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Abstract: This article addresses the design and real-time implementation of an expert model predictive
controller (Expert MPC) for the control of the brackish and seawater desalination process in a pilot-scale
reverse osmosis (RO) plant. This pilot-scale plant is used in order to obtain the optimal operation
conditions of the RO desalination process through the implementation of different control strategies,
as well as in the training of operators in the new control and management technologies. A dynamical
mathematical model of this plant has been developed based on the available field data and system
identification procedures. Predictions of the obtained model were in good agreement with the
available field data. The designed Expert MPC is distinguished by having a plant identification block
and an expert system. The expert system, using a rule-based approach and the evolution of the plant
variables, can modify the plant identification block, the plant prediction model, and/or the optimizer
in order to improve the performance, robustness and operational safety of the overall control system.
The real-time comparison results of the designed Expert MPC and a well-designed model predictive
controller (MPC) show that the proposed Expert MPC has a significantly better performance and,
therefore, higher accuracy and robustness.

Keywords: water scarcity; expert model predictive controller; brackish and seawater desalination;
pilot-scale reverse osmosis plant; model identification

1. Introduction

Water scarcity has become a progressively growing problem worldwide due to the accelerated
increase in water demand, which is expanding nowadays at a rate never seen before in any previous
time [1–5]. Therefore, the effective management of water resources is a challenge to face the complexity
of the real problem [6–9].

Currently, to solve the growing global demand for freshwater, the desalination of brackish and
seawater is being used [10–12]. Desalination is a powerful and hopeful technology for obtaining
freshwater, and in many countries with scarce water resources, represents the only solution [13–15].

Desalination is a water treatment process that removes salt and other minerals from brackish
and seawater to make them suitable for human consumption and/or industrial and agriculture
use [16]. Water with salinity less 500 mg/L is adequate for human use [17]. The desalination process
essentially separates saline water into two streams—one that has a low salt concentration (permeated
flowrate, or product water), and the other with a higher salt concentration than the original feed
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water (brine flowrate, or simply concentrate) [18]. The seawater desalination is an energy-intensive
consumption process [19–23].

There are two main possibilities to obtain desalted seawater: (a) thermal processes and (b)
membrane processes [17]. However, membranes-based processes are the most energy-efficient
option [24]. Consequently, reverse osmosis (RO) desalination method has become as one of the
essential technologies for the commercial desalination industry, as well as the most commonly used
approach to increase the provision of freshwater around the world [25]. Thereby, brackish and seawater
RO desalination plants are quickly increasing in the world [26].

Seawater RO desalination plants need an effective controller to increase their performance, as well
as to keep their operations close to the optimum conditions, which results in higher efficiency, along
with extending the lifetime of their membranes [27–29]. Nevertheless, the effective control of these
plants is not a simple assignment and has several challenges, among which are: (a) the dynamic
processes in the membrane vessels are complex and cannot easily be modelled; (b) for the operation
of the high-pressure pump, a large amount of energy is required; (c) the feed seawater features
variations can considerably change the performance of the RO membrane units, which leads to
lower water production, deficient system operations, membranes fouling or irreversible membranes
damages; (d) the high-pressure setpoint has to be increased several times a day for compensation of the
membranes fouling effect and to bring the permeate flowrate back to its operation value, which usually
is done manually by plant operators; (e) continuous monitoring of membranes fouling is required to
determine the appropriate time for membranes flushing (cleaning in place by chemical detergents
is applied when membrane flushing is not sufficient to recover the good membranes performance);
and (f) the operators of these plants are trained by conventional methods that only enable them to
maneuver the infrastructures and not to control and manage these plants efficiently [30–32]. In addition,
these plants have uncertainties, multivariable coupling, load disturbances, and dynamics dependent
on the operation conditions, since a few of their parameters, such as the membrane permeability,
are time-varying due to membranes fouling [33–35].

Membranes fouling result from the accretion of undesirable particles inside or around the
membranes [36]. The impact of this unavoidable process has undesirable consequences on the
performance of the RO desalination plants: a decrease in permeate flowrate production for constant
operating pressures, or increase in the feed flowrate, which involves expensive pre-treatments,
higher operating pressures, and prevalent chemical cleanings that can damage the membranes,
decrease the permeate quality, and reduce the replacement time of membranes [37]. Moreover,
the dynamic process parameters obtained after cleaning are different from the dynamic parameters
existing before cleaning [35]. Consequently, the costs of water and energy consumption grow [17].
As seawater RO desalination plants turn more complex, the control theory allows the estimation of
uncertainties, the determination of risks and safety measures, and the design of robust and reliable
control systems [38–40].

For the critical variables’ control of the seawater RO desalination plants, diverse controllers have
been developed. These controllers are mainly: conventional [41–43], feedforward [37], optimal [28,44],
adaptive [35], model predictive [45–48], fractional order [49], or robust [32,50–52]. In these plants,
the most implemented controller is the proportional integral derivative (PID), owing to the fact that
many process engineers are much more familiar with this class of controller than with sophisticated
advanced controllers, due their functional simplicity, which allows them to operate in a straightforward
mode [53,54]. Moreover, it is well-known that in diverse industrial processes, the PID controllers show
good performance, robustness, and simple implementation [55,56]. However, when the seawater RO
desalination plants are characterized by time-varying dynamic behaviors, the PID controllers are not
sufficient and fail to provide satisfactory performance [32,35,45].

To overcome the shortcomings of PID controllers, a number of advanced controllers have been
developed over the last decades, for example the model predictive controller (MPC) [57]. The MPC is
an industry-accepted controller for advanced control of processes with complex dynamical behaviors,
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which, in comparison to the PID controller, is considered a better tool based on many studies reported
in the literature, see e.g., Ref. [58]. However, the MPC has not been intensively used in the automation
of RO desalination plants, and only few contributions regarding this class of controllers can be found
in the literature [46].

The MPC has some practical problems; for example, it requires a precise model of the plant to
be controlled, which in many cases is difficult to obtain [57,58]. Usually, the MPC performs well
initially, but as the plant dynamics change with process operating conditions, its performance usually
deteriorates, see e.g., Refs. [35,45,49]. Linear time-invariant multivariable models are used in the MPC
design of the RO desalination plants, although it is well-known that these plants are time-varying
multivariable systems; therefore, the required control performance is very difficult to achieve over a
reasonable range of operating conditions, see e.g., Refs. [33,45,46,48].

Artificial intelligence is one of the newest fields in science and engineering, which has provided
successful solutions to many problems that are extremely difficult to be solved by traditional
mathematical approaches, and it constitutes a powerful tool for control of complex dynamical
processes [59–61]. In particular, the research field of knowledge-based systems has received a lot of
attention; see e.g., Refs. [61,62]. The knowledge-based systems are defined as systems in which some
symbolic representation of human knowledge is applied, usually in a way very similar to human
reasoning. In this class of systems, the expert systems have been the most successful and those that
have grown most rapidly nowadays [63,64].

An expert system is a software system that emulates the decision-making ability of human
experts within a specific well-defined domain of knowledge to solve actual convoluted problems in
this domain [64]. If these systems are designed to emulate the knowledge of human experts in the
development of control operations, they are called expert controllers [65]. The reasons for using the
expert systems in the process control are that there are some operational problems that can be solved
more efficiently by heuristic or rules of thumb [65]. Therefore, expert controllers have been fruitfully
applied to solve complex engineering problems, as well as for the control of industrial processes
with time-varying parameters, nonlinearities, uncertainties, etc., see e.g., Refs. [66–71]. An important
argument for applying expert controllers is the decrease of the effort required to effectively execute the
control laws. This is because expert controllers support many of the functions usually achieved by
operators and control engineers [65]. Consequently, the expert systems tools and techniques allow
for the design of industrial controllers to be more accurate and effective than conventional ones [65].
Moreover, in recent years, expert controllers are being successfully applied in the water industry,
because the solution of diverse control problems in this industry requires the knowledge and experience
of the best specialists in this field, see e.g., Ref. [72].

In Ref. [73], for effective control of a seawater RO desalination plant of a mineral processing
facility, an adaptive expert-generalized predictive multivariable controller was proposed. However,
the main drawbacks of this controller are: The architecture of the used expert system is unknown;
the knowledge base is not developed; and the real-time implementation of the designed controller
in a real seawater desalination plant was not performed, so it has not been possible to evaluate its
effectiveness. Note that the real-time implementation of an Expert MPC for the control of a seawater
RO desalination plant is a challenging task because it requires the solution of different theoretical and
practical problems.

This paper proposes the design of an Expert MPC for effective control of the critical variables of
the brackish and seawater RO desalination plants and its real-time implementation in a pilot-scale
RO desalination plant. The control of this pilot-scale plant is relevant since its dynamics closely
resemble the dynamics of the real seawater RO desalination plants. Note that the dynamic behavior of
the seawater desalination plants varies significantly when their operating conditions change due to
membranes fouling, which makes the design of accurate controllers very difficult.

This paper is organized as follows. Section 2 gives a brief description of the pilot-scale RO
desalination plant and presents the proposed plant dynamic model. In Section 3, the design of the
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Expert MPC is developed. Section 4 shows the discussions of the obtained results. Finally, Section 5
gives some conclusions.

2. System Identification of the Pilot-Scale Seawater RO Desalination Plant

The pilot-scale RO desalination plant considered in this paper is installed in the Control and
Automation Laboratory of the Pontifical Catholic University of Peru, located in Lima. This installation
is used in the development of research related to the design and implementation of new controllers,
as well as in the preparation of personnel trained in the operation of RO processes, control, optimization,
monitoring, fault detection, and management of brackish and seawater desalination commercial plants.
Figure 1 shows a view of this plant, which in order to prevent water losses, the water flows inside the
plant in a closed loop system; therefore, it does not have energy recovery devices and the post-treatment
stage is not necessary.

Figure 1. Pilot-scale reverse osmosis (RO) desalination plant of the Pontifical Catholic University
of Peru.

The schematic representation of Figure 2 shows the different components of this pilot-scale setup,
which are: the pre-treatment system, the high pressure feed pump, the RO membranes rack, the brine
and permeate tanks, and the storage and mixing system of the permeate and brine flowrates, that is
integrated by the mixing valve, the feedback pump and the storage tank. The pre-treatment system is
integrated by the feed pump, the UV filter, the multimedia filter, the active carbon filter, the fine filter,
and the two additives tanks. The high-pressure feed pump is of the stainless steel model with variable
pressure of up to 50 bar. This pump is connected to a speed variator that controls the inlet pressure to
the RO membrane’s rack.

The pilot-scale seawater RO desalination plant is equipped with an instrumental platform
composed of a pH sensor (pHT), two pressure sensors (PT), a temperature sensor (TT), two flow
sensors (FT), two conductivity sensors (CT), three ultrasonic level sensors (LT), two additive dosing
pumps, four pressure gauges (PG), and four proportional control valves (PV). The flow sensor (FT1)
and the conductivity sensor (CT2) located at the RO membranes rack outlet allow to control the flow
and conductivity of the permeate, and therefore, the conversion rate. The permeate conductivity is
controlled by the adjustment of the position of the proportional control valve (PV3) located at the exit
of the brine flowrate. This pilot-scale plant was designed for normal operation with the brine flowrate
control valve opening (PV3) 50% with a nominal pressure of 18 bars. In this plant, we use drinking
water mixed with a certain minimum amount of salt, that is, we use brackish water and therefore
the pressure of 18 bar is enough to desalt the incoming (raw) water. To avoid membranes damages,
the proportional control valve PV3 should not be completely closed. This plant also has an automatic
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flushing and start-up system that protects the membranes from scaling and fouling. The recovery rate
of this plant is 46%.

Figure 2. Schematic representation of the pilot-scale seawater RO desalination plant under study.

The supervision and control system of this plant includes two control stations: the local
control one, and the one of remote supervision. The local control station includes a programmable
automation controller (PAC) ControlLogix 5570 (Rockwell Automation, Milwaukee, WI, United States),
which combines the robustness of a programmable logic controller (PLC) with the advanced calculation
capacity of an industrial computer, and a PanelView 1500 (Rockwell Automation, Milwaukee, WI,
United States), for local operation of the implemented control systems. The remote supervision
station is based on a personal computer (PC). Both stations have a SCADA (data acquisition and
supervisory system) application programmed in FactoryTalk View (Rockwell Automation, Milwaukee,
WI, United States). The communication between these stations is done through the TCP/IP protocol.

The controllers of this plant are implemented in the PAC using the structured text language that
allows the implementation of advanced controllers. Different control strategies and setpoint changes
can be applied through the SCADA application. The SCADA also allows storing the plant signals
of interest in a database and its export to other applications, as well as the alarm’s generation and
verification of potential failures, and the suggestion of different decision-making.

The design of MPC requires mathematical models that accurately describe the most relevant
dynamic behavior of the plants to be controlled [57,71]. In the last years, for the development of
adequate mathematical models of complex industrial plants, systems identification tools are being
used successfully, see e.g., Refs. [74–78].

The main goal of a seawater RO desalination plant is to produce desalted water with a low
total dissolved solids (TDS) index [17]. However, the permeate conductivity is used to evaluate the
quality of the desalted water obtained because it is not possible to measure the TDS on-line [11].
Then, the permeate conductivity must be maintained within a certain range of values to guarantee
the required quality of the desalted water. For example, for human consumption, the permeate
conductivity should be maintained in a range of 400–500 µS/cm [17]. In addition, an augment in the
permeate conductivity implies an increment in the membrane fouling and/or variations in the dynamic
parameters of the RO desalination plant [45].
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The RO desalination plant is a multivariable process, with two input variables and two output
variables that must be controlled simultaneously. Each RO high-pressure feed pump is equipped
with a variable frequency drive (speed variator) to change the rotational speed of the pump, which in
turn varies both the flow rate and the pressure of the incoming stream to the RO rack. Moreover,
in industrial practice, to change the concentration of the permeate flowrate, the brine flowrate is
adjusted by varying the position of the brine flowrate control valve. Therefore, in this plant, the critical
variables that must be controlled are: the permeate flowrate Qp(t) through the high feed pressure Pf(t),
and the permeate conductivity Cp(t) by means of the brine flowrate Qb(t).

Through the application of the systems identification tools [74], a mathematical model that describes
the dynamic behaviour of the pilot-scale plant under study was obtained, which is represented by
the expression: [

Qp(s)
Cp(s)

]
=

[
G11(s) G12(s)
G21(s) G22(s)

]
×

[
P f (s)
Qb(s)

]
(1)

where:

G11(s) =
Qp(s)

Pf(s)
=

0.01895(0.7492 s + 1)
0.1150s2 + 0.4028 s + 1

(2)

G12(s) =
Qp(s)

Qb(s)
=
−0.01238(0.3421 s + 1)
0.1060s2 + 0.6018 s + 1

(3)

G21(s) =
Cp(s)

Pf(s)
=
−0.4091(0.2547 s + 1)

0.4150s2 + 0.8048 s + 1
(4)

G22(s) =
Cp(s)

Qb(s)
=
−0.6991(0.1387s + 1)

0.5249s2 + 1.6516 s + 1
(5)

Figure 3 shows the validation results of the mathematical model obtained of the seawater RO
desalination plant under study, which exhibit degrees of accuracy (FIT) of 94.4%, 90.8%, 94.11%,
and 90.2% respectively. Therefore, the model (1) adequately describes the dynamic behaviour of the
plant under study and consequently can be used in the design of MPC.

The model (1) of the plant under study can be converted, without precision loss, in the following
CARIMA model, which is used to predict the future dynamic behavior of the plant output variables [57]:

[
1 + â11q−1 + â12q−2

]
Qp(k) = b̂11q−1P f (k) +

e1(k)
∆

(6)

[
1 + â21q−1 + â22q−2

]
Cp(k) = b̂21q−1Qb(k) +

e2(k)
∆

(7)

The model (6), (7), can be expressed as a CARIMA model for a two-input two-output (MIMO) plant:

A
(
q−1

)
ŷ(k + j/k) = B

(
q−1

)
u(k + j− 1/k) +

1
∆

e(k + j) (8)

where:
ŷ(k + j) =

[
Qp(k + j) Cp(k + j)

]T
(9)

u(k + j) =
[
P f (k + j) Qb(k + j)

]T
(10)

e(k + j) = [e1(k + j) e2(k + j)]T (11)

A
(
q−1

)
= I2×2 + A1q−1 + A2q−2 (12)

B
(
q−1

)
= B1q−1 + B2q−2 (13)
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∆ = 1− q−1 (14)

ŷ(k + j) is the vector of optimum j-step ahead prediction of plant outputs; u(k + j) is the input
vector; e(k + j) is the noise vector; and I2×2 is the identity matrix. The noise vector is supposed to be a
white noise with zero mean.

Figure 3. Validation results of the mathematical model obtained, where: (a) G11(s); (b) G12(s);
(c) G21(s); (d) G22(s).

3. Expert Model Predictive Controller Design

The block diagram of the designed Expert MPC is depicted in Figure 4. Since the dynamic
parameters of the RO desalination plants vary due to membrane fouling, this controller has a plant
identification block that on-line calculates the parameters of the prediction model. Based on the
information available, the Expert System can develop different on-line decision-making strategies to
achieve the control objective, and the prediction error e(k + j) approaches zero.
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Figure 4. Block diagram of the designed Expert Model Predictive Controller.

The architecture of the developed Expert System is shown in Figure 5. The components
of this Expert System are: the Data Base, the Knowledge Base, the Inference Engine, and the
Explanation Module.

Figure 5. Architecture of the Expert System.

The Data Base contains the information of all the signals of the control system (a set of facts).
The Knowledge Base includes the available symbolic knowledge about the control system represented
by a set of rules (the Rule Base). The Rule Base contains rules in the “IF (case) THEN (action)” format,
which deals with conditions involving changing in the control system. The Inference Engine comprises
the methods for applying the general knowledge of the control system (mechanism to match the left
and sides of the rules in order to succeed the goals or sub-goals), i.e. to emulate the control expert’s
decision-making process in reasoning about what input to generate for the plant. The explanation
module informs the users on how and why the conclusions are obtained.

The CLIPS commercial expert system shell was used because of its flexibility, expandability and
low cost [79]. The shell refers to the software package containing a generic inference engine, a user
interface, and a structured skeleton of a knowledge base in its empty state with the appropriate
knowledge representation facilities that enable users to develop and use expert systems [63].

The Rules Base contains more than 50 rules. The rules were generated based on the knowledge of
expert operators on the dynamic behaviour of these plants, as well as on the optimization and safety of
their operation. Some rules of the Rule Base are the following:

Rule 1: IF e(k) > en, where en is a threshold error value, THEN update the parameters of the
prediction model with the estimation of the plant identification block;

Rule 2: IF e(k) <= en, THEN maintain the current parameters of the prediction model;
Rule 3: IF e(k + j) > 0, THEN continue with the calculation of the new control signal u(k);
Rule 4: IF e(k + j) < 0, THEN increase the current values of the weighting matrix for control

moves (Q);
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Rule 5: IF τ == 0, where τ is the plant time delay, THEN maintain the current value of the
minimum prediction horizon (N1);

Rule 6: IF τ >= 0, where τ is the plant time delay, THEN equalize the minimum value of the
minimum prediction horizon with the current value of the time delay (N1 == τ);

Rule 7: IF ŷ(k + j) > w(k + j), where w(k + j) is the external reference, THEN decrease the current
values of the weighting matrix for predicted errors (R);

Rule 8: IF u(k) is very aggressive, THEN increase the current values of the weighting matrix for
control moves (Q);

Rule 9: IF u(k) is very aggressive, THEN increase the current value of the maximum prediction
horizon (N2);

Rule 10: IF e(k) == ±m, where m is the steady state error, THEN increase the current values of
the weighting matrix for predicted errors (R).

The Rule Base was tested by verifying that it is consistent, that it has no errors, and that it complies
with the specifications and established objectives.

The Expert System, using the Rule Base and the evolution of the plant variables, can modify the
plant identification block, the plant prediction model, and/or the optimizer in order to improve the
performance, robustness and operational safety of the overall control system.

By minimizing the following cost function [57]:

J =
N2∑

j=N1

‖ŷ(k + j) − r(k + j)‖2R +

Nu∑
j=1

‖∆u(k + j− 1)‖2Q (15)

where r(k + j) is the reference trajectory for the output vector; N1 and N2 are the minimum and
maximum prediction horizons respectively; Nu is the control horizon; and R and Q are positive definite
weighting matrices; the optimal control signal is obtained.

The vector of optimum ahead prediction of plant outputs can be represented in compacted form
as [57]:

y = Gu + f (16)

where G is the plant dynamic matrix, u is the vector of plant future inputs, and f is the plant free
response vector.

Finally, the derived optimal control signal, if there are not constraints, is obtained as [57]:

u =
(
GTRG + Q

)−1
GTR(r− f ) (17)

4. Results and Discussions

The designed Expert MPC was programmed and real-time implemented in the remote supervision
station of the pilot-scale RO desalination plant under study (see Figure 1). In order to evaluate the
performance and robustness of the designed Expert MPC controller, two real-time tests were developed
based on real industrial operation scenarios involving demanded setpoint changes. Moreover, a step
disturbance to all plant outputs was applied at different time instants. The controllers’ performance
was evaluated based on the settling time, overshoot and steady state error obtained from the plant
steps changes responses. To ensure the rapid fouling of the membranes, the water used in this plant is
rich in dissolved and suspended solids.

The first test scenario was developed to validate the performance of the Expert MPC, as well
as its rejection to the negative impact of the plant time-varying parameters near specified nominal
operating conditions. The design parameters of the Expert MPC were next: The sampling period
was established at T = 10 s, the minimum and maximum prediction horizons were set like N1 = 3,
N2 = 15 samples respectively, the control horizon was established as Nu = 3, and the positive definite
weighting matrices were set like R = diag(5, 1) and Q = diag(1, 6), respectively. Figure 6 shows,
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in the PanelView 1500 of the pilot-scale plant, the real-time closed-loop responses of the control system
with the designed Expert MPC. In this figure, at time t = 25 s, simultaneous step changes were applied
at the setpoint (SP) of the permeate flowrate that increased it from 5 l/min to 20 l/min, as well as at the
setpoint (SP) of the permeate conductivity that decreased it from 580 µS/cm to 430 µS/cm.

Figure 6. Real-time closed-loop responses of the control system with the designed expert model
predictive controller (Expert MPC) to simultaneous steps changes at the setpoints of the critical
variables, in the PanelView 1500 of the pilot-scale plant.

Figure 7 shows an enlargement of the results exhibited in Figure 6, and Figure 8 exhibits the
control signals of the designed Expert MPC.

Figure 7. Enlargement of the results exhibited in Figure 6, where: (a) Permeate flowrate response;
(b) Permeate conductivity response.
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Figure 8. The control signals of the designed Expert MPC in the first test scenario, where: (a) High feed
pressure control signal; (b) Brine flowrate control signal.

From Figure 6, it is observed that the permeate flowrate and the permeate conductivity attain the
new setpoints (20 l/min, 430 µs/cm respectively) with a setline time (ts) of approximately 125 s, and with
an undershoot (Mp) of 12.5% for the permeate conductivity. However, due to membranes fouling, time
variations in the dynamic parameters of the plant take place from time t = 200 s, and consequently the
permeate flowrate decreases and the permeate conductivity increases; therefore, the time responses of
the control system worsen. As in this test scenario, the error signal e(k) between the output vector
of the plant y(k) and the output vector of the prediction model ŷ(k) is greater than the value of the
threshold error en; the first rule of the expert system is triggered, and therefore the parameters of
the prediction model are tuned by the expert system (see Figure 4). Consequently, at time t = 290 s,
the time responses of the control system return to their operations values with zero steady-state errors.
Thus, the designed Expert MPC keeps its robust performance throughout this test scenario.

The second test scenario was performed to comparatively evaluate the performance of the designed
Expert MPC against another standard MPC designed under the same conditions but without the
expert system. In this test scenario, at time t = 15 s, simultaneous step changes were applied at the
setpoint of the permeate flowrate, that increased it from 22 l/min to 30 l/min, as well as at the setpoint
of the permeate conductivity that decreased it from 480 µS/cm to 425 µS/cm. The real-time closed-loop
responses and control signals of this test scenario are displayed in Figures 9 and 10 respectively. From
Figure 9, it is observed that both controllers perform likewise against setpoints changes. However,
when plant time-varying parameters take place (at time t = 200 s), the designed Expert MPC gives a
better performance compared to the standard MPC.

In order to compare the robustness of the designed controllers, two performance indexes
were used: (a) the Integral Absolute Error (IAE), which is an integral index of the output time
response, and (b) the control effort (TV), which provides a measure of the smoothness of the control
signals [80–82]. Table 1 summarized the comparative results of the performance indexes of both
controllers against the effect of plant time-varying parameters.

Table 1. Performance indexes of the designed controllers.

Control System ts (s) Mp (%) IAE TV

First test scenario
Expert MPC

Permeate flow rate
Permeate conductivity

-
-

125
115

-
-
0

12.5

-
-

876.4
861.2

-
-

30.1
24.6
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Table 1. Cont.

Control System ts (s) Mp (%) IAE TV

Second test scenario
Expert MPC

Permeate flow rate
Permeate conductivity

MPC
Permeate flow rate

Permeate conductivity

-
-

135
120

-
135
120

-
-
0

14.1
-
0

14.1

-
-

896.1
873.3

-
1384.3
1192.4

-
-

32.1
25.8

-
40.6
33.4

From Table 1, it is observed that the lowest IAE with the least control effort is obtained with the
designed Expert MPC; therefore, this controller exhibits the best robustness. This means that the Expert
MPC makes it more possible to get faster and accurate responses for the stabilization and control of the
pilot-scale plant critical variables than the standard MPC. Consequently, the designed Expert MPC
will guarantee a better operation of the actual industrial scale RO desalinization plants, as well as a
higher conversion rate, with lower energy consumption. Nevertheless, in these plants, there are more
disturbances compared with our pilot scale plant; therefore, the Rule Base of the Expert System will
need to be extended.

Figure 9. Comparative evaluation of the real-time closed-loop responses of the pilot-scale plant
control system with the designed EMPC and model predictive controller (MPC) to simultaneous steps
changes at the setpoints of the critical variables, where: (a) Permeate flowrate responses; (b) Permeate
conductivity responses.

Figure 10. The control signals of the designed Expert MPC y MPC in the second test scenario, where:
(a) High feed pressure control signals; (b) Brine flowrate control signals.



Appl. Sci. 2019, 9, 2932 13 of 16

5. Conclusions

In this paper, an Expert MPC was designed for the accurate and robust control of the critical
variables of the brackish and seawater RO desalination plants, and it was real-time implemented in the
remote supervision station of the pilot-scale RO desalination plant of the Pontifical Catholic University
of Peru. By the application of the system identification procedures, a dynamic mathematical model
that satisfactorily depicts the main dynamic features of this plant was derived.

The designed Expert MPC enables the accurate control of the permeate flowrate and the permeate
conductivity by varying the high feed pressure and the brine flowrate respectively, which is more
consistent with the industrial practice developed in the commercial seawater desalination plants.
This controller is characterized by having an expert system, which, based on the information available,
develops different decision-making strategies online to achieve the control objective and to ensure that
the prediction error e(k + j) becomes zero.

The efficiency and robustness of the designed controller were evaluated through some real-time
tests and two performance indexes considering different real industrial operation scenarios and a
well-designed standard MPC. The results obtained show that the efficiency and robustness of the
control system of the plant under study with the designed Expert MPC are much better compared to
the standard MPC in terms of plant time-varying parameters rejection.

Our future research objective in this direction will focus on the real-time implementation of the
Expert MPC designed in an actual industrial scale RO desalination plant, which will guarantee a better
plant operation, as well as a high conversion rate and lower energy consumption.
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