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Abstract: With the advancement of wearable technology, many physiological monitoring instruments
are gradually being converted into wearable devices. However, as a consumer product, the blood
pressure monitor is still a cuff-type device, which does perform a beat-by-beat continuous blood
pressure measurement. Consequently, the cuffless blood pressure measurement device was developed
and it is based on the pulse transit time (PTT), although its accuracy remains inadequate. According
to the cardiac hemodynamic theorem, blood pressure relates to the arterial characteristics and the
contours of the pulse wave include some characteristics of the artery. Therefore, the purpose of
this study was to use the contour characteristics of the pulses measured by photoplethysmography
(PPG) to estimate the blood pressure using a linear multi-dimension regression model. Ten subjects
participated in the experiment, and the blood pressure levels of the subjects were elevated by exercise.
The results showed that the mean and standard deviation (mean ± SD) of the root mean square error of
the estimated systolic and diastolic pressures within the best five parameters were 6.9 ± 2.81 mmHg
and 4.0 ± 0.65 mmHg, respectively. Compared to the results that used one parameter, the PTT,
for estimating the systolic and diastolic pressures, 8.2 ± 2.1 mmHg and 4.5 ± 0.79 mmHg, respectively,
our results were better.

Keywords: cuffless blood pressure measurement; characteristics of pulse wave; photoplethysmography;
multi-dimension regression model

1. Introduction

The last decade has seen the development of some wearable technologies for health care [1].
These technologies are used for monitoring the saturation of percutaneous oxygen (SpO2) [2],
the electrocardiogram (ECG) [3], body temperature, physical activities [4], and the respiratory rate.
These aforementioned measurement techniques can be combined into a single device that performs a
complete physiological monitoring, similar to physiological clothes and polysomnography. However,
the devices do not collect blood pressure measurements because a cuff-type blood pressure measurement
requires mechanical devices like an air-pump motor and an electromagnetic valve. Most commercial
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automatic blood-pressure monitors apply either auscultatory or oscillometric methods [5], and these
cannot be easily built into wearable devices.

Ahlstrom et al. proposed a novel technique for a cuffless blood pressure measurement, where
they used the pulse transit time (PTT) to evaluate the systolic blood pressure [6]. They found that this
method could monitor the change in a person’s blood pressure pattern. Sharwood-Smith et al. used
the PTT to evaluate the change in blood pressure during obstetric spinal anesthesia [7]. The PTT is
defined as the time taken by the pulse wave to travel from the systolic ending of the left ventricular to
the specific position of the peripheral artery. Therefore, the cuffless technique must include at least
two sensors, that is, one placed on the chest and another placed on the arm or the leg. Both studies
used the ECG and photoplethysmogram (PPG) to obtain the PTT [6,7]. However, the PTT has a
stronger relation with Young’s modulus of the artery. Blood pressure is one parameter of the cardiac
hemodynamic theorem and, therefore, it is difficult to accurately estimate the blood pressure using
only the PTT parameter.

Cardiac hemodynamic parameters include blood pressure, cardiac output, and systemic vascular
resistance. In the Windkessel model [8], the pulse contour method was used to estimate cardiac output,
and it can be used to estimate arterial stiffness using the Augmentation Index [9]. Xu et al. used the
PTT and characteristics of the PPG wave to estimate the continuous blood pressure using a neural
network (NN) [10]. Wu et al. used parameters extracted from the ECG and blood pressure waveform
to estimate the blood pressure using a multilayer perceptron neural network [11]. Ruiz-Rodrıguez
et al. used some of the parameters extracted from the PPG wave to estimate blood pressure [12].
In these studies, the three-layer NN with back propagation algorithm was linked to the regression
model. The deep neural network (DNN) has also been utilized to perform a regression model for
blood pressure measurements [13]. However, all these studies focused on the static blood pressure
measurement and they required significant data to estimate the blood pressure. If the cuffless blood
pressure measurement were to be applied to a wearable device, the blood pressure measurement
should be under a dynamic condition, and only a few data points would be used to build the model.
Thus, the cuffless blood pressure measurement not only uses the PPT parameter, but it also has to
combine some contour characteristics of pulse.

The pulse wave can be measured using a pressure sensor [14], tonometer [15], and PPG, where PPG
is commonly used to measure the pulse wave, representing the plethysmogram of the arteries. However,
the pulse wave measured by PPG is easily affected by some factors like the subject’s skin, tissue,
and light density of the LED. Moreover, it is hard to calibrate the device. PTT measured using PPG and
an ECG also depends on the placement of the PPG sensor [16]. Consequently, the goal of this study
was to explore cuffless blood pressure measurements using the contour characteristics of the pulse
measured by PPG. Ten subjects participated in this study and they were asked to exercise to raise their
blood pressures. The blood pressure estimation used the linear multi-dimension regression model and
a multi-layer NN. The results showed that the contour characteristics of the pulse measured using PPG
could estimate blood pressure more accurately in a linear multi-dimension regression model.

2. Methods

2.1. Parameters of the Pulse Wave

The pulse wave can be viewed as the synthesis of a forward wave and a reflected wave, as shown
in Figure 1, which is related to the hemodynamic parameters of the heart, including blood flow,
blood pressure, and systemic vascular resistance. According to the Windkessel model, the blood flow
(BF) and blood pressure (BP) exhibit a first-order differential and linear relationship,

CW
dBP(t)

dt
+

BP(t)
Rp

= BF(t), (1)
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where Cw and Rp are the arterial compliance and peripheral vascular impedance, respectively.
In Equation (1), the pulse wave and pulse differential wave have a relation to the blood flow. Therefore,
in this study, we proposed that some parameters should be extracted from the pulse wave, as shown in
Figure 2a, and also from the differential wave of the pulse, as shown in Figure 2b. Table 1 shows the
parameter definitions.
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Table 1. Parameter definition of the pulse wave.

Parameters Formula

Ejection Time Ratio (ETR) ETR = T4+T5
T1+T2+T3

Beat Duty (BD) BD = T1 + T2 + T3
Heart Rate (HR) HR = 60

BD
Volume change during systolic cycle (Z0AS) Z0AS =

PPGp−PPGv

T1
Volume change during diastolic cycle (Z0DS) Z0DS =

PPGp−PPGv

T2
Volume during systolic cycle (Z0AA) Area during T1 in the pulse wave.

Volume during diastolic cycle (Z0DA2) Area during T3 in the pulse wave.
Maximum volume change during systolic cycle (DPPGp) Peak between T4 and T5 in the differential wave of pulse.
Minimum volume change during diastolic cycle (DPPGv) Valley at the end of T5 in the differential wave of pulse.

Pulse transit time (PTT) Time interval from the systolic ending of the left
ventricular to the specific position of the peripheral artery.

2.2. Multi-Dimension Regression Model

In this study, we used the linear multi-dimension regression model to estimate the blood pressure,
where the model explores the correlation between the independent variable (x) and the dependent
variable (y), and establishes a regression model to estimate the variables (ŷ). Let y be the dependent
variable, whilst x1, x2, . . . xk are the independent variables. There is a linear relationship between the
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independent variable and the dependent variable. As such, the multi-dimension regression model is
defined as,

y = B0 + B1x1 + B2x2 + . . .+ Bkxk + e (2)

where e is the error. Each measured data is represented by i. The regression model is

y = B0 + B1xi1 + B2xi2 + . . .+ Bkxik + ei (3)

B0, B1, B2 . . . Bk are obtained by using the matrix method,

y =


y1

y2
...

yn

, (4)

X =


1 x11 x12 . . . x1K
1 x21 x22 . . . x2K
...

...
...

...
...

1 xn1 xn2 . . . xnK

, (5)

B =


B1

B2
...

Bn

, (6)

E


e1

e2
...

en

, (7)

y = X ∗ B + E. (8)

Assuming the error value E is zero, then,

ŷ = X ∗ B̂, (9)

X′
(
y−XB̂

)
= 0, (10)

X′y−X′XB̂ = 0, (11)

X′y = X′XB̂. (12)

Finally,
B̂ = (X′X)−1X′y, (13)

Table 1 shows the parameters used in this study, and which have used to estimate the blood
pressure, ŷ (systolic pressure and diastolic pressure). The root mean square error, ERMS, was used to
evaluate the performance of the model,

ERMS = (
1
n

∑n

i=1
(yi − ŷi)

2)
0.5

. (14)

where n is the number of data.
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2.3. Deep Neural Network

In our study, a multi-layer feed-forward neural network based on the error back propagation
algorithm was trained to predict the blood pressure using the rectified linear unit (ReLU),

f (x) =

x = x, x ≥ 0

x = 0, x < 0
(15)

The neural network’s self-adaptive learning rule uses a gradient-descent method, which adjusts its
weight through back propagation and minimization of the square error. Table 2 shows the parameters
of the deep neural network (DNN).

Table 2. Parameter setting of the deep neural network.

Parameters Formula

Number of input feature vector (X) 5
Number of output feature vector (Y) 1

Number of hidden layers: 9
Number of the hidden unit on the hidden layers: {12, 20, 50, 50, 30, 30, 20, 20, 15}

Learning rate for weight 0.01
Learning rate for biases of visible units 0.01
Learning rate for biases of hidden units 0.01

Momentum rate 0.9
Maximum epoch in the pre-training: 10000
Maximum epoch in the fine-training: 10000

Initial weights and biases: randomly between [–1,1]

2.4. Experimental Protocol

The experiment used a physiological signal measurement system, K&H KL-710, which had an
ECG module and a PPG module. The sampling rate was 500 Hz, and the bandwidths of the ECG
module and PPG module were tuned 0.5 to 40 Hz and 0.5 to 10 Hz, respectively. The participants
in the experiment were recruited through our webpage and written announcements. The purpose
and the process of the experiment, as well as the rights of the subjects were listed on the website.
Ten male subjects were recruited whose ages were 23.7 ± 0.67 years (from 22 to 25 years), weights were
56.6 ± 3.33 Kg (from 52 to 62 Kg), and heights were 170.4 ± 3.77 cm (from 165 to 175 cm). Frail subjects
with arrhythmia and asthma were excluded. This experiment was approved by the Research Ethics
Committee of China Medical University and Hospital (No. CRREC-105-072), Taichung city, Taiwan.

Subjects we required to rest for five minutes before the measurements, and they were asked to fill
an informed consent form for the experiment. The subjects’ information was recorded, including age,
weight, height, medical treatment of illness, and whether there was arrhythmia (if any, excluding from
the experiment). An electronic blood pressure monitor (Omron, HM-7210, Japan) was used to measure
the subjects’ blood pressure. These blood pressures were used as the reference blood pressure in this
experiment. The cuff of the blood pressure monitor was wrapped on the right upper arm, the probe of
the PPG was placed on the first finger of the left hand, and the electrodes of the ECG were placed on
the chest to measure the lead II equivalent signal. The subject rode on a fitness bike. The experiment
procedure is described below:

1. The signals in the first five minutes were used as the baseline of the experiment. At the same time,
the blood pressure was measured once and its finish-time would be marked at the PPG signal.

2. The pedaling speed was about 80 rpm and was kept continuous for at least five minutes.
3. Then, the blood pressure was measured and its finish-time would be marked at the PPG signal.
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4. Subjects were requested to rest and to wait for their blood pressure to drop to the baseline.
The blood pressures of the subjects were measured repeatedly once every minute within the
resting duration, and its finish-time would be marked at the PPG signal.

5. Repeat steps 1 to 5, five times.

Table 3 shows the statistics, mean and standard deviation (mean ± SD), and the maximum and
minimum blood pressures of the subjects for the exercise. Three-pulse waves close to the marked point
were extracted using manual selection, and the average of these parameters for the three-pulse waves
was used to construct the blood pressure model.

Table 3. The statistics (mean ± SD) of the maximum and minimum blood pressures of subjects in the
five exercises.

Subjects Systolic Pressure (mmHg) Diastolic Pressure (mmHg)

Max. Min. Max. Min.
1 134 ± 11.3 105 ± 3.4 81 ± 3.3 69 ± 4.4
2 139 ± 4.7 112 ± 2.8 78 ± 2.8 66 ± 3.8
3 146 ± 8.3 116 ± 3.8 81 ± 2.1 67 ± 3.8
4 142 ± 5.6 116 ± 1.1 81 ± 3.8 62 ± 5.3
5 161 ± 17.1 124 ± 4.3 83 ± 4.8 67 ± 0.9
6 151 ± 12.5 114 ± 1.1 78 ± 2.9 66 ± 4.0
7 146 ± 6.0 117 ± 1.7 69 ± 4.4 57 ± 3.5
8 152 ± 4.8 124 ± 6.2 93 ± 2.7 81 ± 7.3
9 134 ± 8.5 105 ± 2.5 72 ± 5.8 61 ± 3.5

10 133 ± 3.5 108 ± 2.2 74 ± 1.5 65 ± 1.5

3. Results

Figure 3 shows the ECG and PPG signals. Since each subject performed the experiment to raise
blood pressure five times, the dropping times of their blood pressure were different and so were the
numbers of measured data for each subject. We used the data for each subject to make develop their
personalized blood pressure models, and the leave-one-out cross validation was used to validate the
performance of the multi-dimension regression model and the DNN. Figure 4 shows the correlation
coefficient, r, between parameters of the pulse wave and the systolic and diastolic pressures. We found
that the PTT and HR had the highest correlation with blood pressure. To choose the optimal parameters
for estimating blood pressure, we used different parameter combinations to construct the blood
pressure models. According to the ranking of the correlation coefficient in Figure 4, we would first
delete the parameter with the lowest correlation coefficient. The parameters would be deleted one by
one until the last parameter, the PTT. Table 4 shows the ERMS of the estimated blood pressure for the
ten subjects with only the PTT. The ERMS statistics of were 8.2 ± 3.00 mmHg and 4.5 ± 0.75 mmHg for
the systolic and diastolic pressures, respectively.
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Figure 4. The correlation coefficient between pulse wave parameters and the blood pressure,
(a) the systolic pressure, (b) the diastolic pressure.

Table 4. The ERMS statistics (mean ± SD) of the estimated blood pressure for ten subjects using only the
pulse transit time (PTT) parameter.

Subjects (Samples) Systolic Pressure ERMS (mmHg) Diastolic Pressure ERMS (mmHg)

1 (35) 11.9 5.4
2 (41) 5.5 4.7
3 (37) 11.8 5.1
4 (43) 5.5 5.1
5 (48) 6.2 3.3
6 (35) 5.6 4.4
7 (43) 7.5 3.9
8 (32) 13.4 3.7
9 (41) 6.9 4.2

10 (38) 8.0 5.5
Mean ± SD 8.2 ± 3.00 4.5 ± 0.75

Since the best first five and six parameters could be used to estimate the better blood pressure,
the results of all parameters, the six parameters, and the five parameters are shown in Tables 5 and 6,
respectively. In Table 5, the ERMS statistic with all parameters was 7.3 ± 3.46 mmHg, which was better
than the ERMS using the PTT parameter only, which was 8.2 ± 3.00 mmHg. When the best first six and
five parameters were used to estimate the blood pressure using the linear multi-dimension regression
model, the ERMS statistics were 7.1 ± 2.60 mmHg and 6.9 ± 2.81 mmHg, respectively. The results
were better than the ERMS statistics of the DNN, which were 9.5 ± 1.73 mmHg and 9.5 ± 1.71 mmHg,
respectively. In Table 6, the ERMS statistic of all parameters was 4.2 ± 0.73 mmHg, which was better than
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the ERMS statistic using only the PTT parameter, which was 4.5 ± 0.75 mmHg. When the best six and
five parameters were used to estimate the blood pressure using the linear multi-dimension regression
model, the ERMS statistics were 4.0 ± 0.70 mmHg and 4.0 ± 0.65 mmHg, respectively. The results were
also better than the ERMS statistics of the DNN, which were 4.7 ± 0.55 mmHg and 4.7 ± 0.58 mmHg,
respectively. Figure 5 shows the measured blood pressures and the estimated blood pressures during
five exercises for the fifth subject. The subject’s systolic and diastolic pressures dropped about 30 mmHg
and 16 mmHg, respectively. The accuracy of the estimated diastolic pressures was better than the
estimated systolic pressures, and the ERMS values were 3.4 mmHg and 4.1 mmHg, respectively.

Table 5. The ERMS statistics (mean ± SD) of the estimated systolic pressure for the ten subjects using
the parameters of pulse wave and PTT.

Subjects
(Samples)

All Parameters ERMS
(mmHg)

PTT HR BD Z0DA2 DPPGv
ETR ERMS (mmHg)

PTT HR BD Z0DA2
DPPGv ERMS (mmHg)

Number of
Parameters 10 6 5

DNN MDR DNN MDR DNN MDR
1 (35) 7.4 5.2 10.0 8.2 10.0 7.9
2 (41) 10.3 4.8 8.5 4.3 8.5 4.2
3 (37) 9.0 8.6 8.9 7.4 8.9 8.7
4 (43) 7.4 4.4 7.4 4.7 7.4 4.6
5 (48) 7.5 4.3 7.4 6.3 7.4 4.1
6 (35) 10.3 7.3 10.3 6.3 10.3 6.1
7 (43) 11.4 7.9 11.5 7.5 11.4 7.3
8 (32) 12.9 16.1 12.9 13.7 12.9 13.6
9 (41) 9.1 6.7 9.0 6.0 9.1 6.0
10 (38) 9.3 7.3 9.3 6.9 9.2 6.9

Mean ± SD 9.5 ± 1.82 7.3 ± 3.46 9.5 ± 1.73 7.1 ± 2.60 9.5 ± 1.71 6.9 ± 2.81

DNN: deep neural network, MDR: multi-dimension regression, SD: standard deviation.

Table 6. The ERMS statistics (mean ± SD) of the estimated diastolic pressure for the ten subjects with
the parameters of pulse wave and PTT.

Subjects
(samples)

All Parameters ERMS
(mmHg)

HR PTT BD DPPGv
ETR Z0DA2 ERMS

(mmHg)ERMS (mmHg)

HR PTT BD DPPGv
ETR ERMS (mmHg)

Number of
Parameters 10 6 5

DNN MDR DNN MDR DNN MDR
1 (35) 5.3 3.8 5.2 3.6 5.1 3.5
2 (41) 4.9 3.4 4.9 4.1 4.9 3.9
3 (37) 4.1 4.2 4.1 4.0 4.1 4.8
4 (43) 5.6 4.6 5.5 4.5 5.6 4.4
5 (48) 3.7 3.8 3.7 3.4 3.6 3.4
6 (35) 5.0 4.3 5.0 3.9 5.0 3.8
7 (43) 4.9 4.1 4.9 3.6 5.0 3.7
8 (32) 4.2 4.0 4.2 3.3 4.2 3.6
9 (41) 4.7 4.0 4.6 3.8 4.7 3.6

10 (38) 4.9 6.1 4.9 5.7 4.9 5.4
Mean ± SD 4.7 ± 0.58 4.2 ± 0.73 4.7 ± 0.55 4.0 ± 0.70 4.7 ± 0.58 4.0 ± 0.65

DNN: deep neural network, MDR: multi-dimension regression, SD: standard deviation.
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Figure 5. The measured and estimated blood pressures during five exercises for the fifth subject.
(a) the first time experiment, (b) the second time experiment, (c) the third time experiment, (d) the fourth
time experiment, (e) the fifth time experiment.

4. Discussion

Cuffless blood pressure measurement using PTT has been studied by many researchers [6,7,10].
The pulse wave can be measured by the PPG [7,10], impedance plethysmography [17], and a pressure
sensor [14]. We found that the accuracy of the measured blood pressure was affected by the measuring
conditions. Most of the previous studies have measured blood pressure under a static condition, which
would have a high accuracy. However, when blood pressure changes under spinal anesthesia [7] or
exercise [17], the accuracy of blood pressure measurements using PTT would become fairly poor. In the
pilot study by Sharwood-Smith, the correlation coefficient between the mean blood pressure and PTT
was only r2 = 0.55. The result for the exercise experiment was only r2 = 0.49. Therefore, we used the
contour characteristics of the pulse wave to increase the accuracy of the blood pressure measurement
when blood pressure has its quickest and continuous change.
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Some studies have also used the parameters extracted from a PPG and ECG to estimate blood
pressure using a multilayer perceptron neural network [10,11], where the results showed good accuracy.
However, their studies all focused on the static measurement condition, and there were too many
parameters used to estimate blood pressure. In our study, we used a DNN and linear multi-dimension
regression method to build the blood pressure model, which only used five parameters. The results
showed that a linear multi-dimension regression model has a better accuracy than a DNN. The ERMS
statistics were 6.9 ± 2.81 mmHg and 9.5 ± 1.71 mmHg for the systolic pressure, respectively, and
4.0 ± 0.65 mmHg and 4.7 ± 0.58 mmHg for the diastolic pressure, respectively.

In this study, only a small volume of data was required for each subject. However, the DNN
required a large volume of data. Since we tried to increase the accuracy of the DNN method,
the structure complexity of the DNN was increasing to {12, 20, 50, 50, 30, 30, 20, 20, 15}. This presents
a bigger problem to utilize the DNN in a wearable device for measuring blood pressure. The linear
multi-dimension regression model only had one layer and it could use the pseudoinverse to estimate
the multi-dimension regression model, which would save training time and be easily implemented in a
wearable device. Although Xu et al. used a NN with two hidden layers to estimate the blood pressure
and achieved a good accuracy, the Bland–Altman plots of blood pressure showed that many estimated
values were still found outside the limits of the agreement [10]. The results from the calibration-free
method showed that there was only 76.9% and 86.4% accuracy in the systolic and diastolic pressures
within a 5 mmHg error. According to the BS EN 1060-4 standard [18], the mean error of blood pressure
has to be lower than ±5 mmHg. Therefore, if there is no method fitting this standard, a simple model
would be the solution, which could be easily realized in a wearable device.

Another problem in this study was the synchronized blood pressure measurement. We only used
an electric blood pressure monitor to measure the blood pressure at different time points intermittently.
However, we know that this commercial blood pressure monitor only measures the rough average
blood pressure within its measuring duration. Meanwhile, the blood pressure was continuously
dropping after exercise. Therefore, the chosen pulses only represented these time points, which do not
exactly represent the pulses of the blood pressure measured by the commercial blood pressure monitor.
Moreover, the systolic pressure would increase more easily than the diastolic pressure when exercising,
as shown in Table 3. In Table 5, there are only three subjects whose mean errors of the systolic pressure
were lower than 5 mmHg. However, in Table 6, there was only one subject whose mean error of the
diastolic pressure was larger than 5 mmHg.

5. Conclusions

In this study, we used different pulse wave parameters to estimate the change of blood pressure
using a linear multi-dimension regression model. The pulse wave was measured using the PPG
method. The results showed that the blood pressures measured using a five parameter combination,
including the PTT parameter, were more accurate than blood pressures measured using only the
PTT parameter. The linear multi-dimension regression model could be easily trained with our linear
algebra calculation. Therefore, this method could be implemented in a wearable system to measure the
continuous beat-to-beat blood pressure. In the future, we will use deep learning techniques to estimate
the blood pressure to increase the accuracy of blood pressure measurements.
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