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Abstract: One of the recent news headlines is that a pedestrian was killed by an autonomous vehicle
because safety features in this vehicle did not detect an object on a road correctly. Due to this accident,
some global automobile companies announced plans to postpone development of an autonomous
vehicle. Furthermore, there is no doubt about the importance of safety features for autonomous
vehicles. For this reason, our research goal is the development of a very safe and lightweight
camera-based blind spot detection system, which can be applied to future autonomous vehicles.
The blind spot detection system was implemented in open source software. Approximately 2000
vehicle images and 9000 non-vehicle images were adopted for training the Fully Connected Network
(FCN) model. Other data processing concepts such as the Histogram of Oriented Gradients (HOG),
heat map, and thresholding were also employed. We achieved 99.43% training accuracy and 98.99%
testing accuracy of the FCN model, respectively. Source codes with respect to all the methodologies
were then deployed to an off-the-shelf embedded board for actual testing on a road. Actual testing
was conducted with consideration of various factors, and we confirmed 93.75% average detection
accuracy with three false positives.

Keywords: blind spot detection; deep learning; internet of things; embedded board

1. Introduction

Various global automobile companies are actively conducting research on development of an
autonomous vehicle. The autonomous vehicle, known as the self-driving vehicle, is a vehicle which
can perceive an environment and navigate without human intervention [1]. According to the Society of
Automotive Engineers (SAE), the technology of the autonomous vehicle is categorized into six levels,
and most global automobile companies have a plan to release a fully autonomous vehicle by 2020 [2].
Those six levels are summarized in Table 1 [3].

One of the well-known electric automobile companies in the USA has the most advanced
autonomous vehicle technology in the current market. Vehicles in this company have numerous
driving assistant features such as autopilot, summon, etc. [4]. Moreover, the autonomous vehicle
division of the most famous IT company located in Mountain View, USA, has conducted testing of the
fully self-driving vehicle in Arizona, USA since October 2017 [2].

However, the most important technical aspect to achieve fully autonomous driving is safety.
According to the accident report published in May 2016, a driver who operated an electric vehicle was
killed due to a collision with a semi-trailer on a highway in Florida, USA [3]. The main reason for this
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crash was that the vehicle was driven by the autopilot feature consisting of three systems: auto-steer,
Auto Lane Change System (ALCS), and Traffic-Aware Cruise Control (TACC), but the driver heavily
depended upon vehicle automation technologies which belong to level 2 in Table 1. One interesting
point from the accident report is that the level 2 technology does not show high system reliability. This
limitation of the vehicle automation technologies injects motivation into this research. Especially, this
research focused on the safety feature related to blind spot detection.

Table 1. Six levels of the autonomous driving technology.

Levels Description

Level 0 No Automation The driver fully takes responsibility to operate the vehicle.

Level 1 Driver Assistance The driver operates the vehicle with some driving assistance
features included in the vehicle.

Level 2 Partial Automation
Automated features such as auto-steering, auto-acceleration, etc.
need to be installed in the vehicle, and the driver needs to engage
in driving the vehicle and monitoring the environment.

Level 3 Conditional Automation The driver is not required to monitor the environment but needs
to control the vehicle when necessary.

Level 4 High Automation
The driver is required to optionally control the vehicle, and all
the driving functions in the vehicle are operated under
certain conditions.

Level 5 Full Automation The driver is required to optionally control the vehicle, and all the
driving functions in the vehicle are operated under all conditions.

Blind spot detection is a core technology in terms of the ALCS, as mentioned above. In addition,
4–10% of all traffic crashes refer to side-swipe accidents caused by blind spot detection [5]. For this
reason, giving an audio-visual warning to drivers is necessary when misdetection of the blind spot
occurs. Therefore, this study proposed development of the camera-based blind spot detection system
using a deep learning methodology.

This paper is organized as follows: Section 2 describes the technological aspects of the blind
spot detection system and provides a brief literature review. Section 3 presents methodologies and a
research framework for system development. Experimental results with pre-recorded video images
and live video images on a real road are discussed in Sections 4 and 5, respectively. Section 6 describes
conclusions, research limitations, and future work.

2. Related Work

There are two types of blind spot detection systems. The first type is radar sensors developed by
Robert Bosch GmbH, Germany, as shown in Figure 1 [6,7].

Figure 1. Radar module of the blind spot detection system.
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Electromagnetic wave-based two radar sensors are mounted in the rear bumper, and each sensor
measures a distance between a radar-equipped vehicle and an approaching vehicle [8]. This type of
the system gives visual alarm to the driver when the approaching vehicle is either very close to the
radar-equipped vehicle or in the blind spot. This system also gives audio alarm to the driver when the
radar-equipped vehicle changes a lane while the approaching vehicle is in the blind spot [8]. The main
issue of this system is that it does not detect very fast approaching vehicles and motorcycles well [8].

The second type is the camera-based blind spot detection system. One of the Japanese automobile
companies introduced this system in 2013. One camera is mounted underneath the side mirror on the
passenger side. This camera is activated when the right turn signal is on or a driver pushes the button
on the turn signal switch [9]. Figure 2 shows how this system works.

Figure 2. Camera-based blind spot system.

However, this camera-based system also has several issues: (i) the system provides a guideline to
see a distance between the system-equipped vehicle and target vehicle in the next lane through the
screen, but it does not give any visual or audible warning to drivers, unlike the radar-based blind spot
system; and (ii) the mounted camera is very vulnerable to rainwater and contaminants. For this reason,
many studies have been conducted to provide the reliable camera-based blind spot detection system.

The work in [10] proposed a vision-based blind spot detection system based on optical flow
techniques. This system is composed of four computational steps: (i) image processing; (ii) pixel-wise
clustering; (iii) analysis of clusters; and (iv) pattern recognition. The image processing step is
associated with separating relevant features from the environment due to the expectation of reducing
computational time. In this step, the Canny edge extractor is applied to the original incoming image
and pixels with a positive value are used for calculating optical flow. In the pixel-wise clustering
pixel, Canny edge pixels are grouped together to detect the clusters of pixels. Each cluster of pixels
is a candidate for vehicle objects in the processed image. To determine groups of pixels and their
likelihood to form a single object, classical clustering techniques are used. Note that this step is
the first sub-step in the clustering stage, and the second sub-step is to group or merge two or more
clusters into a single cluster based on distance criteria. The reason for splitting this step into two
sub-stages is due to the possibility that two objects could be positioned close together. In the analysis
of clusters stage, the selected clusters are used as a seed point to find the frontal part of a vehicle
through the double-stage detection algorithm consisting of a pre-detector, pre-warning, etc. Once
vehicle candidates are located, they are classified by the Support Vector Machine (SVM) in the pattern
recognition stage. This research reported that the detection accuracy of testing the system was 99%
with five false positive detections.

The work in [11] proposed a motion-based blind spot detection system based on the optical
flow calculation as well. A template matching technique was initially considered to detect and track
a vehicle, but this research reported poor performance of the template matching technique due to
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a difficulty to capture a motion and shape of the vehicle. The proposed algorithm is composed of
several steps: (i) specify a blind spot zone in the grayscale image; (ii) extract features; (iii) estimate the
motion vector through calculation of the optical flow; (iv) label valid features as potential features; (v)
eliminate noise and finally; and (vi) label vehicle features. The experimental result shows that vehicles
were successfully detected and tracked in thirty-eight situations out of forty-one situations without
any false positive alarms.

The authors of [12] proposed a blind spot monitoring system using the Histogram of Oriented
Gradients (HOG) descriptor and SVM. The proposed algorithm introduces four main steps. Once an
image frame is captured by a single rear-view camera, the first step is to set the detection window
for vehicle detection in either the left or right blind spot area. The second step is to detect vehicles
in the detection window using the HOG descriptor and SVM. The authors claimed that the HOG
descriptor and SVM showed outstanding performance and reliability. The third step is to estimate
the moving direction of the detected vehicles from the previous step. The last step is to generate an
alarm signal if vehicles are in the blind spot area. Furthermore, a high-speed algorithm consisting of
two additional concepts, i.e., selective filtering of the HOG features and fast estimation of moving
direction, is introduced for real-time evaluation with an embedded system. The authors evaluated
the developed algorithm with consideration of various environments and vehicles, and measured
performance evaluation using recall and precision. The evaluation of the basic algorithm on both urban
areas and highways resulted in 98.62% precision and 99.82% recall, respectively. When evaluating the
high-speed algorithm, the authors reported 97.26% precision and 99.65% recall, respectively.

In [13], the camera-based blind spot detection system in conjunction with a network based on
AlexNet was proposed as a real-time embedded system application. In this network structure, there are
four blocks after the first convolutional layer, and each block is designed by various combinations of
the concepts based on the Visual Geometry Group (VGG), depthwise separable convolutions, residual
learning, and the squeeze-and-excitation module. For this reason, four different neural networks
are established: (i) only VGG blocks-based network; (ii) network with a combination of depthwise
separable convolution and residual learning (Sep-Res); (iii) network with a combination of depthwise
separable convolution and the squeeze-and-excitation module (Sep-SE); and (iv) a combination of all
three parts (Sep-Res-SE). Two datasets were employed to evaluate each network, and the authors
reported that the VGG blocks-based network showed slightly higher test accuracy than other
networks, but the Sep-Res-SE network showed better performance in terms of overall evaluation
including inference speed and memory cost. Note that the Sep-Res-SE network showed 97.58%
detection accuracy.

According to the literature research above, there are no doubts that the camera-based blind spot
detection system has a potential possibility to be improved. However, some studies concentrate on
proposing algorithms and techniques in conjunction with the methodologies of image processing
and classification to detect moving vehicles in the blind spot. Besides, to the best of our knowledge,
studies about blind spot detection using a Fully-Connected Network (FCN) only have not been
reported. This point corresponds with the research objective, i.e. developing a camera-based blind
spot detection system using the deep learning methodology. In other words, our main goal was to
develop lightweight software that can be installed on an embedded board that has limited hardware
specifications by employing the FCN, HOG descriptor, sliding window technique, heat map, and
thresholding. Those concepts are further discussed in Section 3.

3. Methodologies and Research Framework

3.1. Dataset Preprocessing

The first step in the research framework is to secure an image dataset for training a model. The best
case scenario was to take a picture of every single vehicle by ourselves, but it was infeasible due to the
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time constraint. Hence, we decided to use datasets for vehicles and non-vehicle objects from [14–16],
and a total of 8144 vehicle images were extracted. Figure 3 shows the examples of vehicle images.

Figure 3. Example of vehicle images.

In the beginning of the project life cycle, all 8144 vehicle images were planned to be used for
training, but there are several issues with respect to those images: (i) vehicle images have various
angles; (ii) some images contain a banner and other vehicles in the background; and (iii) there is a
difference in terms of image quality. Each issue was solved as follows:

1. Preliminary testing was conducted using the video recorded by the smartphone camera shown in
Figure 4 prior to actual testing on a real road. For this reason, only vehicle images with front and
front-left angles were extracted due to the viewing angles of the blind spot shown in Figure 5,
and a total of 2000 images out of 8144 images were selected.

2. After the banner and other vehicles in the background were removed, the background was filled
in with white.

3. All selected images were edited by the sharpen function to have outstanding image quality.

Figure 4. Camera installation for preliminary testing.
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Figure 5. Example of the extracted images.

As mentioned above, approximately 9000 non-vehicle images were also extracted and used for
training a model. Figure 6 shows data visualization of the vehicle and non-vehicle images.

Figure 6. Data visualization of the vehicle and non-vehicle images.

3.2. Data Reduction and Representation Learning

Data reduction refers to reducing high-dimensional data into low-dimensional data to deal
with several issues such as the curse of dimensionality and selection of optimal boundary [17].
Furthermore, data reduction is required due to both practical and theoretical reasons, e.g., removal of
irrelevant features, the perspective of computation and machine learning, the perspective of probability
and statistics, etc. [18]. Dimension reduction can be implemented by a variety of strategies for
diverse applications. In [19], three well-known data reduction strategies, namely dimensionality
reduction, clustering, and sampling, were discussed. Dimensionality reduction is related to reducing
the number of random variables, and feature selection and feature extraction are the representative
methodologies of dimensionality reduction. Clustering groups objects into similar groups, and
sampling is used to determine if a small set of samples represents the entire dataset [19]. Among
the described methodologies of data reduction above, we picked feature extraction belonging to
dimensionality reduction at our discretion. Feature extraction in conjunction with the HOG descriptor
is further discussed in Section 3.3.

We also examined several studies to see which dimensionality reduction methodologies were
used in which areas. In [20,21], Principal Component Analysis (PCA) was employed to reduce
data dimensions. Note that PCA is one of the state of the art techniques to reduce an unlabeled
high-dimensional input dataset for the purpose of feature extraction. However, the authors of [20–22],
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interestingly, adopted the Restricted Boltzmann Machine (RBM) model for representation learning,
also known as feature learning. The reason Deep Neural Networks (DNNs) need to be used for
representation learning is that they contain their own way of expressing data, which converts input
data into a numerical form that is easy to recognize. Especially, DNNs can learn from data by
parameterizing data representation methods [23]. However, we decided not to adopt one of the DNN
models for representation learning because it would be too much to run two or more deep learning
models on limited hardware specifications.

3.3. Histogram of Oriented Gradients (HOG)

One of the popular methodologies for feature extraction is the HOG descriptor, and this is very
powerful for objects detection, especially human detection. The reason for employing the HOG
descriptor is that this methodology can also be used in tasks related to autonomous vehicles [24].
This methodology is composed of five stages [25]: (i) normalize images; (ii) compute gradients
in X (horizontal) and Y (vertical); (iii) compute gradients histograms; (iv) normalize blocks; and
(v) collect HOG descriptors from overlapping blocks and cover into a feature vector.

The first stage, image normalization, is required to provide better illumination invariance such as
lighting, shadows, etc. by normalizing cells in the block. Note that the definition of the cells and blocks
is that once an image window is divided into small or large spatial regions, these are called cells, which
consist of multiple pixels and can be rectangular or circular, and blocks, which incorporate multiple
cells, respectively. However, image normalization was not applied in this research because it does not
make a big impact on performance [25]. The second stage focuses on computing image gradients in
X and Y. This stage can be performed by capturing the image edge or structure based on the locally
dominant color channel. By doing so, it is also possible to provide better resistance to illumination
variations. The third stage is about computing gradients histograms by collecting the information of
gradient orientation locally. As mentioned in the first step above, computing gradients histogram is
based on the concept of cells; that is, a local 1D histogram of gradient or edge orientations over the
pixels in the cell is accumulated for each cell, and the combined histogram forms the representation
of the orientation histogram [25]. After that, the range of a gradient angle is divided into a fixed of
bins. The fourth stage is to compute normalization by accumulating a measure of local histogram
“energy” over blocks. Note that this refers to normalized cells in the block because each cell is shared
by multiple blocks. For this reason, a cell with different normalizations possibly appears in a final
output vector. The last stage is to collect HOG descriptors over the detection window, which refers to
the normalized block descriptors in the previous stage. The detailed concept of the HOG descriptor is
available in [25].

The main objective of data preprocessing and feature extraction through the HOG descriptor is
to make the input dataset for a deep learning model. Before applying the HOG descriptor, a size of
all the images is fixed at 60 px × 60 px because every image has a different size. Eleven orientations,
sixteen pixels per cell, and two cells per block were used for feature extraction, thus the total length of
the feature vector was 1188. Thus, there were 1188 pixels in a single image, which means that 3600
pixels were converted into 1188 HOG features for both vehicle and non-vehicle objects. Figure 7 shows
an example of feature extraction through the HOG descriptor.
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Figure 7. Example of HOG feature extraction for the vehicle and non-vehicle object.

3.4. Deep Neural Networks and Fully Connected Network

Before discussing our chosen deep learning model, we examined a variety of DNNs. The first
DNN model we examined is a FCN, which is the simplest DNN model. The reason for calling it the
simplest DNN model is that the DNN can be implemented by solely fully-connected layers [26]. All the
output activations in fully-connected layers consist of a weighted sum of all the input activations,
thus all the outputs are connected to all the inputs [26]. However, the well-known disadvantage of this
model is that it requires a large amount of storage and computation, but this issue could be solved by
removing some connections between the activations [26].

In [27], the authors proposed deep Convolutional Neural Networks (CNNs), which are composed
of five convolutional layers followed by max pooling layers and three fully-connected layers with a
final 1000-way softmax. Besides, Rectified Linear Units (ReLus) were applied to the output of every
convolutional and fully-connected layer. One interesting point in this research was that two GPUs
were employed to train the proposed model due to the size of the adopted dataset. By doing so, the
authors mentioned that it was possible to reduce error rates and achieve less training time than when
using a single GPU. Note that other concepts such as local response normalization, two forms of data
augmentation and dropout to avoid an overfitting issue, etc. were employed.

The study, which began with a strong motivation that the deeper the network, the better the
accuracy, discussed the deep residual learning methodology, also known as the ResNet [28]. In this
research, however, the authors pointed out a degradation problem caused by vanishing or exploding
gradient if a network gets deeper. To avoid such a problem, the authors inserted shortcut connections
into the plain network to turn the network into its counterpart residual version. Two advantages
were claimed: (i) easy to optimize; and (ii) gain accuracy from considerably increased depth, but
the disadvantage of residual networks is that the computational and memory costs could be linearly
increased to improve performance [29].
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In [30], the authors proposed a deep learning model that combines two Recurrent Neural
Networks (RNNs) consisting of an encoder and a decoder. This model is also called Sequence to
Sequence (Seq2Seq). The encoder basically creates a fixed size context vector from the input sequence
of the model, and the decoder uses this context vector as an input to create a translated output sequence.
The Seq2Seq model is very effective in generating responses, but the dialogue response generated by
the Seq2Seq model tends to be less diverse [31].

The authors of [32] proposed the abstractive text summarization method based on Generative
Adversarial Networks (GANs) consisting of the generator and discriminator. In this research, the
authors pointed out that GAN is very powerful in terms of computer vision and image generation
areas, but it is challenging to generate discrete outputs.

As described above, DNNs can be organized into different forms depending on how they are
applied: (i) the FCN is suitable when all the input data have to be jointly considered; (ii) the CNN
is optimized to extract spatial features; and (iii) the RNN is appropriate for sequential data such as
natural language [33]. Back to a discussion of our chosen deep learning model, the basic idea in this
research is a simple neural network based on the following equation:

H(x) = Wx + b (1)

where H(x) is a hypothesis, x indicates input data variables or data, and W and b denote weights and
bias, respectively. This equation refers to neural network learning as a linear regression model, and the
main objective is to find a set of the optimized network parameters by minimizing a cost function [34].
One of the basic cost functions for this neural network is the gradient decent algorithm which always
converges to the global minimum [34]. The main limitation is that, although it is optimized for linear
regression, it has a difficulty to linearly separate an exclusive OR (XOR) gate [35]. However, this
limitation could be solved by the concept of backpropagation [36,37], and this algorithm became
the origin of a DNN. A DNN in this research refers to the number of layers in the network that is
derived from a simple neural network; in other words, the more layers between the input and the
output layers, the deeper the network [38]. The basic DNN architecture is the FCN consisting of an
input layer, output layer, and a hidden layer. There are two things to keep in mind to use this model,
i.e. preventing the issues of vanishing gradient and overfitting. For this reason, finding and setting
the best parameters is very important. Parameters here refer to the number of inputs, hidden layers,
learning rate, epoch, etc.

For our research, we decided to employ the FCN model with Adam optimizer and ReLus
activation instead of gradient descent for improving training accuracy. The main computational
advantage of our model based on HOG and FCN is that both HOG and FCN are simple matrix
calculation-based, thus they are easily paralleled, and the GPU-based embedded toolkit with limited
specifications and computations is easy to use. All the detailed mathematical concepts related to the
employed FCN model are described as follows:

• Input: X ∈ Rm×1,188

• Output: Y ∈ [0, 1]m×2

• FCN

– ReLu activation function: Ωi = max(0, Wix + hi)

– Y = Θ (Ω1(...Ωi(X)))

• Softmax output layer: Θ(Ωj
i) =

eXj

∑K
k=1 eXk

, where i = 1, ..., 3 and is defined as the number of layers,

and j = 1, ..., K and is defined as output classes
• Categorical cross-entropy objective function: H(Y, Y′) = −∑m Ymlog(Y′m), where m is the batch

size, Y is an actual output, and Y’ is a predicted output
• Empirical loss function: L = 1

mH(Y, Y′)
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Our goal was to achieve more than 95% training and testing accuracy with the FCN model. If this
goal could not be achieved by the FCN model, Plan B was to employ any of the deep learning models
such as CNNs, RNNs, etc. To see whether the FCN model achieved more than 95% accuracy, we started
to train the model, which was implemented by open source software on the cloud platform. Hardware
specifications for training the model are as follows:

• Machine Name: n1-standard-4
• Virtual CPUs: 4
• Memory: 15 GB
• Hard Disk Drive = 200 GB

In addition, the model was trained with hyperparameters as follows:

• the number of inputs (features): 1188 images
• the number of hidden layers: 2
• the number of units in hidden layers: 1188 in the first hidden layer and 594 in the second

hidden layer
• learning rate = 1 × 10−6

• epoch = 10

According to training and testing results shown in Table 2, the FCN model was employed for
further steps as the training and testing accuracies achieved were 99.4% and 99.0%, respectively.

Table 2. Experimental results of model training and testing.

Epoch Training Loss Training Accuracy Testing Loss Testing Accuracy

1 0.5111 78.8% 0.2019 87.8%
2 0.1750 93.4% 0.1337 95.6%
3 0.1254 96.3% 0.1014 96.9%
4 0.0982 97.3% 0.0817 97.4%
5 0.0782 98.1% 0.0692 97.8%
6 0.0636 98.5% 0.0593 98.1%
7 0.0527 98.9% 0.0522 98.3%
8 0.0448 99.1% 0.0498 98.5%
9 0.0379 99.3% 0.0443 98.8%

10 0.0321 99.4% 0.0389 99.0%

3.5. Blind Spot Setting for Vehicle Detection

The main methodology to detect a vehicle in a blind spot is that, once a vehicle enters a blind
spot, which is defined based on x and y axes, a blue rectangle box detects a vehicle using the sliding
window technique. The size of the video image, which was recorded using the set up in Figure 4, is
approximately 1300 px × 800 px. In this video image, we manually and visually checked that a blind
spot has a range of 400–800 px in x-axis and 450–550 px in y-axis, as shown in Figure 8.

One thing to keep in mind is that this system is not intended for object classification; that is,
this system does not intend to identify whether the detected object is a vehicle or not. For this reason,
a rectangle box focuses on detecting vehicle features; for instance, once the front view of a vehicle
enters a blind spot, a license plate, radiator grill, headlights, etc. can be possibly detected by a rectangle
box. In the case of a side view of a vehicle, a tire, alloy wheel, side mirror, etc. can be detected.
Therefore, once any of the vehicle features is detected in a blind spot, a rectangle box is displayed on
the screen. However, the size of the rectangle box, also known as rectangle threshold, is associated
with false positive reduction, and this point is discussed in the next section.
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Figure 8. Blind spot setting zone.

3.6. False Positive Reduction

One of the main potential issues is false positive detection. This means that, even though the
object is not a vehicle, the system detects it either in or out of a blind spot through the sliding
window technique. To minimize this issue, two concepts, namely heat map and thresholding, are used.
The fundamental concept of the heat map is to visualize an image by representing each pixel by the
color corresponding to its magnitude [39,40]. Assume that an image, x = {xp}, and a classification
function, f (x), are given where p denotes a pixel. Here, the function, f (x), is used for indicating the
presence of an object in the image and can be learned very well by a deep neural network [40].

Based on this, the heat map is denoted as:

h = {hp} = H(x, f , p) (2)

whereH is a function derived from a class discriminant f . Note that a value is assigned to each pixel,
p, byH. In addition, h is visualized as an image since its dimensionality is same as x [40].

Thresholding refers to the technique of image segmentation, and it is denoted as:

T = T[x, y, p(x, y), f (x, y)] (3)

where T is the threshold value, x and y are the coordinates of the threshold value, p(x, y) is points in
gray-level image pixels, and f (x, y) is gray-level image pixels [41,42]. There are two main thresholding
techniques: global and local. The major difference is that global thresholding applies one threshold
value to the whole image, while local thresholding applies different threshold values to different areas
of the image [41]. Among these two techniques, the simpler one is global thresholding, which was
adopted in this research, and denoted as:

g(x, y) =

{
0 if f (x, y) ≤ T

1 if f (x, y) > T
(4)

where T is the threshold value, and g(x, y) = 0 or 1 means an object and background, respectively [41,42].
Note that f (x, y) is replaced with the heat map, hp, and we initially set 10 to the value of thresholding,
T. The main objective of both concepts is to maximize a probability that the detected (target) object is
a vehicle.
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As mentioned in the previous section, the size of a rectangle box is also used for false positive
reduction. Assume that vehicles are seen in a blind spot, but they are far away from a blind spot.
In this case, vehicles are seen smaller than presenting in a blind spot. The system recognizes them as
vehicles but does not need to detect them. For this reason, if a rectangle box given by the heat map is
smaller than a particular value, the system rejects it and the false positives can be reduced.

According to all the methodologies described above, the entire research framework is depicted in
Figure 9.

Figure 9. Overall research framework. A total of 2000 vehicle images and approximately
9000 non-vehicle images were extracted for the purpose of data preprocessing. The HOG descriptor
was applied for feature extraction, and 1188 HOG features for both vehicle and non-vehicle objects
were fed into the FCN model as inputs. Keep in mind that representation or feature learning was not
applied in this research due to hardware constraints. Two hidden layers, 1 × 10−6 learning rate, and
10 epochs with Adam optimizer and ReLus activation were employed for training and testing the FCN
model, and the training and testing accuracies achieved were 99.4% and 99.0%, respectively. We set a
blind spot to a range of 400–800 px in x-axis and 450–550 px in y-axis in the 1300 px× 800 px image and
applied the sliding window technique to detect vehicle features. Finally, the heat map and thresholding
were employed to reduce false positive errors.

4. Experiments with Record Video Images

Prior to conducting experiments, we came up with two possible scenarios. The first scenario
is when the system-equipped vehicle stops or moves more slowly than a target vehicle. The second
scenario is when the system-equipped vehicle moves more quickly than a target vehicle. Based on
these, the research framework was applied to two video images recorded using the set up in Figure 4.
Four vehicles and two vehicles entered a blind spot in the first and second scenarios, respectively. As
mentioned above, the research framework was implemented in open source software on the cloud
platform. Overall, 28.89 s were taken to extract HOG features, and 461 frames were captured in the first
scenario. In addition, in total, 386 frames were captured in the second scenario. In the first experiments
with the first scenario, we encountered false positive issues. Here, the meaning of false positive is
that, despite the object not being associated with a vehicle, it was captured as a vehicle feature. Most
false positive issues were caused by a vehicle shadow. To solve such issues, we analyzed the whole
source code again for the purpose of root cause analysis and realized that the causes resulted from
hyperparameters. Note that hyperparameters this time refer to the size of a rectangle box, threshold
value, and memory size, and these are different from the hyperparameters of the deep learning model,
as mentioned in Section 3.4. The identified solution with respect to the size of a rectangle box was that,
once it was increased, false positives were reduced. For this reason, the size of a rectangle box was
maximized to 9000. As described above, the initial threshold value was 10. This value was reduced to
2, but the problem was that, while performance was improved, false positives were increased. Hence,
the threshold value did not change for testing on the cloud platform. The concept of detection memory
is that it is used to remember which pixels presented vehicles in previous frames. Since the system
detects a vehicle based on vehicle features, detection memory helps the system remember a vehicle in
a blind spot. Hyperparameters were tuned several times, and the best combinations used for a proof
of concept on the cloud platform were as follows:

• the size of a rectangle box: 9000
• the threshold value: 10
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• the size of detection memory: 4

Figure 10 depicts experimental results of each scenario, and we confirmed that vehicles in the
recorded video images were correctly detected without false positives. Note that the vehicle license
plate and driver face were shaded in gray for privacy reasons.

Figure 10. Experimental results of both scenarios.

5. Experiments on a Real Road

The first job to test the system on a road is code deployment, and an off-the-shelf embedded board
was adopted for this. Detailed hardware specifications and system architecture of this embedded
board are depicted in Figure 11.

A USB 2.0, 720 px High Definition resolution, and 30 Frames per Second (FPS) supportive camera
was connected to the board, and this camera was mounted on the passenger side mirror. Note that
when we tested the mounted camera before actual testing on a road, there was no serious latency.
In addition, the 7” LCD display was connected to the board, and this screen was mounted on the
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dash board. Testing was conducted on a cloudy day with consideration of various factors such as
vehicle types, vehicle colors, camera angles, and vehicle speed. In addition, hyperparameters to
maximize detection accuracy and minimize false positives for testing on the embedded board changed
as follows:

• the size of a rectangle box: 6000
• the threshold value: 2
• the size of detection memory: 10

Figure 11. System architecture of the embedded board: The embedded board comes with 64-bit
Quad-Core and Dual-Core CPU clusters, a GPU with 256 Compute Unified Device Architecture
(CUDA) cores, and 8 GB 128-bit LPDDR4 RAM. The main purpose and advantage of this embedded
board is used for embedded AI platform with speed and power efficiency [43], but to use a variety of
features offered by the embedded board, a lot of software packages should be installed.

We drove approximately 40 Miles Per Hour (MPH) on a local road and highway for about 90 min
to see whether the developed system could detect all types of vehicles, such as a passenger sedan,
Sports Utility Vehicle (SUV), pick up truck, van, and semi-trailer, well based on previously defined
scenarios. Experimental results are quite interesting, and no system failure was found during testing.
To test the first scenario, in which the system-equipped vehicle stopped or moved more slowly than
target vehicles, we stopped on a local road to wait for traffic signal. Eight target vehicles passed the
system equipped-vehicle in the next lane, and types and colors of the target vehicles were: two white
SUVs, one grey sedan, one white sedan, two black pick up trucks, one red SUV, and one white van.
We could not mechanically measure the speed of the passing vehicles, but our intuitive feeling was
35 MPH. The system showed 75% detection accuracy as six vehicles were correctly detected, but the
system missed two vehicles. No false positives were reported in these experiments.

For the second scenario, in which the system-equipped vehicle moved more quickly than target
vehicles, we tested the system on a local road and highway. Our vehicle passed one black pick up
truck on a local road at a speed of 35 MPH and one red, blue, and white semi-trailer on a highway at a
speed of 75 MPH. We passed one grey hatchback on a highway at a speed of 75 MPH as well but, after
passing this vehicle, we kept a distance between the system-equipped vehicle and grey hatchback.
Note that both vehicles were driving at a speed of 75 MPH. In the experiments with the black pick
up truck on a local road, the system correctly detected the truck without any false positives, thus that
detection accuracy was 100%. The system showed 100% detection accuracy for all three semi-trailers,
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but there were two false positives, which detected a pole and traffic sign as vehicle features. In the last
experiments with a grey hatchback, this vehicle was detected correctly with 100% detection accuracy,
but there was one false positive, which detected a lane as a vehicle feature. We found that the video
quality in the LCD display through the mounted camera did not affect the results.

Table 3 shows a summary of experimental results on a real road, and Figures 12 and 13 show
recorded experimental results captured by a mobile device based on all scenarios described in Table 3.

Figure 12. Experimental result of the first testing scenario.

Table 3. Summary of experimental results on a real road.

Scenarios Detection Accuracy False Positives

When target vehicles passed the
system-equipped vehicle at a speed of
35 MPH

75%, Two vehicles out of
eight vehicles were missed No false positives

When the system-equipped vehicle passed
a black pick up truck at a speed of 35 MPH 100% No false positives

When the system-equipped vehicle passed
three semi-trailers at a speed of 75 MPH 100% 2 false positives

When the system-equipped vehicle was
driving at a same speed of 75 MPH with a
grey hatchback

100% 1 false positive
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Figure 13. Experimental result of the second testing scenario.

6. Conclusions, Limitations, and Future Work

In this research, we developed a camera-based vehicle blind spot detection system through
the FCN. The established research framework was composed of five stages: data preprocessing,
feature extraction, FCN model learning, vehicle blind spot setting, and false positive reduction. Overall,
99.45% training accuracy and 98.99% testing accuracy of the FCN model were achieved, respectively.
After deploying the software on the embedded board for actual testing on a real road, we confirmed
93.75% average blind spot detection accuracy with three false positives. The main expected effect is
commercialization, which may replace the existing radar sensor-based blind spot detection system
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so that cost saving can be expected from the view point of the automobile manufacturer. In addition,
this developed system can be applied to future autonomous vehicles.

However, we encountered a set of limitations through conducting this research. The first research
limitation refers to image datasets. Not enough images were extracted and preprocessed, and our
own image datasets could not be secured due to time constraints. Testing with live video images was
the second research limitation. Testing accuracy with live video images should have been evaluated
mechanically similar to training and testing accuracy on the cloud platform, and we are still finding
a way for this. In addition, testing was not conducted on a variety of weather conditions. The third
research limitation was performance of the system. Although the system showed more satisfactory
performance than our expectations, we are eager to show 100% guaranteed system performance
without any false positives. The last and biggest research limitation was that we did not apply
representation/feature learning and adopt any other deep learning methodologies such as CNN,
Recurrent Neural Network (RNN), etc. for comparison analysis. All these research limitations would
be future research work as described below.

1. More than ten thousand images including vehicles, motorcycles, and any other non-vehicle
objects will be secured for both training and testing. By doing so, training and testing accuracy
of a deep learning model will be improved. In addition, the system will be optimized for no
false positives.

2. One of the issues during system testing was that camera angles continuously changed due to a
strong wind while the vehicle was driving at high speed. Furthermore, image quality from the
camera was not good enough. Hence, a camera which has better hardware specifications will be
mounted with fixed angles underneath the side mirror, and further experiments under various
conditions will be conducted. In addition, two cameras on both sides will be adopted for testing.

3. Target vehicles were detected by a rectangle box, but this would be replaced with a blind spot
icon. Specifically, this icon will be displayed on the screen when target vehicles are detected in
the blind spot. Moreover, the system will give both visual and audible alarms.

4. The reason for employing the FCN model in this research was that the adopted off-the-shelf
embedded board had the power limit, thus this resulted in fewer cores and less parallelization.
Due to this constraint, we decided to experiment the simplest one among a variety of deep
learning methodologies. Moreover, the total amount of the images to be processed for
classification was reduced by the sliding window technique. Since our goal was to identify
the features of a vehicle in a particular area within a given image, this remarkably reduced the
need of having complex networks with enhanced classification capabilities. However, it is highly
meaningful to compare and analyze differences from the system developed on FCN basis by
adopting different deep learning methodologies, so a new vehicle blind spot detection system
will be developed by adopting various deep learning methodologies.

5. To make fewer and faster computations on the embedded board, we skipped representation
learning. However, we believe that a different approach to handle dimensionality curse was
taken. As mentioned above, the sliding window technique used to identify the features of a
vehicle was applied to only process the blind spot area. A relatively small rectangular window
was processed at the overlapping horizontal and vertical locations of the image. It is important to
note that the size of window is much smaller than the size of a vehicle in blind spot. In addition,
a heat map was created out of all the windows identifying features. The rectangular localization
was obtained out of the heat map pixels having heat beyond a threshold level. This not only
helped to overcome dimensionality curse, but also required substantially less computation power
because matrix multiplications could be done on a smaller matrix. However, it is also worthwhile
to employ a methodology such as the RBMs to see how representation/feature learning can
change the processing of our model.
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