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Abstract: In this paper, a new form-finding analysis methodology for a class 2 tensegrity robot
is proposed. The methodology consists of two steps: first, the analysis of the possible geometric
configurations of the robot is carried out through the results of the kinematic position analysis; and,
second, from the static analysis, the equilibrium positions of the robot are found, which represents
its workspace. Both kinematics and static analysis are resolved in a closed-form using basic tools of
linear algebra instead of the strategies used in literature. Four numerical experiments are presented
using the finite element analysis software ANSYS c©. Additionally, a comparison between the results
of the form-finding analysis methodology proposed and the ANSYS c© results is presented.
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1. Introduction

A tensegrity system is established when a discontinuous set of compression components interacts
with a continuous set of tension components to define a stable volume in space [1]. The biggest
advantage of tensegrity systems is their low weight and high stiffness, which makes them particularly
good for many applications from architecture to robotics. It should be mentioned that the components
of tensegrity systems are subject only to axial loads.

Due to their characteristics, tensegrities can be considered as biomimetic structures and have
shown the capability to create lightweight, strong and fault tolerant robots with latent potential
for applications such as a spine-like tensegrity moving robot [2] and a bio-inspired tensegrity
manipulator [3], which resembles the biomechanics of a human arm. Researchers consider this
as an opportunity to include tensegrity robots in the field of soft robotics due to their biological
inspiration and inherent ability to combine stiff elements with soft materials to create deformable
robots [4,5]. Some examples found in the literature are the soft robotic muscle by Xiang et al. [6] and
the soft robotic system by Cheng et al. [7], both of which use a combination of springs and electric
muscles to modify their shape.

There exists a way to distinguish between various types of tensegrity systems that fit in the
general tensegrity definition established by Skelton and Oliveira: “A tensegrity configuration that has
no contacts between its rigid bodies is a class 1 tensegrity system, and a tensegrity system with as
many as k rigid bodies in contact is a class k tensegrity system” [8].

Tensegrity prisms are the simplest topological family of tensegrity systems where the basic
arrangement consists of two equal polygons in parallel planes joined by members at their vertices;
the polygons do not necessarily have to keep the same size or remain in parallel planes [9]. However,
if it is assumed that the shapes of the upper and lower polygons do not change, platforms can be
coupled at the end of the system. As a result, this device is a parallel device [10].

Appl. Sci. 2019, 9, 2948; doi:10.3390/app9152948 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-1332-5173
https://orcid.org/0000-0002-0922-0507
https://orcid.org/0000-0001-8598-5600
https://orcid.org/0000-0001-6968-9772
http://www.mdpi.com/2076-3417/9/15/2948?type=check_update&version=1
http://dx.doi.org/10.3390/app9152948
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 2948 2 of 15

The structure proposed by Manríquez et al. [11] possesses these characteristics, including a
system of combined flexible elements formed by a spring attached to a cable with a fixed length,
where the length of its cables can be adjusted using a system of pulleys coupled to two servomotors.
This mechanism was used as a case study, giving continuity to previous work where the study of
the kinematic analysis of the mechanism’s position was obtained using the geometric parameters
of Denavit–Hartenberg.

These new type of robots cannot be studied in the same way as conventional manipulators;
new strategies for their analyses are being proposed. For example, Hao et al. [12] presented a
mechanism composed of four pneumatic muscles, and they obtained its kinematic analysis with
geometric parameters. Greer et al. [13] presented a mechanism that combines pneumatic muscle,
a spring and a wire, the motion of which is similar to that presented in [6], and its kinematic
analysis is based on geometric parameters and arc length. Regarding the kinematic analysis of
tensegrity mechanisms, due to the presence of flexible components, its kinematics has been treated
differently. In conventional mechanisms, kinematics includes only the geometric properties of
motion. The joint variables of the mechanism are related to the position and orientation of the
end-effector and these relationships are the points of interest in the study of mechanisms kinematics.
By definition, in tensegrity systems, the equilibrium configuration must be maintained by the effect of
the internal forces of the arrangement of its components. Therefore, various authors, e.g., Arsenault and
Gosselin [14] and Shekarforoush et al. [15], considered that, in tensegrity mechanisms, the static and
kinematic analysis must be considered simultaneously. The aforementioned implies that they establish
the kinematic relationships of the mechanism based on the equations of static equilibrium.

In [15], Shekarforoush et al. presented two types of kinematic analysis. In the first one, the analysis
is performed independently, and the results are adjusted to meet the conditions of static equilibrium.
The second does not consider external loads applied to the mechanism, the static equations are found
from minimizing the potential energy of the mechanism, and the kinematic analysis is derived from
the static analysis.

For a complete analysis, tensegrities require a form-finding procedure, which typically requires
computing a critical parameter such as a twisting angle, a cable-to-strut ratio or a force-to-length
ratio [16].

Within the literature, there are different methodologies focused on the calculation of the critical
parameters above mentioned. Among them, there is the algorithm proposed by Pagitz et al. [17] to find
the form of a tensegrity structure, based on the theory of finite elements. Other authors used solution
search strategies based on genetic algorithms, e.g., Faroughi et al. [18], and Koohestani [19], the latter
of whom used genetic algorithms to transform the form-finding problem in a way that minimizes
an evaluation function based on the force density matrix of the structure. Some other form-finding
strategies found employ stochastic procedures to determine the different equilibrium configurations of
a tensegrity structure, e.g., Feng et al. [20] who used a Monte-Carlo type method as a search engine for
possible equilibrium configurations.

Similarly, Feng and Guo [21] presented a form-finding strategy that consists of a numerical
algorithm designed to find the equilibrium position of class 1 and 2 tensegrity structures,
without generating a hypothesis about the initial nodal coordinates, the lengths of the elements,
the properties of the material, the symmetry of the structure or the condition of the force density matrix.
Obara et al. [22] used a qualitative analysis of truss matrices, which consist of the compatibility matrix
and stiffness matrix with the effect of self-equilibrated forces, established using the finite element
method, to search for a 2D tensegrity form. In addition to the methods already mentioned, Bayat and
Crane [23,24] proposed a form-finding method based on the geometric relationships between its
elements, for a tensegrity structure in two dimensions.

In this paper, the proposed methodology for the form-finding analysis consists in performing the
forward kinematic position analysis in combination with the static analysis for each of the geometrical
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configurations to find all states of self-equilibrium for which the internal forces can oppose to the
external forces applied to the robot.

2. Kinematic Position Analysis

In this section, both the forward and inverse kinematic position analyses of the class 2 tensegrity
robot are presented using the Denavit–Hartenberg parameters. The tensegrity robot used as a case of
study in this study was presented in Manríquez et al. [11]. This robot is one of the few presented in the
literature as a class 2 tensegrity robot, and the inspiration of its design is for biomechanical applications.

2.1. Forward Kinematic Position Analysis

Figure 1 shows the class 2 tensegrity robot, which is composed of two rigid substructures joined
at one end by a universal joint, and four flexible elements at the remaining ends: two cables, C1 and
C2, and two springs, r1 and r2.

Figure 1. Class 2 tensegrity robot.

To maintain this paper to be self-contained, the solution proposed by Manríquez et al. [11] is
presented. This strategy consists of using the Denavit–Hartenberg parameters, contained in Table 1,
as well as the auxiliary reference frames ΣW , ΣM1 and ΣM2 , which represent the reference frame of the
base, the cable joint C1 and the cable joint C2, respectively, shown in Figure 2.

Table 1. Denavit–Hartenberg parameters of the structure.

i di θi ai αi
mm rad mm rad

1 0 θ1 0 −π/2
2 0 θ2 a2 π/2
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Figure 2. Reference frames.

With the geometric parameters of the robot and the reference frames, the rigid links that make up
the robot are analyzed following the Denavit–Hartenberg methodology [25], resulting in the following
homogeneous transformation matrices:

W T0 =


1 0 0 l1
0 1 0 0
0 0 1 0
0 0 0 1

 (1)

0T1 =


cθ1 0 −sθ1 0
sθ1 0 cθ1 0
0 −1 0 0
0 0 0 1

 (2)

1TM =


cθ2 0 sθ2 a2 · cθ2

sθ2 0 −cθ2 a2 · cθ2

0 1 0 0
0 0 0 1

 (3)

MTM1 =


1 0 0 0
0 1 0 l∗2
0 0 1 −l∗2
0 0 0 1

 (4)

MTM2 =


1 0 0 0
0 1 0 −l∗2
0 0 1 l∗2
0 0 0 1

 (5)

where l∗2 = l2
2 , sθi ≡ sin(θi) and cθi ≡ cos(θi) for i = 1, 2.

By multiplying Equations (1)–(5), the relative position and orientation of ΣM1 and ΣM2 with
respect to ΣW is obtained, that is:

W TM1 = W T0 · 0T1 · 1TM · MTM1 (6)
W TM2 = W T0 · 0T1 · 1TM · MTM2 (7)
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Then, the position of the origins of ΣM1 and ΣM2 with respect to ΣW are given by:

W PM1 =

cθ1 · (−sθ2 · l∗2 + a2 · cθ2)− sθ1 · l∗2 + l1
sθ1 · (−sθ2 · l∗2 + a2 · cθ2) + cθ1 · l∗2

−cθ2 · l∗2 − a2 · sθ2

 (8)

W PM2 =

cθ1 · (sθ2 · l∗2 + a2 · cθ2) + sθ1 · l∗2 + l1
sθ1 · (sθ2 · l∗2 + a2 · cθ2)− cθ1 · l∗2

cθ2 · l∗2 − a2 · sθ2

 (9)

To determine the variations in the length of the cables C1 and C2, the base points B1 and B2 must
be defined (see Figure 2).

The points B1 and B2 are defined with respect to ΣW , and they can be expressed as:

W PB1 =
[

B1x B1y B1z

]T
(10)

W PB2 =
[

B2x B2y B2z

]T
(11)

Using Equations (8)–(11), the lengths of C1 and C2 regarding the joint variables θ1 and θ2 are
given by:

LC1
=

√
(PM1x

− B1x )
2 + (PM1y

− B1y )
2 + (PM1z

− B1z )
2 (12)

LC2
=

√
(PM2x

− B2x )
2 + (PM2y

− B2y )
2 + (PM2z

− B2z )
2 (13)

Equations (12) and (13) allow calculating the position and orientation of the end-effector,
represented by ΣM based on the cable lengths.

2.2. Inverse Kinematic Position Analysis

For the proposed class 2 tensegrity robot, the inverse kinematic position analysis consists on
finding the joint variables θ1 and θ2, to determine the lengths of the cables C1 and C2 according to a
desired position and orientation of reference frame ΣM.

Then, the desired position and orientation of ΣM with respect to ΣW can be expressed by:

W TM =


t11 t12 t13 xm

t21 t22 t23 ym

t31 t32 t33 zm

0 0 0 1

 (14)

From this, it is possible to obtain W TM =W T0 ·0 T1 ·1 TM, thus:

W TM =


cθ1 · cθ2 −sθ1 cθ1 · sθ2 l1 + a2 · cθ1 · cθ2

sθ1 · cθ2 cθ1 sθ1 · sθ2 a2 · cθ2 · sθ1

−sθ2 0 cθ2 −a2 · sθ2

0 0 0 1

 (15)

Furthermore, relating Equations (14) and (15), the joint variables θ1 and θ2 are obtained as:

θ1 = atan2
(

t23
t13

)
(16)

θ2 = atan2
(
−t31
t33

)
(17)
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Thus, Equations (16) and (17) are the joint variables for a desired position and orientation of ΣM.
Then, the length of the cables C1 and C2 can be obtained using Equations (12) and (13), respectively.

3. Static Analysis

For a tensegrity robot, the kinematic position analysis does not provide sufficient conditions to
determine whether the robot can adopt a particular geometric configuration. This is because tensegrity
robots can only adopt geometrical configurations of equilibrium, i.e., geometric configurations in
which the forces exerted by the flexible elements, only tension forces, can oppose to both the forces
exerted by the rigid elements, only compression forces, and the external forces applied to the robot.
Consequently, it is necessary to complement the forward position kinematic analysis with the static
analysis of the robot to determine if a particular geometric configuration is a geometric configuration
of equilibrium.

In general, if a rigid body is subjected to the action of multiple forces, ~f1, ~f2, . . . , ~fn, as shown in
Figure 3, it is possible to find an equivalent force-torque system that imprints the same physical effect
on the rigid body as the original force system [26] (Figure 4).

Figure 3. Original force system.

Figure 4. Equivalent force system.

The equivalent force, ~fe, and the equivalent moment, ~meO , acting on the rigid body B, are given,
respectively, by:

~fe =
n

∑
i=1

~fi (18)

~meO =
n

∑
i=1

~mOi (19)
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If the equivalent force–torque system described in the Equations (18) and (19) equals zero,
the external forces form a zero-equivalent system, and the rigid body is said to be in equilibrium.
The conditions of the equilibrium above can be expressed in general terms as:

~fe =
n

∑
i=1

~fi =~0 (20)

~meO =
n

∑
i=1

~mOi =
~0 (21)

Equations (20) and (21) are taken as a basis in the development of the static analysis of the class 2
tensegrity robot. Additionally, the origin of the Σ0 framework, attached to the center of the rotation
axis of the first joint joined to the fixed base of the robot, is used as a point of reference for calculating
displacements, forces and moments contained in the elements of the robot. Similarly, the ΣM frame,
attached to the center of the moving platform, is used to describe the desired geometric configuration,
i.e., the coordinates of the moving reference system as well as the lengths of the flexible elements.
Additionally, it is considered that the weight of the moving platform is concentrated in the centroid, G.
Based on the previous considerations, the problem of static analysis can be posed as follows:

From the forward and inverse kinematics of position analyses are obtained:

• The lengths LC1
and LC2

correspond to cables C1 and C2, respectively.
• The lengths Lr1 and Lr2 correspond to springs r1 and r2, respectively.
• The position and orientation of the reference frameworks ΣM, ΣM1 , ΣM2 , ΣR1 and ΣR2 are with

respect to the reference framework ΣW .

Furthermore, the total mass of the robot is known.
The static analysis requires knowing the set of forces applied by the flexible elements on the

moving platform to ensure that the robot is in a geometric equilibrium configuration, according to the
conditions described in Equations (20) and (21).

When replacing the fixed base, as well as the flexible elements by the forces and moments that the
aforementioned elements exert on the moving platform, it results in the free-body diagram used for
the static analysis shown in Figure 5.

Figure 5. Free-body diagram of the moving platform.

Forces ~fC1 and ~fC2 refer to the forces exerted by cables C1 and C2, respectively, on the moving
platform. Similarly, forces ~fR1 and ~fR2 denote the forces exerted by the springs r1 and r2, respectively.
Force ~fW represents the force exerted by the action of gravity on the moving platform applied to the



Appl. Sci. 2019, 9, 2948 8 of 15

centroid, G, of the robot. Finally, the force-torque system composed by the force ~f joint and the moment
~mjoint represents the reaction force and moment exerted by the universal joint on the moving platform.

Applying the equilibrium conditions embodied in Equations (20) and (21):

~fC1 +
~fC2 +

~fR1 +
~fR2 +

~fW + ~f joint = ~0 (22)

~rM1/0 × ~fC1 +~rM2/0 × ~fC2 +~rR1/0 × ~fR1 +~rR2/0 × ~fR2 +~rG/0 × ~fW + ~mjoint = ~0 (23)

From the solution of Equations (22) and (23), the magnitudes of the forces and moments
∣∣∣~fC1

∣∣∣,∣∣∣~fC2

∣∣∣, ∣∣∣~fR1

∣∣∣, ∣∣∣~fR2

∣∣∣, ∣∣∣~f joint

∣∣∣ and
∣∣~mjoint

∣∣ are obtained, which ensures that the tensegrity robot is in
static equilibrium.

4. Form Finding Analysis

In this section, we present the proposed methodology for the form-finding analysis of the class 2
tensegrity robot, including a numerical example applying this methodology.

4.1. Methodology Proposed

The proposed methodology for the form-finding analysis of the class 2 tensegrity robot analyzed
in this paper consists of finding all the possible geometric configurations of equilibrium that the robot
can adopt. This is by performing the forward kinematic position analysis in combination with the
static analysis for each of the geometrical configurations defined by the joint variables θ1 and θ2.

The geometric configurations analyzed were defined through the set of joint coordinates
{

θ1i , θ2i

}
.

For each θ1i , there exists a set Λi =
{

θ2j

}
with j = 1, 2, ..., n, and i = 1, 2, ..., n. Thus,

Λi =
{

θ21 , θ22 , θ23 , ..., θ2n

}
(24)

Then, it is possible to get a set Ω that satisfies Equations (22) and (23), i.e.,

Ω =

{
θ1i , Λi : ~fC1 +

~fC2 +
~fR1 +

~fR2 +
~fW + ~f joint = ~0,

~rM1/0 × ~fC1 +~rM2/0 × ~fC2 +~rR1/0 × ~fR1 +~rR2/0 × ~fR2 +~rG/0 × ~fW + ~mjoint = ~0
}

(25)

By solving the system of equations obtained by the equilibrium conditions embodied in
Equations (22) and (23) for each of the n geometrical configurations, the magnitudes of the forces
and moments

∣∣∣~fC1i

∣∣∣, ∣∣∣~fC2i

∣∣∣, ∣∣∣~fR1i

∣∣∣, ∣∣∣~fR2i

∣∣∣, ∣∣∣~f jointi

∣∣∣, and
∣∣~mjointi

∣∣ corresponding to the ith geometric
configuration analyzed are obtained.

Furthermore, to consider a particular geometrical configuration as geometric equilibrium
configuration, it is necessary that the values of the forces and moments calculated comply with
the condition ∣∣∣~fC1i

∣∣∣ ≥ 0 ,
∣∣∣~fC2i

∣∣∣ ≥ 0∣∣∣~fR1i

∣∣∣ ≥ 0 ,
∣∣∣~fR2i

∣∣∣ ≥ 0∣∣∣~f jointi

∣∣∣ ≤ 0 ,
∣∣~mjointi

∣∣ = 0

(26)

By fulfilling the conditions of Equation (26), it is ensured that the class 2 tensegrity robot is in
equilibrium and, moreover, it is ensured that the forces contained in its flexible elements are only
tension forces while the forces contained in the rigid elements are exclusively compression forces.
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Then, Equation (25) can be constrained using Equation (26) as follows:

Ω =

{
θ1i , Λi :

∣∣∣~fC1i

∣∣∣ ≥ 0,
∣∣∣~fC2i

∣∣∣ ≥ 0,
∣∣∣~fR1i

∣∣∣ ≥ 0,
∣∣∣~fR2i

∣∣∣ ≥ 0,
∣∣∣~f jointi

∣∣∣ ≤ 0,
∣∣~mjointi

∣∣ = 0
}

(27)

4.2. Numerical Example

For the implementation of the methodology presented in the previous section, the geometric
specifications listed in Table 2 are proposed.

Table 2. Form-finding parameters.

Definition Variable Value

Distance from the common point of the axes θ1 and θ2 to the moving platform a2 210 mm
Distance from the fixed base to the common point of the axes θ1 and θ2 l1 190 mm
Width of the moving platform l2 220 mm
Initial condition of θ1 θ1,1 −0.5236 rad
Initial condition of θ2 θ2,1 −0.5236 rad
Joints coordinate increment ∆θ 0.0087 rad
Number of geometrical configuration analyzed n 14761
Initial x coordinate of the centroid, G, with respect to the reference frame ΣW xce 354.0442 mm
Initial y coordinate of the centroid, G, with respect to the reference frame ΣW yce 0 mm
Initial z coordinate of the centroid, G, with respect to the reference frame ΣW zce 76.4886 mm
Mass of the moving platform m 0.4732 kg

By substituting the parameters listed in Table 2 in the forward kinematic of position
(Equations (6)–(13)), the coordinates of M, M1, M2, r1, and r2 are obtained (see Figure 2), as well
as the middle points of the superior base known by design B1, B2, B3, B4, Σ0, and G. With the
aforementioned information, the numerical evaluation of Equation (25) is computed, providing a
matrix of points, as shown in blue in Figure 6, which represents the possible geometric configurations
of the class 2 tensegrity robot. However, only the matrix of points represented in red in Figure 6 fulfill
the equilibrium conditions represented by Equation (27), i.e., the workspace of the robot.

Z Axis

X
 A

x
is

150-200100500 -100-50

340

350

360

-100

370

380

390

-150

400

Y Axis

0
100

200

Figure 6. Three-dimensional workspace of the class 2 tensegrity robot.

Figure 7 shows the geometric configurations analyzed, in the Y–Z plane. In this plane, the set
of geometric equilibrium configurations (red points) within which the class 2 tensegrity robot can
migrate from one geometric configuration to another without collapsing in the process can be seen.
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-150 -100 -50 0 50 100 150

Y Axis

-150

-100

-50

0

50

100

150

Z
 A

x
is

Figure 7. Y–Z plane of the workspace for the class 2 tensegrity robot.

5. Numerical Experiments

This section presents the numerical examples used to corroborate and compare the results obtained
from the static analysis using Equations (22) and (23) and static analysis using ANSYS c©. Four different
cases were reviewed, choosing values of the joint variables for positions within the workspace of the
tensegrity robot.

The parameters remain the same from the previous section, and the selected values for the joint
variables are shown in Table 3.

Table 3. Selected positions for static analysis.

Experiment θ1 (rad) θ2 (rad)

1 0.0941 0.0332
2 0.0854 −0.0277
3 −0.0625 0.0245
4 −0.0799 −0.0364

The geometrical configurations adopted by the robot for these values of θ1 and θ2 were tested
using Equations (22) and (23) and were found to be in static equilibrium satisfying Equation (27). Now,
to corroborate these results, the software ANSYS c© was used to perform a static analysis on a model of
the moving platform oriented in the desired analysis position, adequately constrained, to check if this
truly is a configuration capable of maintaining static equilibrium.

To create a reliable model of the tensegrity robot, BEAM188 elements were used to represent the
rigid bars, since this type of elements is suitable for analyzing slender 3D beam structures. The element
has two nodes and six degrees of freedom at each node.

For the two cables C1 and C2, LINK180 element was selected. LINK180 is a 3D spar used
to model trusses, sagging cables, links, and springs, among others. The element is a uniaxial
tension–compression element with three degrees of freedom at each node.

Finally, for the two springs r1 and r2, COMBIN14 elements were chosen, which is a uniaxial
tension–compression element with up to three degrees of freedom at each node used to represent
combined spring–damper elements. The type of elements used for the discretization of the moving
platform of the class 2 tensegrity robot for the simulation in software ANSYS c© is shown in Table 4.
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Table 4. Type of elements.

Element Number Physical Element Element Type

1 Rigid elements BEAM188
2 Cable C1 LINK180
3 Cable C2 LINK180
4 Spring r1 COMBIN14
5 Spring r2 COMBIN14

Figure 8a shows the graphic form of the data mentioned in Table 4. Figure 8b shows the nodes
of the discretized elements. Nodes 1–4 represent the union of the flexible elements with the moving
platform, boundary conditions for which are constrained in translation and rotation in all directions.
Node 8 represents the universal joint which boundary conditions are constrained in translation in all
directions and the rotation around the X-axis. Node 9 represents the centroid of the moving platform,
which is where an external force corresponding to gravity is applied. On the other hand, Nodes 10–16
have neither constraints nor applied forces.

(a) Element Type (b) Node Numbering

Figure 8. Class 2 tensegrity robot model in ANSYS c©.

Figure 9 shows graphically the geometric configurations listed in Table 3 for each of the
numerical experiments.

Figure 10 shows results from the software ANSYS c© of the four numerical experiments.
In addition, a comparative table between the values obtained from the proposed method and the
software for each experiment is shown in Table 5. Notice that, in ANSYS c©, Elements 20–23 represent
cable C1, cable C2, spring r1 and spring r2, respectively. In addition, Node 8 is the point where the
universal joint is located, meaning that force and moment reactions in this node are the reactions of the
joint. The results in Table 5 show that the error percentage increases as the geometric configurations of
equilibrium of the class 2 tensegrity robot approaches the blue points matrix shown in Figures 6 and 7.

The results of the proposed methodology are proven with the results of the numerical experiments.
In addition, these results guarantee that the class 2 tensegrity robot is in equilibrium for the geometric
configuration analyzed.
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(a) Experiment 1 (b) Experiment 2

(c) Experiment 3 (d) Experiment 4

Figure 9. Geometric configurations analyzed.

(a) Experiment 1 (b) Experiment 2

(c) Experiment 3 (d) Experiment 4

Figure 10. Static analysis results obtained from ANSYS c©.
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Table 5. Comparison between analytical and software results.

Experiment 1

Analytical ANSYS c© Error∣∣∣~fC1

∣∣∣ 0.28507 N 0.26909 N 5.60%∣∣∣~fC2

∣∣∣ 0.36316 N 0.34520 N 4.94%∣∣∣~fR1

∣∣∣ 4.5394 N 4.5399 N 0.01%∣∣∣~fR2

∣∣∣ 4.5765 N 4.5759 N 0.01%∣∣∣~f joint

∣∣∣ 5.1333 N 5.0993 N 0.66%∣∣∣~mjoint

∣∣∣ 0.97461 N·mm 0.97163 N·mm 0.30%

Experiment 2

Analytical ANSYS c© Error∣∣∣~fC1

∣∣∣ 4.6879 N 4.5984 N 1.90%∣∣∣~fC2

∣∣∣ 4.7231 N 4.6288 N 1.99%∣∣∣~fR1

∣∣∣ 0.14290 N 0.14785 N 3.46%∣∣∣~fR2

∣∣∣ 0.21225 N 0.20779 N 2.10%∣∣∣~f joint

∣∣∣ 5.1331 N 4.9498 N 3.57%∣∣∣~mjoint

∣∣∣ −0.74492 N·mm −0.73097 N·mm 1.87%

Experiment 3

Analytical ANSYS c© Error∣∣∣~fC1

∣∣∣ 4.4108 N 4.2653 N 3.29%∣∣∣~fC2

∣∣∣ 4.3877 N 4.2470 N 3.20%∣∣∣~fR1

∣∣∣ 0.51232 N 0.50689 N 1.05%∣∣∣~fR2

∣∣∣ 0.45902 N 0.46487 N 1.27%∣∣∣~f joint

∣∣∣ 5.1324 N 4.8467 N 5.56%∣∣∣~mjoint

∣∣∣ −0.47259 N·mm −0.45867 N·mm 2.94%

Experiment 4

Analytical ANSYS c© Error∣∣∣~fC1

∣∣∣ 0.71580 N 0.63767 N 10.91%∣∣∣~fC2

∣∣∣ 0.64452 N 0.57423 N 10.90%∣∣∣~fR1

∣∣∣ 4.2162 N 4.2147 N 0.03%∣∣∣~fR2

∣∣∣ 4.1898 N 4.1912 N 0.03%∣∣∣~f joint

∣∣∣ 5.1328 N 4.9843 N 2.89%∣∣∣~mjoint

∣∣∣ 0.88771 N·mm 0.87524 N·mm 1.40%
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6. Conclusions

This paper presents the form-finding analysis methodology for a class 2 tensegrity robot, which is
classified in part of the literature as a soft robot because its structure presents a combination of rigid
elements and mostly flexible elements. Two-thirds of the class 2 tensegrity robots analyzed as a case of
study in the present work are flexible elements.

The form-finding analysis methodology employs basic tools of linear algebra instead of the
strategies used in the literature, which uses genetic algorithms and neural networks, among others.
The methodology consists of two steps: kinematic analysis and static analysis. The analysis of the
possible geometric configurations of the robot is carried out through the results of the kinematic
position analysis; nevertheless, it must guarantee which of those geometric configurations so that the
robot does not collapse. From the static analysis, the equilibrium positions of the robot are found,
which represents the workspace within which the class 2 tensegrity robot can migrate from one
geometric configuration to another without collapsing in the process.

Four points of the workspace were selected to perform numerical experiments using the finite
element analysis software ANSYS c©, which proved the results of the proposed methodology. It also
verified that the robot is in equilibrium with the geometric configuration analyzed. The results shown
in Table 5 give a reference to develop a prototype for the class 2 tensegrity robot.
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