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Abstract: In this paper, an agent-based model of ant traffic on a unidirectional single-lane ant trail
is presented to provide better understanding of the jam-free traffic of an ant colony. On a trail,
the average velocity of ants remains approximately constant irrespective of density, thereby avoiding
jamming. Assuming chemotaxis, we analyze platoon-related scenarios to assess the marching-platoon
hypothesis, which claims that ants on a trail form a single platoon in which they march synchronously,
thereby reducing hindrances due to increasing density. Contrary to that hypothesis, our findings show
that ants on a trail do not march synchronously and do experience stop-and-go motion. However,
more interestingly, our study also indicates that the ants’ chemotaxis behavior leads to a peculiar
jam absorption mechanism, which helps to maintain free flow on a trail and avoids jamming. Again,
contrary to the marching-platoon hypothesis, our findings also indicate that, rather than assisting
traffic flow, forming a single cluster actually triggers jamming.
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1. Introduction

Recent advancement in computation has made it possible to record, simulate, and analyze
multi-agent complex systems by using agent-based modeling [1,2]. Agent-based modeling is widely
used for the modeling and synthesis of complex distributed systems such as distributed financial
markets, artificial intelligence, and town planning [2–4]. Agent-based modeling is also used to
study spatiotemporal organization in systems of interacting agents, including vehicular traffic,
molecular motors moving on polymeric tracks, and ant colonies moving on trails [5–8]. One of the
major uses of agent-based modeling is the analysis of emergent behaviors in interacting multi-agent
systems, which cannot be understood by merely studying individual elements of a complex system.
In recent years, the study of ants’ emergent behavior on trails has attracted particular attention for
several reasons. The vast trail systems that ants form for transportation share many of the features of
vehicular transportation systems [9–17]. Individual trails created by an ant colony can be functional
for hours and can be considered analogous to highways. Thus, the collective movement of ants on
trails (“ant traffic” (AT)) is analogous to vehicular traffic on a highway network [5,18]. The social
behavior of ants also indicates that biological evolution may have optimized AT; examples include
(i) the formation of three lanes in bidirectional AT and (ii) natural selection of the shortest path to a
food source [10,16,17,19–23].

A recent empirical study of unidirectional AT in Leptogenys processionalis revealed several exciting
properties [14]. The average velocity of ants on a trail remained almost independent of density on
that trail. Consequently, no jamming phase (referred to simply as “jamming”) was observed in the
fundamental diagrams. It was also found that ants on a trail formed clusters. The fundamental
diagrams for AT are in contrast to those of vehicular traffic. In the latter, the average velocity decreases
at high density, and thus, jamming occurs, indicating stop-and-go behavior and congestion [14].
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Inspired by these fascinating findings about AT, a few previous theoretical studies attempted to
explain the mechanism for jam-free AT on a unidirectional trail [9,13,15]. In [13], it was assumed that
ants on the trail detect their headway distance visually and control their propelling force according
to the headways. The model in [13] was able to capture all the features observed in [14], and it
also indicated that ants might have nearest-neighbor repulsion, which was previously unknown.
However, previous physiological studies about ants indicated that ant species with trail pheromones
are practically blind and cannot detect objects farther than a few millimeters [10,21]. On the other
hand, in the case of [15], it was assumed that ants use chemotaxis for traffic management on AT.
Specifically, the work in [15] argued that ants reduce their velocity for a corresponding increase in
pheromone concentration. The model in [15] also captured all the major observations from [14], and it
also supported the findings of [13], which suggested that ants might have nearest-neighbor repulsion.
However, although the above-mentioned assumption of [15] partially agreed with previous studies
(ants use chemotaxis for traffic management), previous studies showed that ants are attracted towards
a higher concentration of pheromones (in contrast with the assumption in [15], ants might be increasing
their velocity when they discover a higher concentration of pheromones) [10,21,24,25].

Meanwhile, the model in [9] can be considered a pioneer model in the traffic flow analysis of
AT, which has been well analyzed [5,6,11,12,26,27]. The model in [9] is simple, yet it is in accordance
with previous studies. However, it is a general model of ant traffic, which was proposed and analyzed
prior to [14]. Therefore, it should be further improved and analyzed in light of the findings from [14].
Further improvement and analysis of the model in [9] might give us a better understanding of jam-free
AT from [14].

In the present paper, we propose an improvement to the model from [9], where, similar to [9],
we use asymmetric hopping and particle exclusion on a discrete lattice to represent single-lane
unidirectional motion; whereas, as an improvement over the previous model (where the pheromone
concentration had only two discrete levels (presence or absence)), pheromone concentration levels
in our model are continuous. Another difference between the two models is that the ants in [9]
traveled with constant distance in one unit of time, whereas the probability of motion depends on the
pheromone (stochastic dynamics). On the other hand, in our model, we assume a constant probability
of motion, but a distance to be traveled in one time step is continuous and depends on the pheromone
concentration (deterministic dynamics). All the assumptions and improvements in the new model are
based on previous physiological studies, and the model (in certain limits) also captures all the main
features of the experimental results from [14], which verifies that the model in certain limits is able
to mimic real-life ants. Using the model, we also analyze different platoon scenarios to understand
platoon-related phenomena in AT. These platoon-related analyses test the marching-platoon hypothesis.
The marching-platoon hypothesis has two components: (1) platoon formation, whereby ants on a trail
converge to form platoons, and (2) marching ants, whereby ants inside a platoon march together (move
with the same instantaneous velocity). In the marching-platoon hypothesis, as the ants move with
the same instantaneous velocity (synchronized march), they (ants) do not experience the hindrance
that usually arises in traffic systems with increasing density [14]. Thereby, ants on a trail maintain a
constant average velocity, regardless of their density (in [13], the marching platoon was referred to
as the infinite cluster, where it was assumed that agents inside the platoon have a low level of noise,
which ensures that all agents have almost the same propulsion force (synchronized march)). We also
investigate the inter-platoon dynamics in AT. Our analyses give us significant new insight into the
mechanism behind the jam-free AT found in [14].

2. Model and Simulation Scenario

2.1. Model

Ants on a trail communicate with each other by chemotaxis: as they move forward on the
trail, the ants drop and sense chemical substances known as pheromones [10,21–23]. The ants’



Appl. Sci. 2019, 9, 2918 3 of 22

movements depend on the local pheromone concentration ahead of them, which they detect with
their antennae [10,21]. Physiological studies of ants and other insects show that the antennae-detected
pheromone concentration is converted into a self-propelling force [10,21–25]. This force increases with
the pheromone concentration until the concentration (σsat) that saturates the antennae [10,21,24,25].
The antennae cannot detect any further increase in concentration above σsat, and the propulsion force
for concentrations beyond saturation remains approximately that at saturation [10,24,25]. Based on the
aforementioned chemotaxis behavior of ants, we present an agent-based model of the behavior of ants
on a unidirectional single-lane ant trail (the ant-trail model (ATM)). As explained earlier, our model is
an improvement on the model by [9].

The model in [9] was analyzed using cellular automaton. However, considering that the
observations of individual ants are an integral part of our analysis, we chose agent-based modeling.
For the simulations, we used NetLogo as the modeling platform, which is a multi-agent programmable
modeling environment [28]. The model in NetLogo comprises two types of agent, namely (i) stationary
agents representing the cells of the trail (environment in the model) and (ii) moving agents representing
the ants. Each cell of our one-dimensional ant trail can accommodate, at most, one ant at any time step
(see Figure 1). The cells are labeled by the index i (i = 1, 2, . . . , L), where L is the length of the trail.
We associate the following three numerical variables with each cell.

• The binary variable si(t) is either zero or one depending on whether the cell is empty (zero) or
occupied (one) by an ant at time step t.

• The pheromone concentration σi(t) is a numerical variable ranging from zero to σsat. σi(t) = 0
means that there is no pheromone in cell i at time step t, whereas σi(t) = σsat means that the cell
is saturated with pheromone at that time step.

• Ωi represents a resistance or drag that the cells present against the ant motion. Ωi represents
factors related to trail conditions such as obstacle, rough trail, or uphill, which have a negative
impact on the motion of ants. In short, Ωi provides opposition to the motion in the preferred
direction, which is represented in ATM by a negative velocity (velocity in the opposite direction).
In a given simulation, Ωi is constant for a given cell. To avoid ants moving backwards, Ωi is
designed to always be positive, but less than the non-zero minimum ant velocity (vmin) (as
explained later, Ωi is used while defining the heterogeneous trail.).

Figure 1. Schematic representation of the ant-trail model (ATM), showing a single-lane unidirectional
ant trail from left to right. Each cell is indexed by i, and each ant is indexed by j. At any given time,
each cell can contain only one ant.

As shown in Figure 1, the ants are also labeled with a unique number j (j = 0, 1, 2, . . . , N), where N
is the total number of ants in the simulation at the time of measurement (as explained later, the number
of ants changes over time). Each ant has the following two associated variables:

• vj(t) is the instantaneous velocity of ant j at time step t. vj(t) is continuous and ranges from zero
to one.

• pj(t) is the position of ant j on the trail at time step t and ranges from zero to L. Similar to vj(t),
pj(t) is also continuous.

All the parameters from the model are summarized in Table 1. For the ATM simulations in the
paper, we assumed that: (i) ants do not move backwards; (ii) the probability of forward motion is
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constant; and (iii) the distance traveled in one time step depends on the pheromone concentration in
the cell ahead. At each time step, the states of the model variables are updated in two stages.

Table 1. An overview of the parameters in the ant-trail model (ATM).

Description Symbol

Unique identity of a cell in the trail i
Presence or absence of an ant in the trail celli at time t si(t)
Pheromone concentration in the trail celli at time t σi(t)
Resistance by the trail celli to the motion of an ant Ωi
Pheromone concentration saturation level σsat
Unique identity of an ant in the simulation j
Velocity of the antj at time t vj(t)
Position of the antj at time t pj(t)
Minimum velocity of an ant towards the cell with no pheromone and no other ant vmin
Trail length L
Evaporation rate er

2.1.1. Stage I: Ant Motion

The first stage of the update represents the behavior of ants, which depends on the interaction of a
given ant with its surroundings (surroundings of an ant include trail and other ants in the simulation).
In this stage, based on the information about pheromones and the presence of ants in the cell ahead,
the value of the instantaneous ant velocity vj(t) is generated for a given time step t. At the end of
Stage I, we obtain the value of pj(t + 1) for each ant and the scan value of si(t + 1) for each cell at time
t + 1. The ant positions and parameters are updated according to the following rules. If ant j is in
cell i, the instantaneous velocity of that ant from cell i towards cell i + 1 depends on si+1(t), σi+1(t),
and Ωi+1, as follows:

vj(t) =



0, if si+1(t) = 1{
max(vj(t− 1)− 0.1, vmin)−Ωi+1 with probability P

vj(t− 1)−Ωi+1 with probability (P-1)
if si+1(t) = 0 and σi+1(t) < 1

(vmin + a× σi+1(t)−Ωi+1), if si+1(t) = 0 and 1 ≤ σi+1(t) < σsat

(vmin + a× σsat −Ωi+1), if si+1(t) = 0 and σi+1(t) ≥ σsat.

(1)

pj(t + 1) = pj(t) + vj(t). (2)

For the time step given in Equation (1), the following four cases are possible.
The first case represents the action of an ant in cell i if the next cell is occupied by another ant.

In that case, the former ant cannot move forward, which is represented by vj(t) = 0.
In the second case, the next cell contains no ant (si+1(t) = 0), but also no pheromone. Ants are

sensitive to the pheromone concentration; they can detect a pheromone even at an extremely low
concentration. For the simulations in this paper, we assumed that ants cannot detect pheromones
below σi+1(t) < 1(<< σsat). When no pheromones are present, the ant will not have the trail; thus,
to avoid wastage of energy due to high velocity, we assumed that the ants reduce their velocity or
move with vmin, whichever is higher, and the probability P gives the probability of this event (change
in velocity). Conversely, the agents maintain the same velocity as t with the probability (1− P). In the
second case, we assumed that P = 0.7(> 0.5), which represents high sensitivity of the ant to absence
of the pheromone. After a velocity reduction, the final velocity is calculated with consideration of
Ωi+1. For the simulations in this paper, vmin was chosen in such a way that it would avoid backwards
motion due to Ωi+1. Therefore, we needed to choose an vmin value that was always greater than Ω.
On the other hand, a larger value of vmin led to a smaller velocity range. Therefore, to maximize the
velocity range, we chose vmin = 0.15 (for further explanation on vmin, check Appendix A.1).
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In the third case, the next cell contains no ants (si+1(t) = 0), but it contains a detectable level
of pheromones below saturation (1 < σi+1(t) < σ(sat)). In that case, the instantaneous velocity
of the ant depends on the pheromone concentration in the next cell. For the analysis presented in
this paper, we use a deterministic equation to represent velocity changes related to the third case.
Deterministic dynamics represents high sensitivity to pheromones, as well as low inertia of ants on
the ant trail. In this scenario (the third case), the value of the prefactor a is decided based on σsat

and vmax (upper velocity limit (= 1)). For the functioning of the model within given velocity limits,
(a× σsat ≤ vmax + Ωi+1 − vmin) should be satisfied. On the other hand, a lower value of a× σsat will
lead to a lower velocity range. Therefore, considering the above restriction and mathematical simplicity,
we selected a× σsat = 0.8, and assuming σsat = 80, we chose a = 0.01 (for further explanation about
σsat, check Appendix A.2).

In the fourth and final case, the next cell contains no ant, but the level of pheromone is above
saturation. In that case, the velocity of the given ant becomes equal to the velocity at σsat, which can
be calculated by using the third case equation (vmin + a× σsat −Ωi+1). As explained above, for the
analysis in this paper, we assumed σsat = 80.

As specified by Equation (2), the new position pj(t + 1) of the given ant is calculated by adding
the position of the ant at time t to the distance traveled in unit time (vj(t)). It is interesting to note that
the dynamics presented in Equation (1) resemble the dynamics in the Nagel–Schreckenberg model
where the velocity of an agent depends on the headway distance, whereas in the case of our model,
the velocity of an agent depends on the pheromone concentration. This resemblance indicates that
both models are analogous to each other, which indicates that there might be some similarities between
the two traffic systems [29].

2.1.2. Stage II: Pheromone Updating

The second stage of the update represents changes in the environment (trail) over time due to the
interactions of agents with it. At each time step, the pheromone concentration on the trail changes for
two reasons: (i) evaporation due to environmental factors (normally, the evaporation rate (er) remains
constant if the surroundings remain approximately unchanged) and (ii) pheromone accumulation due
to further discharge of the pheromone by the ants (in one time step, an ant can release an amount τ of
pheromone, referred to as a pheromone unit). At the end of Stage II, we obtain the subset σi(t + 1)
using the subsets Si(t + 1) and σi(t), and the velocity of the ant in the cell as follows:

• Evaporation:
σ′i (t + 1) = σi(t)− (σi(t)× er), i f σi(t) > 0. (3)

• Accumulation:

σi(t + 1) =

{
(σ′i (t + 1) + τ), i f si(t) = 1 and σ′i (t + 1) < σsat and vj(t) > 0

σsat, i f si(t) = 1 and σ′i (t + 1) > σsat.
(4)

Herein, as we discussed, σsat = 80. As given by Equation (3) for evaporation, a certain
fraction of the pheromone concentration evaporates from each cell at each time step depending
on er. After evaporation, the remaining pheromone concentration on the cell is further affected by the
addition of pheromone emitted by the ant in the cell at the same time step. As shown in Equation (4),
for accumulation, there are two possibilities.

In the first case, a cell is occupied by an ant (si(t) = 1) that moved forward in the previous time
step (vj(t) > 0). Moreover, the pheromone concentration in the cell after evaporation (σ′i (t + 1)) is
below saturation. In that case, the ant releases a unit volume of pheromone that is added to the current
pheromone concentration in the given cell.
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In the second case, a cell is occupied by an ant (si(t) = 1), but σ′i (t + 1) is above saturation.
As such, there is no need to add any further pheromone because it would go undetected. In this case,
the concentration remains at the saturation level σsat.

2.2. Simulation Scenarios

ATM has multiple variables (such as er, σsat, τ), and in future studies, it will be interesting to
investigate how different variables affect the system dynamics, but the purpose of this paper is to
validate the model and test the marching platoon hypothesis. Therefore, herein, we define the following
simulation scenarios.

2.2.1. Periodic Boundary Conditions and Introduction of New Ants

In this study, we wanted to analyze the AT on a trail that has formed over a period of time
without any external interference. Thus, data collected for the analysis were always collected after
a considerable time from the beginning of the simulation (data were collected from an established
traffic flow). Furthermore, we applied horizontal periodic boundary conditions, making the simulation
scenario equivalent to a circular trail by connecting the last cell (cell1000) to the first (cell1). Natural ATs
are open boundary systems. However, as we wanted AT simulations to form over the period of time
without any external interference, we used the periodic boundary condition. Nevertheless, at 1000
cells, the trail was long enough to make any ant self-interaction effects negligible (which arise under
the periodic boundary condition with a short track).

At the beginning of the simulations, there was only one ant (ant0) on the trail, and all cells of
the trail were assigned no pheromone (σi(0) = 0). During the simulation, at each time step, if cell1
was empty, we introduced a new ant there (cell1) with a probability known as the inflow rate. At the
time of introduction, the new ant was assigned the variable j based on the value of Nbefore the
introduction of the new agent, where for the new ant, the value of j was equal to the above-mentioned
N. With the addition of new ants, the density in the simulation increased with time. In the present study,
we conducted simulations until the density reached its limit (density = 1), where no further addition
of ants was possible. Although foraging ants use multiple recruiting mechanisms, new foragers are
usually recruited slowly [21]. Therefore, we were able to assume that the inflow of ants onto the trail
was sufficiently low. For the simulations presented herein, we used an inflow rate of 0.001(<< 1),
which allowed sufficient time for the traffic flow to become established in each density scenario.

2.2.2. Trail Scenarios

The simulations presented herein were conducted for the following two trail scenarios.

Homogeneous Trail

In this scenario, we assumed that the trail was uniform, as represented by the cell variable Ωi.
As mentioned above, Ωi is a cell variable that represents the resistance of celli against the forward
motion of ants on the trail. On a homogeneous trail, all cells have the same value of Ωi, meaning that
all cells offer the same resistance to each ant.

Heterogeneous Trail

Usually, ant trails form on natural surfaces, meaning that different parts of the same trail might
have differing structures and offer differing levels of resistance to the ant motion. This differing
resistance can lead to AT bottlenecks. Therefore, to analyze an ant-trail system on a heterogeneous
surface, we defined a two-part trail of which one part comprised low-resistance cells (Ωi = 0) and the
other part comprised high-resistance cells (Ωi = 0.1). In this scenario, the low-to-high junction marked
the beginning of the bottleneck, and the high-to-low junction marked the end of the bottleneck.
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3. Fundamental Diagrams and Evaporation Rate

From a systemic point of view, the fundamental diagrams are “the most efficient way” to
represent and analyze the flow characteristics of a traffic model [5]. The fundamental diagrams
of the relationships between (a) the average velocity-density and (b) the flow-density, as shown in
Figure 2, were obtained from ATM simulations with different er values on a homogeneous trail. For a
time step in our simulation, we calculated (i) the average velocity (vavg) by averaging the observed
displacement of all the ants for that time step, (ii) the density (d) by dividing N at that time step with
L (d = N/L), and (iii) the flow ( f ) by multiplying d by vavg at the same time step ( f = d × vavg).
The fundamental diagrams in Figure 2 have the following characteristics: (1) different er values lead to
different fundamental diagrams; (2) at low er values (0 < er < 0.1), the vavg values in the simulations
have a non-monotonic relation with d, which leads to anomalous fundamental diagrams; (3) the
fundamental diagrams for er = 0 and er = 1 have similar behaviors to that of the total asymmetric
simple exclusion process (TASEP) model, but with different hopping probabilities [5]. All of the
above-mentioned characteristics of our model are similar to those in the model by [9], which indicates
that despite the improvements, the model presented in this paper has similar behavior to that by [9].
Based on the fundamental diagrams in Figure 2, the er value in ATM can be divided into three ranges
as follows.

(a) Average velocity–density relationship

(b) Flow–density relationship

Figure 2. A fundamental diagram of the ATM simulation for different er values is plotted: (a) average
velocity–density relationship (b) flow–density relationship. Parameters other than er were kept constant:
L = 1000 cells, σsat = 80, vmin = 0.15.
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3.1. High to Medium Evaporation Rate (0.1 < er ≤ 1)

As shown in Figure 2, for 0.1 < er ≤ 1, ATM behaves similar to the TASEP model with a low
hopping probability. In this range, the pheromone on a trail evaporates quickly, leading to the trail
with no pheromone. On a trail with high or medium er, most of the ants will not find any pheromone
for most of the time, leading to an AT where pheromones play minimal roles in the traffic system.
In such a case, most of the ants in ATM travel with vmin (constant), which is similar to the TASEP
model with a low hopping probability.

3.2. Meager Evaporation Rate (0 ≤ er < 0.001)

In this range, the fundamental diagrams of ATM are similar to the TASEP model with a high
hopping probability. With the meager er, the pheromone on a trail almost never evaporates as long
as there are ants on the trail, and the pheromone on the trail increases sharply, even with a small
rise in d. In the ATM with a meager er value (apart from initial small d), the vj(t) of all ants remains
approximately constant at a high value (close to the saturation level) or increases with d, because the
ATM behaves similarly to the TASEP model, but with a high hopping probability.

3.3. Low Evaporation Rate (0.01 < er < 0.1)

In this range, the fundamental diagrams of ATM are interesting, where the vavg of ants in ATM
remains constant for a wide range of d, leading to a linear rise in f (see Figure 2). In this range of er,
the pheromone on a trail does not evaporate quickly. However, it also does not reach a saturation level.
We call the trail mentioned above (a trail with low er) an active trail, where σi(t) in a cell depends on
the flow in the recent past. We assume that ants use this information (information about the flow in
the recent past) to manage the velocity on the trail efficiently. Therefore, for further simulations in the
paper, we used the er from the above range (er = 0.02).

4. Model Validation

For model validation, we compared data from the ATM simulations with the empirical data
from [14], beginning with fundamental diagrams. The fundamental diagrams of the relationships
between (a) the average velocity-density and (b) the flow-density, as shown in Figure 3, were obtained
from ATM simulations for er = 0.02 (low er). Along with the er value, all parameter values used
hereafter in the simulations are summarized in Table 2. As shown in Figure 3a, unlike a vehicular
traffic system, for ATM, the vavg remained constant for a wide range of d values (d = 0 to ≈ 0.75).
Consequently, the f on the trail increased linearly with d. Thus, in the fundamental diagrams
for the present simulation, the free-flow phase was observed up to d ≈ 0.75. These observations
(i.e., a free-flow phase and constant vavg up to d ≈ 0.75) are in basic agreement with the empirical
results from [14], which validates the fundamental diagrams of our model. On the other hand, the same
fundamental diagrams indicated that after specific density (d ≈ 0.75), due to the exclusion dynamics of
the model, ants in the model experienced jamming, which was not observed in [14]. It is important to
note that the data in [14] for d mentioned above (d > 0.75) were limited and, therefore, cannot be used
for validation (in the future, we should make an effort to validate the exclusion assumption, as well as
the jamming phase observed in ATM by experimentation). Another interesting thing to note is that
vavg in Figure 3 is entirely independent of d in the free-flow phase, whereas in the case of empirical
data from [14], the data showed a slight decrease in vavg with an increasing d. The models in [13,15]
replicated the above-mentioned decrease in vavg. In both models, agents’ velocity decreased slightly
at high densities (inside the platoon). In [13], the decrease was due to a progressive reduction of the
headway, while in [15], it was due to a progressive increase of the pheromone concentration. In other
words, both models suggested that there might be some weak force that slows down ants at high d
values. Whether it is weak near-neighbor repulsion (as suggested in [13]) or a decrease in velocity
due to the above saturation pheromone (as suggested in [15]) should be investigated in the future.
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However, as the vavg decrease is minimal, for mathematical simplicity, the model in this paper did not
consider the weak forces mentioned above.

Table 2. An overview of the parameter values from the ATM simulations.

Description Simulation Values

Pheromone concentration saturation level σsat = 80
Resistance from the trail celli to the motion of an agent in the homogeneous
trail scenario Ωi = 0

Resistance from the trail celli in the high resistance section to the motion of an ant
in the heterogeneous trail scenario Ωi = 0.1

Minimum velocity of an ant towards the cell with no pheromone and no other ant vmin = 0.15
Trail length L = 1000
Inflow rate = 0.001
Evaporation rate er = 0.02
High resistance trail section in the heterogeneous trail scenario cell400–cell800

(a) Average velocity–density relationship

(b) Flow–density relationship

Figure 3. (a) Average velocity and (b) flow of agents plotted against their density. Simulation scenario:
er = 0.02, L = 1000 cells, σsat = 80, and vmin = 0.15.
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Furthermore, as shown in Figure 4, we analyzed the distance headway distribution in
the simulation, where at lower d values, large distance headways were predominantly found,
which indicates a random-headway distribution. The distribution at lower d values was well described
by a negative exponential distribution. On the other hand, at medium to higher d values [0.2, 0.7],
the distribution became much sharper with an increasing d value, indicating platooning. For these d
values, the log-normal distribution appeared to provide the best fit. The above observations related to
distance headway and platoon formation were similar to the empirical observations in [14]. On the
other hand, we also observed that there were no or very few ants who traveled with intermediate
headways, especially for medium d values [0.2, 0.4]. This can be explained by platooning dynamics,
where ants with intermediate or smaller headway accelerate due to the presence of pheromones
until they catch up with preceding ants (platooning), whereas ants with a headway greater than
an intermediate value do not experience pheromones, thus maintaining their velocity and avoiding
joining a platoon ahead. This observation about the intermediate headway indicated that not all ants
were converging to form a platoon.

We also compared the velocity distribution of ants in ATM with data from [14]. As shown in
Figure 5, similar to the empirical data from [14], the distribution became much sharper with an
increasing global density, whereas the most probable velocity remained approximately constant.
This happened because, as explained earlier, at higher d values, most of the ants traveled in platoons,
where the velocity of an ant was governed by the velocity of the ants ahead, as well as the pheromone
concentration in the next cell. At higher d values (inside the platoon), the maximum velocity of an
ant was limited by the velocity of the ant ahead. At the same time, due to a high concentration of
pheromones (in a platoon, due to the ants ahead, the given ant experienced a larger pheromone
concentration), the vj(t) of the given ant increased, which led to the scenario where most of the ants
in the platoon traveled with a vj(t) higher than vmin (as most of the ants experienced the pheromone
concentration, no ants had deceleration due to a lack of pheromones, which led to a decrease in the
overall number of ants who travel with vmin). The above two phenomena resulted in a decrease in the
velocity fluctuation.

(a)

Figure 4. Cont.
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(b)

(c)

Figure 4. The distance headway distribution in different density ranges is plotted: (a) d ∈ [0, 0.2],
(b) d ∈ [0.2, 0.4], (c) d ∈ [0.4, 0.7]. For all density ranges, the corresponding log

normal (red) ((Frequency(HW)) = 1
HWσlog

√
2π

e
(D−ln(HW))2

2σ2
log )) and negative-exponential (green)

(Frequency(HW) = e( −HW
λ ) distributions are also shown. Simulation scenarios: er = 0.02,

L = 1000 cells, σsat = 80, vmin = 0.15.

In conclusion, our model captured all the main features of ant traffic presented in [14]: (1) the
absence of jamming for a wide range of d values, (2) platoon formations, and (3) a decrease in velocity
fluctuations with an increase in the d value, showing that the present model can reasonably replicate
empirical data and therefore mimic an AT system under certain limits. Meanwhile, the modeling
assumptions from previous physiological studies validated that the agent in our model mimicked ants
in real life.
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(a)

(b)

(c)

Figure 5. The velocity distribution of agents in different densities is plotted: (a) d ∈ [0, 0.2],
(b) d ∈ [0.2, 0.4], (c) d ∈ [0.4, 0.7]. For all density ranges, the corresponding Gaussian

distribution (Frequency(v)) = 1
σ
√

2π
e
−(V−v)2

2σ2 ) is also shown. Simulation scenarios: er = 0.02,
L = 1000 cells, σsat = 80, vmin = 0.15.
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5. Analysis of Jam-Free Ant Traffic

5.1. Intra-Platoon Analysis

In the early studies, it was argued that individual ants on a trail have convergent behavior,
which leads to the formation of multiple platoons [26]. However, the more recent studies argued
that not just individual ants, but also platoons have convergent behavior, and if given sufficient
time, all the platoons merge to form a single platoon [5,12,14,27]. It is also argued that ants inside a
platoon march together (move with the same vj(t)) [14]. As explained earlier, in the paper, the above
two arguments—platoon formation and marching ants—are collectively called the marching platoon
hypothesis. In the case of the marching platoon scenario, all the ants in the same platoon should have
the same vj(t). Therefore, to test the hypothesis, we observed the vj(t) of different ants from the same
platoon in an ATM simulation. For this analysis, we chose three ants (ant0, ant50, and ant100) from
the same notional platoon: ant0 was the leader of the platoon, while ant100 was the last ant in the
platoon. The environment of the selected ants was kept undisturbed, and a simulation was carried out
on a heterogeneous trail. In this scenario, L was 1000 units, of which the section from cell400–cell800

was the high-resistance part (Ω = 0.1). Therefore, the junction between cell399 and cell400 marked
the beginning of a bottleneck, and the junction between cell800 and cell801 marked its downstream
end. Because the value of Ω for the high-resistance section (Ω = 0.1) was higher than that for the
low-resistance part (Ω = 0), we expected the vj(t) of an ant in the high-resistance part to be lower
than that of one in the other part of the trail. Therefore, changes in the velocities of different ants were
observed with respect to the position of an ant on the trail.

As shown in Figure 6, the velocity of the leading ant in the platoon decreased suddenly at the
bottleneck (cell399), whereas those of the other ants in the platoon decreased well before the bottleneck.
This decrease in velocity before the bottleneck demonstrated queuing. At the same time, as shown
in Figure 6, near the upstream of the bottleneck, ants showed a large velocity fluctuation, where the
velocity fluctuated between zero (stop) and high velocity (go) due to the queuing effect. The fluctuation
due to the queuing effect indicated stop-and-go motion upstream of the bottleneck. This happened
because the flow out of the bottleneck (i.e., the flow from cell399) was lower than the flow into it
(i.e., the flow towards cell399). This led to the formation of a queue, which forced incoming ants to
reduce their velocity as they approached the bottleneck. For a given ant in a platoon, the more ants in
front there were, the longer the queuing experienced. This means that ants in a platoon (other than the
leader) do experience stop-and-go motion. It is also interesting to note that different ants in the platoon
showed differing velocity variation: ant0 had a meager velocity variation where the velocity depended
only on the trail conditions (Ω), whereas the variations for ant50 and ant100 were much larger and
far from identical. Contrary to previous perceptions, the above dissimilarity of velocity variation
indicated that ants in a platoon do not march in sync. This desynchronizing behavior is consistent
with the notion that the movements of ants on a trail is based on the pheromone concentration in the
next cell, which depends on the flow of ants in the recent past. Therefore, ants cannot have real-time
information about other ants in a platoon and so cannot synchronize their actions as a group.
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(a) ant0

(b) ant50

(c) ant100

Figure 6. The instantaneous velocities of (a) ant0, (b) ant50, and (c) ant100 in the intra-platoon analysis
plotted against the positions of the same ants. The presented data were extracted from an ATM
computer simulation of a heterogeneous trail. Simulation scenarios: er = 0.02; high-resistance section
(Ω = 0.1) of trail = cell400–cell800, L = 1000 cells, σsat = 80, vmin = 0.15.
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5.2. Inter-Platoon Analysis

Contrary to the previous perception, the intra-platoon analysis presented above showed no
synchronization between ants in a platoon. Furthermore, evidence of stop-and-go motion was found
due to queuing. Therefore, to understand AT systems in more detail, we analyzed inter-platoon
relationships. For the inter-platoon analysis, we selected a pair of adjacent platoons that we referred to
as the leading platoon and the following platoon, considering the direction of travel. We simulated the
heterogeneous scenario described in the intra-platoon analysis. We selected a pair of platoons that
were separated by a sufficient distance to ensure that they would not merge into each other in the
free-flow phase. We analyzed an intersection of two adjoining platoons, which included (1) an analysis
of the last ant in the leading platoon, (2) an analysis of the space in between the two platoons (i.e.,
the headway of the following platoon), and (3) an analysis of the first ant in the following platoon.
We conducted the above-mentioned analysis by observing the data of the last ant in the leading platoon
and the first ant in the following platoon.

Prototypical results of the inter-platoon analysis of the free-flow phase are shown in Figure 7,
where (a) the velocity–position relationships and (b) the space–time relationships for the last ant in
the leading platoon and the first ant in the following platoon are compared. As shown in Figure 7a,
although the velocity of the last ant in the leading platoon decreased well before the bottleneck (for the
reason given in the intra-platoon analysis above), the velocity of the leader of the following platoon
decreased suddenly at the bottleneck. At the same time, concurring with the above observation,
the upstream part of the bottleneck in Figure 7b also shows that although the inter-platoon distance
decreased, it did not decrease enough to force the leader of the following platoon to reduce its velocity.
This means that the velocity of the leader of the following platoon was independent of the velocity
of the last ant in the leading platoon, and stop-and-go motion due to queuing in the leading platoon
did not affect the following platoon. This phenomenon can be explained by jam-absorbing driving
in [30,31]. In jam-absorption driving from [30,31], in response to a trigger of stop-and-go motion
(e.g., sudden braking), the following driver creates enough headway to avoid stop-and-go motion.
In AT, the inter-platoon distance (referred to as the jam absorption buffer (JAB)) acts similarly to the
above-mentioned headway of jam-absorbing driving. The JAB provides enough time for dissipation
of the queuing effect due to the leading platoon. Thus, the leader of the following platoon does
not get involved in stop-and go-motion due to the leading platoon. Furthermore, in Figure 7, it is
interesting to note that at the downstream end of the bottleneck, the velocity of the last ant in the
leading platoon rose earlier and was higher compared to the leader of the following platoon. This is
where a JAB was created, indicating that a fast-out action created a JAB at the downstream end of
a bottleneck, thereby helping to avoid stop-and-go motion at the upstream end. We also observed
that for given densities in the free-flow phase, the leaders of all platoons in established traffic flow
moved with the same (vavg), which led to the same vavg for all platoons. The similar vavg in established
traffic flow prohibited the platoon from converging. The above observation about non-convergence
is contradictory to previous studies, which argued that platoons in AT have convergence behavior,
which leads to the formation of a single platoon [5,12,14,27].
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(a) Instantaneous velocity–position

(b) Position–time

Figure 7. (a) Instantaneous velocities of ants plotted against the positions of the same ants for
prototypical inter-platoon analysis. (b) The positions of the ants plotted against time for prototypical
inter-platoon analysis. Data were obtained from an ATM computer simulation of a heterogeneous trail.
Ants observed: last ant in leading platoon (red); leader of the following platoon (black). Simulation
scenarios: er = 0.02, high-resistance section (Ω = 0.1) of trail = cell400–cell800, L = 1000 cells, σsat = 80,
vmin = 0.15.

5.3. Analysis of Platoon Headway and Density

The inter-platoon analysis indicated that an ant colony maintains f on a trail by implementing
a jam absorption mechanism, for which the platoon headway (i.e., the JAB) plays an important role.
Therefore, in this part of the paper, we present further analysis of the JAB. Similar to the inter-platoon
analysis, we selected a pair of adjacent platoons with a sufficient inter-platoon distance (i.e., to avoid
merging). The simulation was carried out with a heterogeneous trail, and we took care to ensure that
the given JAB was undisturbed (i.e., no new ants were introduced into it). Changes in the JAB were
observed, and the number of platoons was counted for each observed density.
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The results of analyzing the relationship between JAB and d are presented in Figure 8 and Table 3.
As shown in Figure 8, in the free-flow phase (up to d ≈ 0.75), first, a lengthening of the JAB was
observed until d ≈ 0.5. Then, after that, a slight decrease in the JAB length with a rising d was observed.
It is important to note that the decrease was small when compared against the initial lengthening.
At the same time, as shown in Table 1, the number of platoons on the trail decreased.

An increase in d led to a larger platoon size, meaning that adjoining platoons that were close to
each other came closer and finally merged to form a single platoon, leading to fewer platoons overall.
Meanwhile, the platoon mergers provided more space for the remaining platoons to create larger
JABs. This JAB lengthening played an important role in managing the f on a trail. The platoon size
increased with d, leading to longer queues. However, the aforementioned JAB lengthening canceled
this queue lengthening, thereby maintaining an approximately constant vavg. Finally, near a critical
density of d ≈ 0.75, any further increase in d led to the collapse of the multi-platoon structure to
form a single platoon (infinite cluster) on a circular trail. Because multiple platoons no longer exist,
the stop-and-go motion of one ant propagated to the following ant without being absorbed. This was
amplified at each ant and traveled backward as a shock wave. Therefore, jams were never absorbed
and were amplified further with d. Consequently, the vavg decreased with d, triggering the jamming of
the fundamental diagrams.

Figure 8. Headway (jam absorption buffer) of the leader of the following platoon for different densities
(d) plotted against the position of the same ant for inter-platoon analysis. Simulation scenarios:
er = 0.02, high-resistance section (Ω = 0.1) of trail = cell400–cell800, L = 1000 cells, σsat = 80, vmin = 0.15.

Table 3. Number of platoons with respect to density.

Density Number of Platoons

0.1 28
0.2 21
0.3 14
0.4 8
0.5 3
0.6 3
0.7 2
0.8 1
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6. Concluding Discussion

We presented an agent-based model inspired by ants’ chemotaxis behavior on a unidirectional
single-lane ant trail to understand the jam-free AT presented in [14]. Our model was an improvement
over the model in [9], which was a general model of ant traffic. Our modeling assumptions were
based on previous physiological studies, and our model was in basic agreement with the experiment
from [14]: (1) the absence of jamming for a wide range of densities, (2) platoon formations, and (3) a
decrease in velocity fluctuations with an increase in density. We also presented a computer-simulated
analysis of different platoon scenarios to understand the platoon-related phenomena. The primary
objectives of these analyses were to verify the marching-platoon hypothesis and to understand the
mechanism of jam-free AT.

Similar to previous studies, our study also mimicked the platooning and constant average
velocity of AT for a wide range of densities (d = 0–≈ 0.75). However, contrary to previous studies,
the intra-platoon analysis presented in this paper showed that ants in a platoon (other than the leader)
might be experiencing stop-and-go motion. It was also interesting to note that different agents in a
platoon had different variations in their velocities. This difference means that contrary to the previous
perception, ants in a platoon might not be marching synchronously.

Meanwhile, the inter-platoon analysis of ATM presented in this paper shows that ants’ chemotaxis
behavior leads to a jam absorption mechanism, which helps to avoid jamming. In the jam absorption
mechanism of ATM, the inter-platoon distance (i.e., the JAB) provided enough time for the system to
dissipate the queuing effect due to leading platoons. Thus, the following platoons did not get involved
in stop-and-go motion due to those leading platoons.

Further inter-platoon analysis of ATM from a JAB-density perspective showed that the JAB in the
free-flow phase increased with density, thereby canceling out the increase in queues due to density.
Finally, we also observed that near a critical density of d ≈ 0.75, the multi-platoon structure collapsed
to form a single platoon (infinite cluster). This caused the stop-and-go motion of one ant to propagate
to the following ant without being absorbed. Consequently, the average velocity decreased with
density, triggering the jamming phase of the fundamental diagrams.

Our model provided a detailed understanding of the dynamics of ants on an ant trail. The new
findings of our study need to be verified and validated by using different methods. Nevertheless,
our results may have significant implications for swarm intelligence and intelligent transportation
systems. In future work, we intend to understand the JAB by analyzing different related phenomena.
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original draft preparation, P.K.; supervision and critical review, H.N.
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Appendix A. Variables in the Ant Trail Model

Appendix A.1. Minimum Velocity in ATM (vmin)

As shown in Figure A1, with an increase in vmin, the vavg increases. At the same time, the velocity
fluctuation and critical density decrease. Inside a platoon in the ATM, the upper limit of agent velocity
is governed by the velocity of the platoon leader. In established traffic on ATM (with low er), the leader
of a platoon does not experience pheromones in the free-flow phase; thus, the leaders travel with
vmin. Therefore, with an increase in vmin, the velocity of all ants in the platoon increased, which led
to a higher vavg. At the same time, the velocity range between the saturation level of velocity and
vmin decreased, leading to a decrease in velocity fluctuation. It is also interesting to note that with an
increasing vmin, the critical density decreased and the fundamental diagrams’ resemblance with TASEP
increased. Eventually, at a high vmin (vmin > 0.5), the ATM behaved similarly to the TASEP model.
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With the decrease in the velocity range, more ants in the simulation moved with a similar velocity to
the saturation level velocity, leading to a similar simulation to TASEP with a high hopping probability.

(a) Average velocity–density relationship

(b) Flow–density relationship

Figure A1. (a) Average velocity and (b) flow of agents plotted against their densities for different vmin

values (indicated in the legend). Parameters other than vmin were kept constant: L = 1000 cells, σsat =
80, er = 0.02.

Appendix A.2. Pheromone Saturation Level (σsat)

The maximum possible velocity of the agents in the ATM depends on σsat. Thus, from a system
perspective, the capacity flow and capacity flow density depend on σsat. As shown in Figure A2,
at σsat = 1, ATM had a similar capacity flow and capacity flow density as TASEP with a low hopping
probability (Figure 2). The above similarity happened because at σsat = 1, even a small amount of
evaporation reduced the pheromone concentration to undetectable levels (σ < 1), leading to the
condition where most of the agents traveled without pheromones (constant low velocity). In this
scenario, ATM behaved similarly to TASEP with a low hopping probability. After σsat = 1, initially,
with the rise in σsat for the range 1 ≤ σsat ≤ 5, a sharp rise in capacity flow, as well as capacity flow
density was observed; thereafter, for a wide range of σsat (5 ≤ σsat ≤ 80), both the capacity flow and
capacity flow density remained constant. Based on the above observations, we can state that, for a
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considerable range of σsat (5 ≤ σsat ≤ 80), ATM simulations were independent of σsat. We intend to
analyze the above behavior of ATM concerning σsat in future work; however, for the purpose of this
paper, the above behavior analysis was considered as out of scope.

Then, afterwards, at a very high σsat (σsat > 80), the capacity flow and capacity flow density
started decreasing, and eventually (σsat > 4000), the ATM again behaved similarly to TASEP with a low
hopping probability. This happened because at very high σsat values, due to the effect of pheromone
evaporation, the pheromone never accumulated and remained at a comparatively meager value,
which led to a low velocity. In this scenario, the pheromone became ineffective; hence, most of the
agents behaved similarly to agents in TASEP with a low hopping probability.

(a) Capacity flow–pheromone saturation level (σsat)

(b) Capacity flow density–pheromone saturation level (σsat)

Figure A2. The (a) capacity flow and (b) capacity flow density in the simulation are plotted against
σsat. Parameters other than σsat were kept constant: L = 1000 cells, vmin = 0.15, er = 0.02.
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