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Abstract: This paper reports on a new feature extraction method for detection of applied stress using
magnetic Barkhausen noise (MBN). Some previous methods for extracting MBN features need to
choose a suitable threshold so that these features can have good linearity and low dispersion, such as
pulse count and full width at 25, 50 and 75% of the maximum amplitude. A new approach has
been proposed for selecting the appropriate threshold for MBN features adaptively using a genetic
algorithm (GA). The criterion for selecting the threshold is the lowest standard deviation of features
and new proposed ‘overlap’ of features. In order to verify the effectiveness of the adaptive pulse count
feature for stress detection, different modelling techniques are compared, including multivariable
linear regression (MLR) and multilayer perceptron (MLP). The results obtained have proven that
adaptive threshold features can effectively distinguish between different stress conditions compared
with traditional MBN features.

Keywords: magnetic Barkhausen noise (MBN); adaptive feature extraction; threshold; genetic algorithm

1. Introduction

The magnetic Barkhausen noise (MBN) as a non-destructive evaluation method is mainly used to
detect stress of ferromagnetic materials [1–3]. Feature extraction of MBN signals is important for stress
detection of ferromagnetic materials. In order to preserve more information of the MBN signals, data of
the collected MBN signals are relatively large. If a stress model is established directly with the original
MBN signals, a large amount of redundant and irrelevant information will lead to a prolonged time
spent on training the model and using the model for stress detection, and will reduce measurement
accuracy. Therefore, how to extract MBN features is critical to the results of stress detection.

However, previous methods for extracting MBN features require the choice of a suitable threshold
so that these features can have good linearity and low dispersion. Figure 1 shows two novel features
of MBN signals, namely ‘pulse count’ and ‘event’. It was found that new features had a good linear
correlation with residual stress [1]. However, the linearity and dispersion of the pulse count feature
are closely related to the choice of threshold.
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Figure 1. Illustration of ‘pulse count’ and ‘event’ of MBN signals. 

Similarly, MBN features extracted by the commercial non-destructive testing instrument 3MA 
are full width at 25, 50 and 75% of the maximum amplitude [2,3], which is shown in Figure 2. These 
three thresholds are not necessarily the best choice for stress detection or other parameter 
measurements. 

 
Figure 2. Illustration of full width at 25, 50 and 75% of the maximum amplitude. 

In this paper, a new approach has been proposed for selecting the appropriate threshold for 
MBN features adaptively. The criterion for selecting the threshold is the lowest standard deviation 
and ‘overlap’ of features. We use a genetic algorithm (GA), a global optimization algorithm, which is 
adopted to find the optimal threshold. The adaptive pulse count feature and adaptive full width 
feature have better linearity and stability than features of previous fixed threshold methods [1,2]. 
Modeling the traditional feature root mean square (RMS), mean value, energy, entropy and new 
adaptive pulse count feature by multivariable linear regression (MLR) and multilayer perceptron 
(MLP), the results obtained have proven that adaptive threshold features can effectively improve the 
accuracy of stress detection. 

The rest of the paper is organized as follows. In Section 2, the details of the sample, MBN 
measurement systems and process of adaptive feature extraction are illustrated. The results of 
adaptive threshold features selected by genetic algorithm and ‘overlap’ criterion are given in Section 
3.1. The multi-threshold adaptive extraction method is introduced in Section 3.2. Adaptive pulse 
count feature and traditional MBN features are compared in Section 3.3. In order to verify the 
effectiveness of adaptive pulse count feature for stress detection, different modelling techniques are 
compared in Section 3.4. In Section 4, the summary and conclusion are provided. 

2. Experiment 

Based on previous work [4], specimens used in the experiment are made of Q235 steel, which is 
a standard material in industrial manufacturing. A four-point bending platform is used to generate 
applied stress. The applied tensile and compressive stress is limited in the range of 0–150 MPa to 
avoid plastic deformation. 

The block diagram of the MBN measurement system is shown in Figure 3. To obtain MBN 
signals, the function generator provides low frequency excitation (triangle wave at 5 Hz) which is 
amplified by a bi-polar power amplifier (LPA05B). The MBN signals are detected using a pick-up air-
coil (with 3000 turns of 0.07 mm diameter wire), which are amplified (30 dB gain), band pass filtered 
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Similarly, MBN features extracted by the commercial non-destructive testing instrument 3MA are
full width at 25, 50 and 75% of the maximum amplitude [2,3], which is shown in Figure 2. These three
thresholds are not necessarily the best choice for stress detection or other parameter measurements.
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In this paper, a new approach has been proposed for selecting the appropriate threshold for MBN
features adaptively. The criterion for selecting the threshold is the lowest standard deviation and
‘overlap’ of features. We use a genetic algorithm (GA), a global optimization algorithm, which is
adopted to find the optimal threshold. The adaptive pulse count feature and adaptive full width feature
have better linearity and stability than features of previous fixed threshold methods [1,2]. Modeling the
traditional feature root mean square (RMS), mean value, energy, entropy and new adaptive pulse count
feature by multivariable linear regression (MLR) and multilayer perceptron (MLP), the results obtained
have proven that adaptive threshold features can effectively improve the accuracy of stress detection.

The rest of the paper is organized as follows. In Section 2, the details of the sample,
MBN measurement systems and process of adaptive feature extraction are illustrated. The results of
adaptive threshold features selected by genetic algorithm and ‘overlap’ criterion are given in Section 3.1.
The multi-threshold adaptive extraction method is introduced in Section 3.2. Adaptive pulse count
feature and traditional MBN features are compared in Section 3.3. In order to verify the effectiveness
of adaptive pulse count feature for stress detection, different modelling techniques are compared in
Section 3.4. In Section 4, the summary and conclusion are provided.

2. Experiment

Based on previous work [4], specimens used in the experiment are made of Q235 steel, which is
a standard material in industrial manufacturing. A four-point bending platform is used to generate
applied stress. The applied tensile and compressive stress is limited in the range of 0–150 MPa to avoid
plastic deformation.
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The block diagram of the MBN measurement system is shown in Figure 3. To obtain MBN
signals, the function generator provides low frequency excitation (triangle wave at 5 Hz) which is
amplified by a bi-polar power amplifier (LPA05B). The MBN signals are detected using a pick-up
air-coil (with 3000 turns of 0.07 mm diameter wire), which are amplified (30 dB gain), band pass filtered
(2–40 kHz), and sampled at 200 kHz frequency by A/D converter (14-bit A/D resolution, DAQ2010).
In addition, the excitation voltage is acquired using a second channel synchronously. An example of
MBN signal and excitation signal are shown in Figure 4.
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Figure 3. Magnetic Barkhausen noise (MBN) measurement systems.
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Figure 4. Example of an MBN signal and excitation signal. The red curve is the excitation signal and
the blue one is the MBN signal.

In the experiment, five cycles of MBN signals are sampled under the same stress condition, so the
number of MBN signals is 10. Figure 5 shows pulse count as a function of stress when threshold = 0.05,
the negative stress represents compressive stress, and the positive stress represents tensile stress.
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MBN features are normalized for the reason that it is feasible to compare the features of different
thresholds. The range of normalized features is between [0,1]. The normalized equation is as follows:

yi =
xi − xmin

xmax − xmin
(1)

where xi is the ith feature of MBN under different stress conditions, xmin is the minimum value of
features, xmax is the maximum value of features, yi is the result of normalization. Figure 6 shows the
difference of pulse count before and after normalization with different thresholds as a function of stress.
The x-axis represents different thresholds from 0.050 to 0.032. The pulse count values are changed
from −150 MPa to 150 MPa with each threshold, which is equivalent to Figure 5 under different
stress conditions.

The number of MBN signals under the same stress condition is 10 (five cycles) and the number
of stress conditions is 11 (−150 MPa–150 MPa). The standard deviation of the pulse count feature of
10 MBN signals (under the same stress) can be calculated. So sum of the standard deviations is defined
by the sum of the standard deviations in the 11 stress conditions.
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A genetic algorithm is an optimization technique with the basic idea derived from biological
evolution [5–7]. The algorithm is based on the population of chromosomes that achieves a global
optimal solution by selection, crossover and mutation. The parameters of the genetic algorithm in the
paper are set as follows: Population size (Npop = 40), the number of generations (Ngen = 300) and
the probabilities of crossover (pc = 0.8) and mutation (pm = 0.05), because only one optimal threshold
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needs to be found in this article. Npop determines the search number of thresholds, which is set to 40.
Ngen determines the number of iterations of algorithm. pc determines the crossover probability of
binary chromosome. Two-point crossover is used in the paper, which picks two crossover points from
the parent chromosomes randomly. pm determines the probability of altering one or more gene values
in a chromosome [8].

We use this genetic algorithm to choose an appropriate threshold for MBN signal features.
There are two criteria for evaluating features including the sum of standard deviation and new
proposed ‘overlap’. As shown in Figure 7, the steps are as follows.

1. Extract MBN signal features based on threshold, such as pulse count feature or full width feature.
2. Normalize features to [0,1] according to Equation (1) so that features can be evaluated by

two criterions.
3. Calculate the sum of standard deviation or ‘overlap’ of features.
4. Threshold is adjusted by genetic algorithm to minimize the sum of the standard deviation and

‘overlap’. The criteria for selecting the optimal threshold is when ‘overlap’ is 0 and the sum of
standard deviation is the lowest.
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3. Results

3.1. Adaptive Pulse Count Feature

As shown in Figure 8, the pulse count with different thresholds as a function of stress and standard
deviation of every feature are shown. With Table 1 and Figure 9, in the case of large stress (130 MPa and
150 MPa tensile and compressive stress), thresholds of 0.038, 0.036 and 0.034 are difficult to distinguish
stress conditions, because the variation range of feature values has overlapping parts. Threshold of
0.024 can distinguish different stress conditions well, whose variation range has little overlapping
parts, and the sum of standard deviations is lower.
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Table 1. Sum of the standard deviation of the pulse count feature with different thresholds.

Threshold Sum of Standard Deviation Threshold Sum of Standard Deviation

0.020 0.1794 0.030 0.1652
0.022 0.1675 0.032 0.1685
0.024 0.1600 0.034 0.1753
0.026 0.1585 0.036 0.1781
0.028 0.1554 0.038 0.1797

However, it is difficult to manually find the appropriate threshold, so a genetic algorithm is
used in this paper. After optimization by GA, when the threshold is 0.0249, the sum of standard
deviation is the lowest, which is 0.1501. The sum of standard deviation varies with genetic generation
as shown in Figure 10; it can be found that the genetic algorithm can find the optimal threshold in
about 70 generations.
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Since the sum of standard deviation can only reflect the fluctuation range of the whole feature,
it cannot reflect the distinguishing degree of features for different stress conditions. The paper proposes
a new criterion ‘overlap’ for judging the distinguishing degree of features. Figure 11 depicts the
calculation method of ‘overlap’. Assume stress2 is greater than stress1(tensile stress) or stress2 is less
than stress1(compressive stress), ‘overlap’ can be divided into three cases in Figure 11 and be calculated
by Equation (2), where S1up and S1low are the upper and lower limits of the feature change under the
condition of stress1, S2up and S2low are the upper and lower limits of the feature change under the
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condition of stress2. The lower the ‘overlap’, the greater the ability of this feature to distinguish from
different stress conditions.

overlap =



0
S1up − S2low
S2up − S2low

1
1
1

,
,
,
,
,
,

S2low > S1up

S1low < S2low < S1up and S2up > S1up

S1low < S2low < S1up and S2up < S1up

S1low < S2up < S1up and S2low > S1low
S1low < S2up < S1up and S2low < S1low

S2up > S1up and S2low < S1low

(2)
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Table 2 shows the sum of overlap of the pulse count feature with different thresholds. When the
threshold is 0.020, the sum of overlap is equal to 0, which indicates that this threshold is more suitable
for stress detection than other ten thresholds. If there is a case where ‘overlap’ of multiple pulse
count features with different thresholds is 0, the feature with the lowest sum of standard deviation
can be selected as the most optimal threshold. After optimization by the genetic algorithm, when the
threshold is 0.0230, ‘overlap’ is 0 and sum of standard deviation is 0.1633, which is the lowest.

Table 2. Sum of overlap of pulse count feature with different thresholds.

Threshold Sum of Overlap Threshold Sum of Overlap

0.020 0 0.030 0.02169
0.022 0.00375 0.032 0.02587
0.024 0.00374 0.034 0.02708
0.026 0.01921 0.036 1.00614
0.028 0.01388 0.038 1.00876

3.2. Multiple Thresholds

As shown in Figure 8, the standard deviation of tensile stress (30 MPa–150 MPa) when threshold is
equal to 0.020 is less than threshold equal to 0.024, but the result of the sum of the standard deviations is
the opposite. Therefore, for tensile stress and compressive stress, different thresholds can be chosen to
obtain more stable features, using the genetic algorithm to optimize the pulse count thresholds of MBN
signals under tensile and compressive stress. As shown in Figure 12, for tensile stress, the threshold
is chosen to be 0.034, and for compressive stress, the threshold is chosen to be 0.025, and the sum of
standard deviations is the lowest.
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3.3. Comparison with Traditional MBN Features

Traditional MBN features such as root mean square (RMS) and MBN energy are often used for
stress detection [9,10].

Energy feature describes the strength of the signal, and the calculation formula is the sum of the
square of the amplitude of each point signal. The calculation formula is as follows:

EnergyMBN = (x1
2 + x2

2 + · · ·+ xn
2) (3)

where x1 x2 . . . xn is the amplitude of MBN discrete signal, and n is the number of MBN signal points.
Normalized RMS, energy and the adaptive pulse count feature are compared in Figure 13. The sum

of standard deviations of different features is shown in Table 3. It can be found that the adaptive pulse
count feature proposed in this paper has a lower standard deviation. Adaptive pulse count has low
dispersion and better stability.
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count feature under different stress conditions.

Table 3. The sum of standard deviation and sum of ‘overlap’ of different features.

Feature Sum of Standard Deviation Sum of Overlap

RMS 0.1720 0.0121
Energy 0.1987 0.0139

Adaptive Pulse Count 0.1633 0
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3.4. Comparison of Modeling Results

The MBN features used in this paper to establish a stress prediction model are: RMS (x1), mean
value (x2), energy (x3), entropy (x4) and adaptive pulse count (x5).

Mean value describes the magnitude of the DC (Direct Current) component in MBN signals.
The entropy feature is a measure of the uncertainty of a random variable [11]. For a discrete signal, if the
possible value is {x1, x2, . . . , xn}, the corresponding probability is

{
P(x1), P(x2), . . . , P(xn)

}
, and entropy

can be calculated as follows:

EntropyMBN = −
∑

i

P(xi) logb P(xi). (4)

When b = 2, the unit of entropy is bit; when b = e, the unit of entropy is nat; when b = 10, the unit
of entropy is Hart. Entropy can be used to measure the uncertainty of MBN signals. The larger the
uncertainty of MBN signal, the larger entropy feature.

K-Fold Cross-Validation is used to verify the model [12]. The steps are as follows: (1) Divide the
data set into K; (2) Each time one of them is used as a test set, the other K − 1 are used as a training set
to train the model; (3) Mean square error (MSE) of the model on the test set is calculated; (4) Repeat the
above K times, and average the MSE to obtain the evaluation criteria of the model (Root Mean Square
Error,RMSECV). 10-Fold Cross-Validation is used in the paper.

RMSECV =

√√√
1
K

K∑
i=1

MSEi. (5)

In order to verify the effectiveness of adaptive pulse count feature for stress detection, different
modelling techniques are compared, including multivariable linear regression (MLR) and multilayer
perceptron (MLP). Coefficients of MLR are solved by the least square method. MLP is trained using
backpropagation (BP). The square error is used as the loss function. The advantage of MLP is that the
model learned is nonlinear.

The RMSECV and coefficient of determination (R2) of the comparison experiment are shown
in the Table 4. xth=0.1 and xth=0.01 are features of pulse count extracted when threshold is 0.1 and
0.01 respectively.

Table 4. Comparison of different modeling methods. Multivariable linear regression (MLR) and
multilayer perceptron (MLP).

Line Method Features RMSECV R2

1 MLR x1 x2 x3 x4 14.084 0.978

2 MLR x1 x2 x3 x4 x5 13.307 0.980

3 MLR x1 x2 x3 x4 xth=0.1 13.395 0.980

4 MLR x1 x2 x3 x4 xth=0.01 14.672 0.978

5 MLP (BP) x1 x2 x3 x4 6.468 0.995

6 MLP (BP) x1 x2 x3 x4 x5 6.002 0.996

7 MLP (BP) x1 x2 x3 x4 xth=0.1 6.251 0.995

8 MLP (BP) x1 x2 x3 x4 xth=0.01 8.324 0.992

(1) There are two hidden layers in the MLP method, but different numbers of hidden layer nodes
have the same effect on the results. The number of hidden nodes in the Table 4 is 10,10.

(2) By comparing the first and second lines, it can be found that adding the adaptive pulse count
feature (x5) can improve the accuracy of stress detection.
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(3) By comparing the second, third and fourth lines, pulse count features of other thresholds
(xth=0.1, xth=0.01) reduce the prediction accuracy of the model. If the threshold is not chosen properly,
the prediction accuracy is worse than not adding the pulse count feature.

(4) The results of the MLR and MLP models show that the adaptive pulse count feature (x5) has a
lower RMSE, which contributes to stress detection.

The stress prediction model established by MLR method is as follows:
stress = −128.13 − 1472.04x1 − 317.04x2 + 1197.73x3 + 541.36x4 + 339.57x5

stress = −114.63 − 1208.64x1 − 540.88x2 + 1032.73x3 + 983.47x4 + 12.97xth=0.01
The regression coefficient of x5 is greater than xth=0.01. When examining the contribution of

independent variables to dependent variables, it is often not enough to calculate the regression
coefficients, and the correlations need to be considered together. The Pearson correlation coefficient for
each feature is as follows: x1: 0.9635; x2: 0.9606; x3: 0.9548; x4: 0.9688; x5: 0.9642; xth=0.01: 0.9512. It can
be found that the contribution of adaptive pulse count feature to stress is greater than the features of
pulse count extracted when threshold is 0.01.

4. Conclusions

In this paper, appropriate thresholds are selected adaptively by standard deviation criterion and
‘overlap’ with a genetic algorithm for MBN features. The criteria for selecting the optimal threshold is
when ‘overlap’ is 0 and the sum of standard deviation is the lowest.

1. The results obtained have proven that adaptive threshold features can effectively distinguish
between different stress conditions. Adaptive pulse count has good stability and repeatability.

2. Compared with a single threshold, different thresholds are selected for tensile stress and
compressive stress respectively, the obtained features have better linearity and stability.

3. By comparing different modeling methods including MLR and MLP, the results show that adding
the adaptive pulse count feature to stress prediction model will result in a lower RMSE and can
improve the accuracy of stress prediction.

4. The new method proposed in the paper can be used for other feature extraction situations where
thresholds need be selected. For an incremental permeability (IP) signal, curve width at the
certain percentage of µMAX can be selected optimally [3]. For multi-frequency eddy current
testing, the appropriate excitation frequency also can be chosen optimally.
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