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Abstract: In recent decades, landslide displacement forecasting has received increasing attention
due to its ability to reduce landslide hazards. To improve the forecast accuracy of landslide
displacement, a dynamic forecasting model based on variational mode decomposition (VMD) and a
stack long short-term memory network (SLSTM) is proposed. VMD is used to decompose landslide
displacement into different displacement subsequences, and the SLSTM network is used to forecast
each displacement subsequence. Then, the forecast values of landslide displacement are obtained by
reconstructing the forecast values of all displacement subsequences. On the other hand, the SLSTM
networks are updated by adding the forecast values into the training set, realizing the dynamic
displacement forecasting. The proposed model was verified on the Dashuitian landslide in China.
The results show that compared with the two advanced forecasting models, long short-term memory
(LSTM) network, and empirical mode decomposition (EMD)–LSTM network, the proposed model
has higher forecast accuracy.

Keywords: landslide; displacement forecasting; variational mode decomposition; stack long
short-term memory network

1. Introduction

Landslides, as one of the most widespread and frequent natural hazards all over the world, not only
directly threaten human life but also cause tremendous damage to the human living environment,
resources, and property. To minimize the losses caused by landslide hazards, many scholars have
carried out research on landslide prediction [1–5]. Among them, landslide displacement forecasting
has been a contentious issue [6–9].

At present, one of the most widely used ideas for landslide displacement forecasting is to
decompose the original landslide displacement, and then forecast each subsequence separately,
and finally reconstruct all forecast values to obtain the forecast results. Following this idea, in [10],
wavelet analysis is used to decompose the landslide displacement and a particle swarm-optimized
support vector machine is used as the forecasting model. In [11], empirical mode decomposition
(EMD) is matched with an extreme learning adaptive neuro-fuzzy inference system for landslide
displacement forecasting. In [12], ensemble empirical mode decomposition (EEMD) is adopted to
analyze the landslide displacement, which avoids the mode aliasing problem in EMD. Similarly,
the authors of [13] also used the EEMD technique to decompose rainfall, reservoir level, and landslide
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cumulative displacement sequences into residual sequence and finite intrinsic mode functions with
frequencies ranging from high to low. Moreover, the forecasting model combined with intelligent
algorithms, such as genetic algorithm-least squares support vector machine [14], genetic algorithm-back
propagation neural network [15], and particle swarm-optimized support vector machine [16], is favored
by researchers.

Some achievements have been made in the above studies; however, there are some shortcomings
in displacement analysis and forecasting models. For displacement analysis, wavelet analysis has some
difficulties in determining the basis function and estimating the wavelet order; EMD and EEMD are
random and uncontrollable for the decomposition number of landslide displacement, while excessive
decomposition will increase the forecasting workload. For forecasting models, neural networks have
a certain dependence on the size of data samples, and the selection of the support vector machine
parameters has certain blindness due to manual setting, while intelligent algorithms can easily fall
into a local optimum. Therefore, how to more scientifically and reasonably analyze the original time
series and establish a high-performance forecasting model are the difficulties of landslide displacement
forecasting research.

To improve the forecast accuracy of landslide displacement, a dynamic forecasting model based
on variational mode decomposition (VMD) and a stack long short-term memory network (SLSTM) is
proposed. The main contributions of this paper are as follows:

(1) VMD with strict mathematical theory and controllable decomposition number is applied to
displacement analysis, which obtains stable and fixed displacement subsequences;

(2) A SLSTM network with “3 + 1” layers is designed to model and forecast each displacement
subsequence, which improves the performance of a basic long short-term memory (LSTM) network;

(3) A dynamic forecasting method is proposed, which realizes long-term landslide
displacement forecasting.

The rest of this paper is organized as follows: Section 2 describes the basic principle and training
method of the SLSTM network. Section 3 is devoted to describing the combined process of the VMD
and the SLSTM network. The dynamic forecasting process based on the VMD-SLSTM network is also
presented in this section. In Section 4, a real application case is introduced to verify the proposed
forecasting model. Several comparative experiments are carried out to demonstrate the superiority of
the proposed forecasting model. The last section draws conclusions.

2. Stack Long Short-Term Memory Network

2.1. LSTM Network

Recently, due to the advantages of deep learning in automatic feature extraction and high
recognition rate or prediction accuracy, it has been successfully applied to speech recognition [17],
action recognition [18], remaining useful life prognosis [19], traffic flow prediction [20], and other fields.
As a commonly used deep learning model, the recurrent neural network (RNN) is an effective method
for modeling dynamic sequences [21–28]. However, a RNN struggles to model long sequences because
of gradient disappearance. To solve this problem, Hochreiter et al. proposed the long short-term
memory (LSTM) network [29]. It uses multiple functionally distinct gates to control neurons and
store information, thus having the ability to store important information for longer periods of time.
The information is achieved by dot product ⊗ of activation function. Each gate state relies on a series
of parameters trained by the gradient descent method.

Figure 1 shows the structure of the LSTM network in detail. Each gate in the LSTM network has
a specific and unique function. Forget gate f decides which information should be discarded from
the previous state ht−1 . Input xt and previous state ht−1 after update gate u operation, together with
the revised forget gate f , determine how much weight the candidate state h̃t should use to update
state ht. To generate output ..., a non-linear function g2 is used to filter its current state, and then it is
returned after output gate operation. Herein, the returned partial state yt is taken as the next input
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yt−1. Each gate depends on the current external input xt and the previous output yt−1. The updated
process of the LSTM network is given by Equation (1).
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f orget gate : ft = σ(W f xt + R f yt−1 + b f )

candidate state : h̃t = g1(W f xt + R f yt−1 + b f )

update state : ut = σ(Wuxt + Ruyt−1 + bu)

cell state : ht = ut ⊗ h̃t + ft ⊗ ht−1

output gate :t= σ(Wxt + Ryt−1 + b)
output : yt =t ⊗g2(ht)

(1)

where xt is the input vector at t time; W f , Wh, Wu, and W are the weight matrices associated with the
input unit; R f , Rh, Ru, and R are the weight matrices for hidden layer connections; b f , bh, bu, and b are
bias vectors; σ is the sigmoid or tanh function; g1 and g2 are the non-linear activation functions; and ⊗
denotes the dot product operation.

2.2. Training Method of the SLSTM Network

The architecture of the SLSTM network is shown in Figure 2. It consists of n LSTM layers and one
fully connected layer. To reduce the model dimensions, the nth LSTM layer outputs a one-dimensional
vector. The SLSTM network consists of two processes: forward computation and back propagation.

Similar to an artificial neural network (ANN), the forward calculation of the SLSTM network is
given by

Yt = V f (UXt + W f (UXt−1 + W f (UXt−2 + · · · ))) (2)

where U is the weight matrix of input X, W is the weight matrix of this input from the previous state
ht−1, f is the activation function, and V is the weight matrix of output layer.

On the other hand, the SLSTM network uses the back propagation through time (BPTT)
algorithm [30]. The main idea of the BPTT algorithm is to train the SLSTM network using a
back propagation algorithm after it is unfolded. Specifically, the error between the actual output
and the expected output is calculated, and then the weight matrix is adjusted by the minimum error.
Finally, the weight gradient is obtained and updated iteratively.
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Figure 2. Architecture of the stack long short-term memory (SLSTM) network. 
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3. Dynamic Forecasting Model Based on VMD-SLSTM Network

3.1. Variational Mode Decomposition

Unlike EMD, the intrinsic mode function (IMF) in VMD is redefined as an amplitude
modulated–frequency modulated signal uk(t), as follows [31]:

uk(t) = Ak(t) cos(φk(t)) (3)

where Ak(t) and φk(t) are the instantaneous amplitude and phase.
In VMD, to obtain IMF components, the signal stripping method used in EMD is discarded.

Instead, after setting the parameters such as the mode number K, the penalty parameter a, and the
rising step τ, the signal is decomposed by finding the optimal solution of the model shown below in
the variational framework:

min
{uk},{ωk}

{
K∑

k=1
‖∂t

[
(σ(t) + j

πt )uk(t)
]
e− jωkt

‖
2

2

}
s.t.

K∑
k=1

uk = f (t)

 (4)

where {uk} is the component that is finally obtained by decomposition; {ωk} = {ω1, . . . ,ωK} is the
actual center frequency of each IMF component, [σ(t) + j/(πt)]uk(t) is the analytical signal of each
IMF component, e− jωkt is the estimated center frequency of each analytical signal, and f (t) is the
original signal.

To solve for the optimal solution of the constrained variational model, Equation (4) needs to be
transformed into an unconstrained model, as follows:

L({uk}, {uk}, λ) =

a
∑
k
‖∂t

[
(σ(t) + j

πt )uk(t)
]
e− jωkt

‖
2

2
+ ‖ f (t) −

∑
k

uk(t)‖
2

2
+

〈
λ(t), f (t) −

∑
k

uk(t)
〉

(5)

where λ is the Lagrange multiplier.
The saddle point of the unconstrained model is obtained by using the alternating direction

multiplier algorithm, which is the optimal solution of the constrained variational model. Hence,
the original signal f (t) is decomposed into K IMF components.
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3.2. VMD-SLSTM Forecasting Model

The landslide displacement-time curve is a non-stationary time series. If a forecasting model
is applied directly to the landslide displacement, it is very difficult to learn the intrinsic law of
displacement change. A better idea is to decompose the original displacement into several stationary
subsequences that are more suitable for modeling.

Figure 3 shows the landslide displacement forecasting flow chart based on the VMD-SLSTM
network. The landslide displacement is decomposed into K components by the VMD algorithm.
On the other hand, the SLSTM network is used to forecast each component. Hence, the forecast values
of landslide displacement are obtained by reconstructing the forecast values of all components.
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3.3. Dynamic Forecasting Process

For landslide displacement [y1, y2, · · · , yt−1], to forecast the displacement value at t + q time,
Figure 4 shows the dynamic forecasting process based on VMD-SLSTM network. The main steps are
as follows:
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Step 1 The displacement is decomposed into K components by the VMD: [pi
1, pi

2, · · · , pi
t−1] with

i = 1, 2, · · · , K.
Step 2 Each component p̂i

t is forecasted using the SLSTM network, respectively.
Step 3 The sum of K forecast components denotes the final forecast displacement ŷt.
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Step 4 Each forecast component p̂i
t is added to the input, and the SLSTM network is updated to

forecast the next value.
Step 5 Steps 2–4 are repeated q times, and the sum of each forecast component p̂i

t+q denotes the
final forecast displacement ŷt+q.

To evaluate the forecast accuracy of the VMD-SLSTM network, mean absolute error (MAE) and
root mean square error (RMSE) are adopted, which are defined as follows:

RMSE =

√√√
1

q + 1

t+q∑
i=t

(ŷi − yi)
2 (6)

MAE =
1

q + 1

t+q∑
i=t

∣∣∣ŷi − yi
∣∣∣ (7)

4. A Real Application Case

4.1. Dashuitian Landslide

The Dashuitian landslide is located in Baiquan Village, Longjing Township, Wushan County,
Chongqing City, China, as shown in Figure 5. In this paper, the landslide is taken as the research object.
It is located at an elevation of 340.8–482.5 m and has a relative height of 141.7 m. The topographic
cutting depth is generally about 110 m, and the largest cutting depth is 150 m. The landslide is located
at the waist of the hillside, lying north to south tilt. The slope of the landslide ranges from 15◦ to 35◦.
The hillside is mainly planted with crops. The slope foot of the landslide is steeper, while the slope
body and top are relatively gentle. The landslide tends to the north with a width of 400 m and a length
of 380 m. The thickness of the overlying loose layer is generally 1.0–6.4 m.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 12 
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Figure 5. Location of the Dashuitian landslide in China.

To ensure the safety of people’s lives and property, the Dashuitian landslide has been professionally
monitored since 1 March 2009. Three GPS displacement detectors were installed to measure the
deformation of the landslide. Monitoring point A1 was installed at the trailing edge of the landslide,
where many cracks had developed. In this paper, the displacements measured at monitoring
point A1 were used to establish a forecast model. The displacement was monitored every 10 days,
and 36 measured values were obtained when the deformation monitoring ended on 1 March 2010.
The landslide has an undulating oscillation characteristic due to non-periodic factors such as rainfall
and human engineering activities during the evolution process, as shown in Figure 6.
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4.2. Forecast Results Using the VMD-SLSTM Network

In the experiment, the measured data from the first 260 days were used as a training set, and the
remaining data were used as a testing set. To ensure the fidelity after displacement decomposition,
the penalty parameter a = 0.5 and the rising step τ = 0.1 were finally determined through multiple
trial calculations. After several tests, it was considered that K = 3 has better decomposition effect.
Figure 7 shows the decomposition results of original displacement for the training set.
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Figure 7. Decomposition results of original displacement for training set.

Next, the SLSTM network with “3 + 1” layers (3 LSTM layers and 1 fully connected layer)
was built to learn the training set. To improve the convergence speed of the network, the data
was normalized to have the same mean 0 and standard deviation 1 by Z-score. Figure 8 shows the
forecast results of displacement subsequences using SLSTM networks. It can be seen that the forecast
curve of each component conforms intuitively to the changing trend of the corresponding observed
displacement subsequence.
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Finally, the forecast results of the landslide displacement were obtained by reconstructing the
forecast results of all displacement subsequences. Figure 9 shows the forecast results and errors of
landslide displacement. It can be seen that the forecast curve can follow the observed curve well,
indicating that the proposed model is valid. It is noted that after 320 days, the forecast results are not
ideal. This is because although the forecast values are retrained, the accumulated errors will continue
to impair the network performance.
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4.3. Comparison with Other Forecasting Models

To demonstrate the superiority of the proposed VMD-SLSTM network, two advanced forecasting
models—the EMD-LSTM network [21] and the LSTM network [32]—are used for comparison. Figure 10
shows the forecast results of landslide displacement using the three forecasting models. It can be seen
that the forecast results of the LSTM network are the worst. This is because the original landslide
displacement-time curve is a non-stationary oscillation curve, and it is difficult to learn the law of
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displacement change if the LSTM network is used directly. The forecast curve of EMD-LSTM network
fluctuates regularly, while that of VMD-SLSTM network can follow the observed curve well.
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Figure 10. Forecast results of landslide displacement using three forecasting models: VMD-SLSTM,
empirical mode decomposition (EMD)-SLSTM, and LSTM.

Table 1 reports the mean absolute error (MAE) and root mean square error (RMSE) of the forecast
results using the three forecasting models. It can be seen that the MAE of the VMD-SLSTM network
is 1.99 mm, lower than the 3.99 mm of the LSTM network and 2.25 mm of the EMD-LSTM network.
On the other hand, the RMSE of the EMD-SLSTM network is 2.50 mm, lower than the 4.15 mm of the
LSTM network and 2.76 mm of the EMD-SLSTM. These results show that the VMD-SLSTM network
outperforms the LSTM network and EMD-LSTM network.

Table 1. Forecast errors of landslide displacement using three forecasting models.

Model MAE/mm RMSE/mm

LSTM network 3.99 4.15
EMD-LSTM network 2.25 2.76

VMD-SLSTM network 1.99 2.50

5. Conclusions

In this work, a dynamic forecasting model based on variational mode decomposition (VMD) and
stack long short-term memory network (SLSTM) is proposed. The proposed model is successfully
applied to the Dashuitian landslide in China. Compared with the two advanced forecasting models—the
LSTM network and the EMD-LSTM network—the proposed model has higher forecast accuracy.

The use of the VMD method, which is backed by mathematical theory, is proposed to solve the
problem of the incomplete or excessive decomposition problems caused by traditional methods such
as EMD and EEMD. The landslide displacement is decomposed into stable and fixed components by
the VMD method, which lays the foundation for each component forecasting task.

The use of the SLSTM network, which is a novel predictor that can remember historical information,
is proposed to conduct each component forecasting task. As a deep learning method, the SLSTM network
improves the network forecasting performance through stacking LSTM layers. Finally, the forecast
values of landslide displacement are obtained by reconstructing the forecast values of all components.

Considering that the proposed forecasting model only achieves slightly better performance than
the EMD-LSTM network when the dataset is small, the VMD-SLSTM network is promising if the dataset
is expanded in future work. In addition, the complexity of the SLSTM network makes parameter
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training more difficult. If better network parameters are trained, the prediction accuracy can be further
improved. The residual compensation for the forecasting model should also be paid more attention.
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Nomenclature

Acronyms Notations
ANN artificial neural network a penalty parameter
BPTT back propagation through time Ak instantaneous amplitude

EEMD ensemble empirical mode decomposition b f , bh, bu, b bias vectors
EMD empirical mode decomposition g1, g2 non-linear activation functions
GPS global positioning system ht state of cell at t time
IMF intrinsic mode function h̃t candidate state of cell

LSTM long short-term memory K mode number
MAE mean absolute error R f , Rh, Ru, R weight matrices of hidden layer connections
RMSE root mean square error U weight matrix of input
RNN recurrent neural network uk amplitude modulated-frequency modulated signal

SLSTM stack long short-term memory network V weight matrix of output
VMD variational mode decomposition W f , Wh, Wu, W weight matrices associated with the input unit

X input matrix of network
Y output matrix of network
τ rising step
λ Lagrange multiplier
ωk actual center frequency
φk instantaneous phase
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