ways [16,19].

3. Three-Dimensional Impulsive Acoustic Source Localization

As shown in Figure 2, the 3D impulsive acoustic source position is estimated from the closest
point of the two vectors obtained from Section 2. Two identical DSBF models are used to estimate the
direction of the impulsive acoustic source. Each model has its own unit vector

→
v1 and

→
v2. PS1 and PS2
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are the center positions of each microphone array. The parametric form of the line equation for the two
vectors is expressed as follows:  l1 = PS1 + h1

→
v1

l2 = PS2 + h2
→
v2

, (9)

where, h1 and h2 are the parameters to find PE1 and PE2, respectively. They are the closest points
between two vectors on each line. The shortest distance between those two straight lines is the length
of the vector,

→
w, which is perpendicular to both lines. Thus,

→
w is expressed as follows:

→
w = l2 − l1 = PS2 + h2

→
v2 −

(
PS1 + h1

→
v1

)
. (10)

Since l1 and l2 are perpendicular to
→
w, the dot product of the direction vector of each line and

→
w is

expressed as follows: 
→
w·
→
v1 = 0

→
w·
→
v2 = 0

. (11)

By substituting Equation (10) into (11), Equation (11) is rewritten as follows: PS2 + h2
→
v2 −

(
PS1 + h1

→
v1

)
·
→
v1 = 0

PS2 + h2
→
v2 −

(
PS1 + h1

→
v1

)
·
→
v2 = 0

. (12)

Thus, the parameter h1 and h2 is obtained as follows:
h1 =

(PS2−PS1)·
→
v1+h2

→
v1·
→
v2

→
v1·
→
v1

h2 =
−(PS2−PS1)·

→
v2+h1

→
v1·
→
v2

→
v2·
→
v2

, (13)

By solving Equation (13), PE1 and PE2 are calculated as follows: PE1(h1) = PS1 + h1
→
v1

PE2(h2) = PS2 + h2
→
v2

. (14)

Finally, the position of impulsive acoustic source is obtained as follows:

PC = PE1 +
PE2 − PE1

2
. (15)
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4. System Overview

An accurate estimation of ball positions using acoustic source localization requires several
preprocessing steps as follows: calibration for all MEMS microphones and impulsive sound detection
and recognition to distinguish it from surrounding noises and other unwanted sounds. Further details
of these steps are described in [10]. Figure 3 shows an overview of the proposed system to estimate the
3D location of an impulsive acoustic source. The proposed system is comprised of the following two
steps: an estimation of two individual acoustic source directions,

→
v1 and

→
v2, which are obtained by

DSBF controllers using a MEMS microphone array arranged in 2D space, and an estimation of the
closest point of the two vectors by the host processor.
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Figure 4 shows the overview of the proposed estimation architecture for 3D acoustic source
localization. When a sound is generated and its decibel exceeds a predefined threshold, the impulsive
sound detector classifies it as a valid target sound based on a feedforward neural network (FFNN) [20].
If it is classified as a valid sound, micro control unit (MCU) calculates the delay between all the MEMS
microphones (i.e., 49 in our system) and candidate degrees as discussed in Section 2. The MCU
transfers it to the DSBF unit in the FPGA.

The delay information is calculated only once before processing the DSBF and implementing
a double precision × angle between the sound and the microphones using the input acoustic sources
and the delay in parallel for all microphones as described in Figure 5. The USB controller transfers the
results of DSBF to a PC to evaluate the estimated acoustic source.
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Figure 4. Overview of the proposed evaluation architecture.
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5. Experimental Results

5.1. System Implementation

As shown in Figure 5, our system places 49 microphones, in a 7 × 7 rectangular array, with 25 mm
between two adjacent microphones. An impulse sound is generated at least 1 m away from the
microphone array. The distance of 25 mm is close enough to assume that the sound wavefront is planar.
Although only 13 MEMS microphones (seven microphones for each axis, sharing the microphone
positioned in the center) are required to estimate the direction-based beamforming algorithm in our
system, all of the 49 microphones are used to compare the accuracy of the location-based beamforming
technique used in [16].

All the signals of the MEMS microphones (Knowles SPH1642HT5H-1 which has dimensions of
width 2.65 mm × length 3.5 mm × height 1 mm, the highest signal-to-noise ratio in the current market,
and an analog top type) are inputted to 25 two-channel A/D converters (Cirrus Logic Inc. CS5351).
The audio signals are sampled at a rate of 192 kHz for each microphone with a 24-bit resolution.
We designed an A/D conversion board by referencing the development kit offered by the manufacturer.

Figure 5 shows the hardware-based implementation of the main controller that processes the
DSBF algorithm and manages every device in our system such as 49 MEMS microphones, A/D
converters, power management, DDR memory, camera, USB, and others. For a quick and robust
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hardware implementation, the circuitry related to the FPGA was implemented by utilizing Trenz
Electronic’s TE0713-01-200-2C, which is one of the most cost-efficient modules for implementing the
proposed method.

Figure 6 shows a block diagram of the proposed FPGA-based design for processing both position
and direction DSBF algorithms. To reduce the resources in the FPGA and boost the performance,
the MCU in Figure 4 calculates the time delay between the microphone array and the candidate
directions and positions of acoustic source in advance. This design scheme makes it easy to adjust the
position and direction resolutions. Furthermore, the proposed design processes all DSBF algorithms
in parallel as the DSBF processes for a single microphone are summed independently. The size of each
frame, L, is set to 256 as the main target sound is mostly impulsive and lasts only milliseconds.
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5.2. Three-Dimensional Impulsive Acoustic Source Localization

Our experiments were performed in a room with dimensions of width 5 m × length 7 m × height 3
m and did not consider the effects of reflection and noises that were not caused by users. Figure 7 shows
all input signals from the MEMS microphones array, capturing an impulsive acoustic source (kicking and
hitting a ball) for a short period of time (less than 2 ms). As shown in the figure, it is noticeable that the
variations of the TDOA from the single impulsive source depends on the position of the microphone.
Figure 8 shows the sound pressure level, that is, the decibel sound pressure level (dBSPL), of the selected
microphone (microphone 1) in the array. The peak value is approximately 100 dB and the average peak
value is approximately 85 dB. Background noises that are slightly less than and equal to the average dBSPL
of the estimated impulsive acoustic source were used for the experiments, as shown in Figure 8.
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Figure 7. The 24-bit converted input signal voltages of 49 channels of MEMS microphones for
an impulsive acoustic source generated by kicking a soccer ball.
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Figure 9 shows the accuracy of the beamforming results with background noises which are
ambient white noises caused by users and impulsive acoustic sources such as clapping and footstep
sounds. To evaluate the beamforming accuracy, BA, Equation (5) is rewritten as follows:

BA = 255×
(

DSBF(θ) −min[DSBF(θ)]
max[DSBF(θ)]

)
. (16)

It shows that even in a noisy environment, if the average level of the background sound is
smaller than the average value of the ball impact sound, the noise sources do not affect the direction
estimation results.
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Figure 9. The results of proposed beamforming engine with background ambient white noise (top)
and impulsive sound (bottom): (a) Degree of beamforming results under 40 dB background noise,
(b) degree of beamforming results about 70 dB background noise, and (c) degree of beamforming
results over 80 dB background noise. Here, X-Z is θxz between the x and z axis, and Y-Z is θyz between
the y and z axis as shown in Figure 1.

Figure 10 shows the estimation results of the proposed 3D acoustic source localization engine
for both direction- and position-based methods. The estimated position errors are evaluated by the
differences between the position (PO in Figure 11) of the true impulsive acoustic source generated by
kicking a ball and the position (PD and PP in Figure 11) estimated by the proposed DSBF engine. For the
direction-based DSBF method, the error values get smaller as the distance between the microphone

array and the acoustic source becomes larger. This is because |rs| becomes much larger than (d×M)2

λ
when the distance is larger, making the wavefront more planar and resulting in a higher accuracy for
our system. The spectrum of the impulsive sound by striking a ball is in the range of 100 Hz to 10 kHz.
In our experiment, the right part of Inequality (1) does not exceed 0.9 m since d is 0.025 m, M is 7,
and λ is 0.034 m, which is the shortest wavelength in the spectrum. Therefore, the accuracy of the
estimated position is high when the impulsive sounds are generated 1 m away from the microphone
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array, as shown in Figure 10. However, if the acoustic source is generated too far away from the
microphone array, the SNR significantly decreases, and the errors increases. For the position-based
method, the errors are estimated using 49 microphones with a given predefined depth plane. Therefore,
the errors remain constant until the SNR significantly decreases.
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planar model-based method.

Figure 11 shows the results of our system with the generated impulsive acoustic source. Here, PO is
the true position of impulsive sound, PP is the position estimated by spherical waterfront model-based
DSBF, and PD is the position estimated by the proposed dual planar waterfront model-based DSBF
engine using

→
v2 and

→
v1, which are the unit vectors calculated from the results of DSBF directions on the

top and side planes, respectively.

5.3. Screen-Based Sports Simulation

The proposed method of impulsive acoustic source localization is applied to a virtual sports
simulator and operates with [4] to estimate ball motion such as 3D speed, spin, and fire angle. Diverse
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software content was developed to train a user’s sports skills such as soccer kicks and baseball hits,
as shown in Figure 12.

Figure 13 shows a screen-based simulation for training soccer kicks. For this, a virtual simulation
room was equipped with a ball motion simulator, a collision coordinate recognizer, an air cleaner,
an air conditioner, and an automatic ball collector to support the training session. For evaluating the
effectiveness of the proposed system, a total of 24 students in an elementary school were recruited
and divided into two groups: a virtual sport (13 persons) training group and an outdoor (11 persons)
training group. The physical characteristics of the participants are described in Table 1. A total of
15 training sessions were conducted for six months on the four evaluation items of soccer skills: target
accuracy, kick speed, kick power, and outdoor kick accuracy.
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Table 1. Physical characteristics of the training groups

Training Group Height
(cm)

Weight
(kg)

Age
(years)

Body Mass Index (BMI)
(kg/m2)

Virtual sport 179.9 ± 7.5 39.0 ± 7.8 11.8 ± 1.0 17.6 ± 2.0

Outdoor 151.5 ± 9.7 45.2 ±
10.2 11.4 ± 3.4 19.5 ± 2.7

We used the repeated measure analysis of variance (ANOVA) to evaluate the target accuracy, kick
speed, and the accuracy of kick speed. For the analysis of kick speed, kick power, and outdoor kick
accuracy, a two-way repeated measure ANOVA was used to evaluate the interaction of virtual sport
program effect and practice period.

Figure 14 shows a comparison of the differences between the pre and post experiments for the
kick speed, the kick power, and the outdoor kick accuracy, which were verified by the paired t-test.
During the training period, the target accuracy score, the kick speed accuracy, and the kick speed
increased significantly for the virtual sport group, as shown in Figure 14. The training results show
that the screen-based simulation provides a more effective environment where the participants focus
more on improving their hitting accuracy and kick speed as compared with the outdoor training
group. The experimental results for the sports simulation are available in an online video located at
https://drive.google.com/open?id=12D9VFpEAS8nwsn41VOOA_d6U0lYI2Qfp. Additional results are
located at https://drive.google.com/open?id=1Mx3FO175Cw6oWHU0WzUx9czvqieQiwYE.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 15 

Figure 14 shows a comparison of the differences between the pre and post experiments for the 
kick speed, the kick power, and the outdoor kick accuracy, which were verified by the paired t-test. 
During the training period, the target accuracy score, the kick speed accuracy, and the kick speed 
increased significantly for the virtual sport group, as shown in Figure 14. The training results show 
that the screen-based simulation provides a more effective environment where the participants focus 
more on improving their hitting accuracy and kick speed as compared with the outdoor training 
group. The experimental results for the sports simulation are available in an online video located at 
https://drive.google.com/open?id=12D9VFpEAS8nwsn41VOOA_d6U0lYI2Qfp. Additional results 
are located at https://drive.google.com/open?id=1Mx3FO175Cw6oWHU0WzUx9czvqieQiwYE. 

  

  

Figure 14. Comparison of training results between the virtual sport and the outdoor group. 

6. Conclusions 

This paper introduced an efficient method of localizing an impulsive acoustic source, which was 
used to simulate screen-based ball sports. In the proposed system, a small set of microphones are 
arranged into a 2D MEMS array (13 for each array), and the system estimates a ball position from the 
acoustic source in 3D space using the direction-based DSBF algorithm in the temporal domain. 
Compared to other spherical model-based DSBF systems, our system generates relatively small errors 
(i.e., less than 3 cm from an acoustic source generated over 1 m away from the microphone array) in 
tracking ball motion in real time. Furthermore, our system design and implementation require a small 
space for hardware and can be applied to a variety of real-time simulators. As demonstrated in the 
experimental results, our system effectively improves a user’s sports skills such as soccer kicks and 
baseball hits in a given training period. 

The current system does not consider the effects of sound reflection from the obstacles in the 
room. Since the effective wavelength is very short, the surrounding environment has little effect on 
the impulsive sound. Therefore, if there are no direct obstacles between the microphone array and 
the sound source, the results are expected to be similar. In addition, our system does not consider 

Figure 14. Comparison of training results between the virtual sport and the outdoor group.

https://drive.google.com/open?id=12D9VFpEAS8nwsn41VOOA_d6U0lYI2Qfp
https://drive.google.com/open?id=1Mx3FO175Cw6oWHU0WzUx9czvqieQiwYE


Appl. Sci. 2019, 9, 2970 14 of 15

6. Conclusions

This paper introduced an efficient method of localizing an impulsive acoustic source, which was
used to simulate screen-based ball sports. In the proposed system, a small set of microphones are
arranged into a 2D MEMS array (13 for each array), and the system estimates a ball position from
the acoustic source in 3D space using the direction-based DSBF algorithm in the temporal domain.
Compared to other spherical model-based DSBF systems, our system generates relatively small errors
(i.e., less than 3 cm from an acoustic source generated over 1 m away from the microphone array)
in tracking ball motion in real time. Furthermore, our system design and implementation require
a small space for hardware and can be applied to a variety of real-time simulators. As demonstrated
in the experimental results, our system effectively improves a user’s sports skills such as soccer kicks
and baseball hits in a given training period.

The current system does not consider the effects of sound reflection from the obstacles in the
room. Since the effective wavelength is very short, the surrounding environment has little effect on the
impulsive sound. Therefore, if there are no direct obstacles between the microphone array and the
sound source, the results are expected to be similar. In addition, our system does not consider high-level
noises from the environment. For example, if the background noise is louder than the acoustic source,
it is difficult for the system to localize the acoustic source without a sophisticated noise filtering method.
We are currently improving the accuracy of ball position estimation by integrating an active noise
cancellation [21] and a room sound wave reflect-aware scheme [22] in the existing system.
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