Supplementary Materials: Distribution of PM2.5 Air Pollution in Mexico City: Spatial Analysis with LandUse Regression Model

Table S1. Description of geographic, demographic, and meteorological variables used for the analysis.

Variable	Description	Source	
Elevation	Topography in meters above the sea level (masl)	$\begin{aligned} & \text { USGS } \\ & (2008) \end{aligned}$	
Slope	The topographic slope	SRTM derived	
Aspect	Direction faced by the topographic slope	SRTM derived	
PD	Interpolation of the centroids of each electoral section with aggregated data from the 2005 census	$\begin{aligned} & \text { INEGI } \\ & (2005) \end{aligned}$	
Roads speed limit	The whole road system was transformed into a raster file to obtain the average speed in sections of 500 square meters	$\begin{aligned} & \text { INEGI } \\ & \text { (2010) } \end{aligned}$	To estimate endangered areas and standardized data for the analysis, all data was
RH	Interpolation and mapping of the calculated annual average relative humidity	$\begin{gathered} \text { SIMAT } \\ (2002) \end{gathered}$	interpolated or re-sampled with a resolution of 500 per 500 meters.
TEMP	Interpolation and mapping of the calculated annual average temperature	$\begin{aligned} & \text { SIMAT } \\ & (2002) \end{aligned}$	
WDR	Interpolation and mapping of the calculated annual average wind direction	$\begin{aligned} & \text { SIMAT } \\ & (2002) \end{aligned}$	
WSP	Interpolation and mapping of the calculated annual average wind speed	$\begin{aligned} & \text { SIMAT } \\ & (2002) \end{aligned}$	
NDVI	Normalized Difference Vegetation Index	$\begin{aligned} & \text { USGS } \\ & (2001) \end{aligned}$	

Table S2. Product moment correlation coefficients among studied variables.

Variables	Altitude	Slope	PD	RSL	RH	TEMP	WSP	NDVI
Slope	0.7895^{*}	------						
PD	-0.2820	-0.2442	------					
RSL	0.1680	-0.1906	-0.1132	-------				
RH	0.4230^{*}	0.4762^{*}	-0.0971	-0.2776	------			
TEMP	-0.6189^{*}	-0.6491^{*}	0.4164^{*}	0.1113	-0.7296^{*}	-------		
WSP	0.4323^{*}	0.4106^{*}	-0.2621	-0.0764	0.5253^{*}	-0.7369^{*}	-------	
NDVI	0.2808	0.2749	-0.2359	0.0446	0.3324^{*}	-0.5106^{*}	0.2691	------
WIOS	0.5567^{*}	0.5807^{*}	-0.4487^{*}	-0.0640	0.3145	-0.6918^{*}	0.3751^{*}	0.3503

${ }^{*} \mathrm{P}$ values ≤ 0.05. Abbreviations: $\mathrm{PD}=$ Population density, RSL = Road speed limit, $\mathrm{RH}=$ Relative humidity, TEMP
$=$ Temperature, WSP $=$ Wind speed, NDVI $=$ Normalized Difference Vegetation Index, WIOS $=$ Wind incidence
over a surface.
Table S3. Estimated canonical correlation coefficient.

Canonical Variables	Linear Coefficients	95\% Confidence Interval	Canonical coefficient	
Altitude				
U1	RH	0.0018^{*}	$0.0002 ; 0.0033$	
	NDVI,	0.2012^{*}	$0.1199 ; 0.2824$	
	WIOS	1.5418	$-0.0847 ; 3.1682$	
	WSP	0.3419^{*}	$0.1906 ; 0.4932$	0.9457
V1	PD	2.7962^{*}	$0.3998 ; 1.1925$	
	Slope	0.0977	$-1.5 \times 10^{-5} ; 0.00002$	
	TEMP	-1.7471^{*}	$-0.0065 ; 0.2020$	
	RSL	-0.0041	$2.0859 ;-1.4084$	

Note: Significance of the model $\mathrm{p}=0.0000$ Wilks' Lambda. * P values <0.05 for linear coefficients.

Table S4. Weather conditions by geographical locations and between day and night.

Geographical Location	RH (\%)	TEMP (${ }^{\circ} \mathrm{C}$)	WSP (m/s)	$\mathrm{PM}_{2.5}\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$
Days				
North ${ }^{\text {a }}$	53.9	19.7	1.04	111.6
Center	54.4 (49.6-56.9)	19.4 (19.1-19.7)	1.2 (1.04-1.3)	118 (108-160)
Southwest	41.3 (37.5-60.2)	19.8 (17.4-22.7)	1.2 (0.95-1.5)	80 (77-81)
Southeast	62.4 (51.9-63.4)	19.9 (17.5-22.2)	1.5 (1.1-1.6)	69 (63-133)
Nights				
North	70.7 (67.9-72.8)	16.3 (116.1-16.7)	1.5 (1.2-2.9)	41 (34-46)
Center	67.5 (66.9-68)	16.6 (15.8-17.4)	1.6 (0.75-1.7)	47 (46.5-55)
Southwest	64.4 (51-83.5)	16.6 (14.7-18.8)	2.2 (1.1-3.8)	64 (41-112)
Southeast	76.7 (68.5-81)	16 (13.9-16.3)	1.3 (0.76-2.4)	58 (37-87)
Day	54.1 (45.4-61.3)	19.7 (18.3-21.1)	1.2 (1.1-1.5)	94 (73-126)
Night	71.1 (65.5-79.9)	16.3 (14.8-16.8)	1.5 (0.95-2.3)	49 (39-74)
P value*	0.0035	0.0002	NS	0.0006

Note: data is presented as median (percentile 25-75). a there was one measurement of $\mathrm{PM}_{2.5}$ personal concentrations. ${ }^{*} p$ value of the models.

Figure S1. Annual average relative humidity and temperature in Mexico City.

D.F. boroughs

Anual average wind speed

Value

High : 3.72105

Low: 0.00192939
Anual average wind direction
\qquad Size of icon indicates wind speed

Figure S2. Average annual wind speed and direction vectors along Mexico City.

