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Abstract: Most of the earlier tracking and network sorting approaches with a high sampling rate for
frequency hopping (FH) signals did not adapt to the wideband system during their implementation,
whereas the sub-Nyquist based algorithms cannot satisfy the real-time requirement for dealing
with the rapid change of sparsity. It is important to improve the compressed sensing (CS) methods
for tracking and sorting wideband FH signals. In this paper, a dynamic programming modulated
wideband converters (MWC) scheme is proposed. First, considering the wide gap of FH signals,
an improved power estimation method is proposed to track the support set in the time domain.
Second, to sort multiple signals more effectively, a feedback control algorithm based on dynamic
programming is proposed. In the proposed method, the total sampling rate is decreased significantly,
and multiple FH signals are separated rapidly without recovery based on the results of tracking
and comparative power. Simulations show that the proposed method can track and sort FH signals
efficiently and more practically than previous methods.

Keywords: frequency hopping signals; dynamic programming; modulated wideband converters;
tracking; sorting

1. Introduction

Frequency hopping (FH) communication is one of the main types of spread spectrum
communication [1]. The carrier frequency of the FH signal hops under the control of a pseudo-noise
(PN) code, by which the spectrum is spread. FH communication systems have been widely used in
military communications and covert communications due to their strong anti-interference ability and
low probability of interception. Tracking and network sorting of multiple FH signals are important
tasks to obtain useful information in communication reconnaissance. The tracking of FH signals refers
to rapid estimation of the carrier frequency of the signal when the signal is hopping [2]. There are
two aspects of FH signal tracking: detecting the timing of carrier frequency hopping, which means
estimating the hop timing and estimating the frequency of the new hop. Thus, tracking of FH signals
can be regarded as a real-time estimation of hop timing and frequency. The purpose of the network
sorting is to separate multiple FH signals into their own sources [3]. Network sorting depends
on estimating the unique parameters of each signal and the independence of signals. Thus, it is a
problem of information processing based on the characteristics of signals. A number of blind signal
tracking and sorting structures have been proposed for FH signals. One widely used method is spatial
time-frequency analysis, which is usually utilized to describe sparse signals in the time-frequency
domain [4]. In [5], the sparsity of the FH signal in the time-frequency domain was described and
the parameters of multiple frequency hopping signals were estimated via sparse linear regression.
In [6–10], the time of arrival (TOA), direction of arrival (DOA), frequency and other parameters were
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estimated based on time-frequency analysis. In [6,7], joint signal parameter estimation of FH signals
was proposed. In [8], a blind source separation approach exploiting the differences in time-frequency
signatures of the sources to be separated was proposed, which is based on the diagonalization of a
combined set of spatial time-frequency distributions and is applicable to FH signals. In [9], a kind
of blind separation algorithm of FHSS signals with a time-frequency ratio of the matrix based on
short-time Fourier transform (STFT) was proposed, which calculated the elements of the mixing
matrix in the frequency domain and gave the solution of the inverse matrix directly. In [10], the
proposed method uses the smoothed pseudo Wigner–Ville distribution (SPWVD) of each separated
FHSS signal to estimate its transmission parameters and separates the signals by the joint approximate
diagonalization of eigen-matrices (JADE) algorithm. In [4], a novel method to detect single source
points in the time-frequency domain for separation was proposed, which also improves the subspace
projection method to recover signal [4,6–10]. These methods are intuitive and effective. It can be
concluded that estimating parameters is a way to obtain the conditions for tracking and sorting.
However, the methods in [4,6–10] cannot process signals in real time, because they are all based on
clustering information of a large amount of data. In many practical applications, such as jamming and
dynamic reconnaissance, these methods do not satisfy the command. For FH signal tracking, Liu and
Wang proposed a tracking model for FH signals, by which the frequency of multiple FH signals can
be tracked in real time based on the temporal autoregressive moving average (ARMA) and sparse
Bayesian learning (SBL) model [2,11]. However, they suffer from enormous computing in practice.
As a result, the computational complexity may exceed the capability of the hardware. To solve these
problems, one method is to track and separate the signals depending on their irrelevance and another
is to reduce the sampling rate of processing.

As the network sorting of FH signals is a special case of the blind source separation (BSS)
problem, some universal approaches for BSS are effective. For instance, independent component
analysis (ICA) has better results on stationary and independent signals [12–14]. In [12], the ICA
algorithm was introduced, which can be considered to be a foundation for further separation methods.
In [13,14], a FastICA algorithm was introduced for separation, which is more efficient than the
traditional ICA. The correlation coefficient was taken as the evaluation criterion of the separation
performance. Although these separation methods based on ICA do not need to obtain the array
structure beforehand, they constrain the number of sources to be less than the number of sensors. In
many practical applications, this condition is not satisfied. Furthermore, these methods cannot take
advantage of sparsity in the processing and the signal-to-noise ratio (SNR) is poor. Recently, tensor
decomposition [15], subspace-based projection [3] and neural network [16] were used for sorting
FH signals. However, all of these methods start from the premise that the total sampling rate of
channels or array receivers should meet or exceed the Nyquist sampling rate. The sampling rates of
analog-to-digital converters (ADCs) can be relatively high to meet the Nyquist theorem. Meanwhile,
large amounts of data must be cached for calculation and the amount of computations for further
digital processing is enormous.

Compressed sensing (CS) has been applied for wideband sparse signal processing to overcome the
obstacle of high sampling rate [17]. Using CS to separate signals that are sparse in the time-frequency
domain, such as radar, linear frequency modulation (LFM) and FH signals, is a hot topic in recent
research [18–22]. The core idea of these methods is to recover the time-frequency representation of
signals. Thus, the sparse signals can be separated in the time-frequency domain. However, these
methods cannot process the signals in real time and certain time-frequency information is required
in advance, because the signals must be recovered before further processing and it takes a lot of
computation. It can be concluded that CS has great advantages in practical applications, but studies
on the tracking and separation of FH signals using CS are scarce and not well-rounded. The major
difficulties in using the classical CS theory for the tracking and sorting of FH signals are as follows:

1. The traditional methods are not suitable for FH signals due to sparsity.
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2. The structure of the traditional sensing matrix is planned and cannot be configured according to
the signals.

3. The CS structures change the phase and amplitude characteristics of the signals. As a result, the
performance of the method based on these parameters cannot be guaranteed.

4. The traditional CS structures require caching data for recovery, which is not suitable for real-time
signal processing.

Nowadays, the problem of tracking time-varying sparse signals based on sparse signal processing
and dynamic CS has been tackled. Dynamic CS has been applied in dynamic magnetic resonance
imaging (MRI) [23], underwater channel estimation [24], and radar imaging [25]. In [26,27], tracking
and dynamic filtering of time-varying sparse signals are analyzed under certain assumptions. In [28,29],
a series of universal approaches were proposed for online optimization in dynamic environments.
These methods transform the CS of time-varying sparse signals to online convex optimization, which
proceed from the perspective of regret analysis. For FH signals, a time-frequency analysis based on
sparse recovery was proposed and the unconstrained sparse representation model of FH signals was
established according to the punish function theory [30]. However, these dynamic CS methods have
difficulties processing FH signals. First, since the carrier frequency of FH signals is under the control of
a PN code, the iterations of solving the optimization problem will increase under the condition of full
blindness, which will affect the real-time tracking. Secondly, the punish function cannot adapt to the
changes in signal sparsity.

Modulated wideband converters (MWC) structure is a sub-Nyquist sampling scheme for acquiring
sparse wideband signals [31,32]. It is flexible and can be realized by commercial components.
Many improved structures, such as distributed MWC (DMWC) [33], random partial Fourier structured
MWC (RPFMWC) [34], and array based MWC [35], have been proposed for specific signal processing.
In our previous work [36], a method for detecting FH signals based on MWC was proposed, based
on channelization and energy detection. However, the method focuses on single-target FH signal
detection and is not applicable to multi-target signals. Furthermore, the method mainly processes the
signals in the frequency domain and losses the time information. In this paper, we propose methods
for the tracking and network sorting of FH signals based on the estimation of TOA and power by
MWC in the time domain. A dynamic programming multi-frequency function is designed and applied
in the system to identify the signals and obtain the support set directly. Instead of caching data for
further operations, the proposed system processes the input signals in real time, which is necessary
for signal tracking. Furthermore, separation of the multiple signal is implemented by the results of
tracking and comparative power.

The rest of this paper is organized as follows. In Section 2, we provide the basic information
related to multiple FH signals. A detailed design of the dynamic programming MWC method for
signals tracking and sorting is presented in Section 3. The effects of some parameter settings and
simulation results are given in Section 4 and the conclusions are presented in Section 5.

2. Problem Formulation

Assume that there are R FH signals impinging on a single antenna, the rth FH signal can be
expressed as

xr(t) = αr(t)e j(2π fr(t)t+φr(t)), 0 < t ≤ T (1)

where αr(t) is the complex envelope, fr(t) is the FH instantaneous frequency, φr(t) is the phase of the
signal, and T is the observation time. The received multiple FH signals by a single channel can be
expressed as

x(t) =
R∑

r=1

xr(t) + nr(t), 0 < t ≤ T (2)
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where nr(t) is additive white Gaussian noise. According to actual situations, FH signals are assumed
to be relatively power stable, which means that all the hops of the same source have similar power,
and the signals do not collide.

As shown in Figure 1, the task of the algorithm is to track and separate FH signals under
sub-Nyquist sampling. The tracking results and comparative power are the basis of the separation.Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 17 
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Figure 1. Sketch of tracking and separation of frequency hopping (FH) signal. 
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Figure 1. Sketch of tracking and separation of frequency hopping (FH) signal.

3. Structure Design for FH Signal Tracking and Sorting

In this section, first, an improved MWC structure is applied to track sub-channels with signals in
the time domain, and second, a dynamic programming algorithm is proposed for the sorting.

3.1. Tracking of FH Signals

Tracking of signals is a fundamental requirement for a real-time system. The purpose of FH signal
tracking is to obtain the time and frequency of new hops as soon as possible, which is an important
basis for separation. In order to apply CS to tracking, the system should be able to cope with changes
in sparsity and update the processing results rapidly. Although the classic MWC structure works in
the Fourier domain and is fit to conduct wideband spectrum sensing, the under-sampling board is
designed by a given sparsity [33]. To make the system more suitable and feasible for FH signals, a
novel dynamic programming MWC structure is proposed, which is depicted in Figure 2.
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Figure 2. Dynamic programming modulated wideband converter (MWC) structure.

As shown in Figure 2, the dynamic programming MWC structure is a single antenna system
consisting of m parallel sub-channels. In each sub-channel, the multiband signal x(t) is multiplied
by a different mixing function pi(t) and multi-frequency function qi(t); h(t) is an ideal low-pass filter
and sm[n] is a smoothing filter that performs real-time sliding accumulation of energy. Once the
mixing function of the sub-channel is determined, the response of the channel is relatively determined.
Because of the pseudo-random property and expectation restricted isometry property (ExRIP) of the
mixing function, pi(t) is restricted and has certain random features [37]. The precise description of
pi(t) is provided in Appendix A and a brief description of ExRIP is provided in Appendix B. It is
difficult to distinguish the signal information only by the mixing function. To solve these problems,
a multi-frequency function qi(t) is designed and implemented that depends on the mixing function
and communication environment and is dynamically programmed by the estimation results of σi[n].
Unlike the randomness of the mixing function, the multi-frequency function is determined for
judgment in each sub-channel and strengthens the sensing ability for certain sub-bands in different
sub-channels. As FH signals have wide frequency gaps, the frequency hopping can be sensed by
tracking the power change of the sub-band. Thus, with a reasonable distribution of the sub-bands to
the sub-channel, the frequency hopping can also be tracked by the power estimation of sub-channels.

The discrete time Fourier transform (DTFT) of yi[n] can be expressed as

Yi
(
e j2π f Ts

)
=

+L0∑
l=−L0

cilX( f − l fp) +
+L0∑

l=−L0

dilX( f − l fp) f ∈ Fs (3)

where cil and dil are the Fourier series coefficients of pi(t) and qi(t), respectively, and dil can be
expressed as

dil =
1

Tp

∫ Tp

0
qi(t)e− j2πl fptdt (4)

It is clear that qi(t) is a Tp–periodic function. In practical application, qi(t) can be simply set as

qi(t) =
∑

l

λile j2πl fpt k
Tp
M ≤ t ≤ (k + 1)

Tp
M (5)
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where M is the number of equal time intervals and λil is the amplitude of qi(t). For each sub-channel,
λil is dynamically programmed for estimation of the support set, which will be discussed in Section 3.2.
The algorithm of signal tracking in the time domain is described as follows:

Suppose there is no frequency hopping during the observation. Thus, the mixing signal x(t) is a
wide-sense stationary process (WSS), the Fourier transform of which is X( f ). xi(t) is a part of x(t) and
Xi( f ) is the Fourier transform of xi(t). The power spectrum of x(t) can be expressed as:

Px( f ) = E
[∣∣∣X( f )

∣∣∣2] = E
[∣∣∣Xi( f )

∣∣∣2] (6)

where E[•] denotes expectation and Px( f ) is the Fourier transform of the autocorrelation function:

Px( f ) =
∫ +∞

−∞

rx(τ)e− j2π fτdτ (7)

Based on [38], the power spectrum of the WSS signal is only related to itself and the result of cross
correlation is equal to the power spectrum:

E
[
Xi( f1)X∗i ( f2)

]
= Px( f1)δ( f1 − f2) (8)

where (•)∗ denotes conjugate and f1, f2 are arbitrary frequencies in the band of x(t).
Thus, the power spectrum of yi[n] can be expressed as:

Pyi( f ) = E
[∣∣∣Yi( f )

∣∣∣2] = +L0∑
l=−L0

|cil + dil|
2Px( f − l fp) f ∈ Fs (9)

Based on Parseval theorem,

+∞∑
n=−∞

∣∣∣yi[n]
∣∣∣2 =

1
2π

∫ +∞

−∞

∣∣∣Yi( f )
∣∣∣2d f (10)

As h(t) is an ideal low-pass filter, all the power of yi[n] is limited in Fp =
[
−

fp
2 ,

fp
2

]
. Thus:

E

 +∞∑
n=−∞

∣∣∣yi[n]
∣∣∣2= E

[
1

2π

∫ +∞

−∞

∣∣∣Yi( f )
∣∣∣2d f

]
=

1
2π

∫ fp/2

− fp/2
E
[∣∣∣Yi( f )

∣∣∣2]d f

=
1

2π

∫ fp/2

− fp/2
Pyi( f )d f

(11)

Thus, the estimation of signal power in the time domain and of the MWC sub-channel in the
frequency domain are connected. In the proposed structure, we obtain

σi[n] =
∣∣∣yi[n]

∣∣∣2 ⊗ sm[n] =
n+dls/2e∑

n=n−dls/2e+1

as
∣∣∣yi[n]

∣∣∣2 (12)

where ls is the length of the smoothing filter sm[n] and as is the amplitude, and ⊗ denotes convolution.
Combining Equations (11) and (12), it can be concluded that σi[n] is a power estimation of yi[n]. For an
appropriate filter length ls,

{
σi[n]

}
i = 1, 2, . . . , m can track the power change between sub-channels.

Based on Equation (9), the power of certain sub-bands can be reflected in
{
σi[n]

}
i = 1, 2, . . . , m .

Therefore, as long as the signal-to-noise ratio (SNR) is high enough in its sub-band, the frequency
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hopping of the signal can be detected and tracked by estimating the energy of the sub-channels in the
time domain.

Suppose the threshold of energy detecting is ε, which is based on the length of the smoothing
filter and original signal power. The TOA estimation of a single hop is

TH[n] =
(n−1)+n

2 +
(n+τ−1)+n+τ

2
2 = 2n+τ−1

2

i f
{

σi[n− 1] > ε,
σ j[n + τ− 1] ≤ ε,

σi[n] ≤ ε
σ j[n + τ] > ε

(13)

where i, j (i , j) are the sub-channel numbers, τ is a positive integer and less than the length of the
smoothing filter.

Suppose there is a single hop si(t) in sub-band la and there are {lk} sub-bands including la, amplified
in sub-channel mc. Set λmcli = 0 li < {lk} . Thus, the expectation of the output SNR ηoc of σmc [n] is

ηoc =

(
dmcla + cmcla

)2

card({lk})•(dmc + cmc)
2 + (L− crad({lk}))c2

i

ηi (14)

where card(•) denotes the cardinality of sets, dmc and cmc are the expectation of the Fourier series
coefficients of pmc(t) and qmc(t), respectively, in sub-channel mc, and ηi is the expectation of input
equivalent narrowband SNR of the signal. However, if we bypass the multi-frequency function,
we obtain

ηo =
c2

i

Lc2
i

ηi =
1
L

(15)

where ci is the expectation of the Fourier coefficient of pi(t). If di � ci, the output SNR of sub-channel
mc could be significantly increased.

It is more efficient to process directly in the time domain than in the frequency domain, which
is conducive for signal tracking. At the same time, FH signals generally have a high equivalent
narrowband SNR, which meets the requirement of processing.

3.2. Sorting of FH Signals

Based on the tracking algorithm in Section 3.1, the estimated hopping time is obtained. However,
the power estimation of σi[n] is not an estimation of source because the received signal x(t) is modulated
by pi(t) and qi(t). Furthermore, the multiple signal is not separated at the output. To solve these
problems, in this section, the dynamic programming method is taken for the support set estimation of
each single hop. The signals are separated according to their own sources based on hopping time and
source power.

Equation (3) can be given by the following matrix form [31]

Y( f ) = AZ( f ) f ∈ Fs (16)

where Z( f ) = [X( f − L0 fp), · · · , X( f ), · · · , X( f + L0 fp)]
T and A is the sensing matrix. It is clear that

X( f + l fp), l = −L0, . . . , 0, . . . , L0 are independent and arranged in order of sub-bands. The support
set can be regarded as the active sub-bands that contain the signals. The algorithms for solving the
support set are the core of separation.

Suppose the support set is S, Equation (16) can be transformed to [31]

Y( f ) = ASZS( f ) f ∈ Fs (17)
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As the source signal is sparse, the number of elements in S is smaller than the number of observed
signals. Thus [31]

zs[n] = A†Sy[n]
zl[n] = 0, l < S

(18)

where z[n] =
[
z−L0 [n], . . . , zL0 [n]

]T
, l ∈ [−L0, . . . 0, . . . L0], and zl[n] is the inverse discrete time Fourier

transform (DTFT) of Zl( f ). A†S is the generalized inverse matrix of AS. Thus, the corresponding relation
between source signals and received signals is established. The separated signal can be recovered in an
order manner from y[n].

In Section 3.1, the support set was roughly estimated by the tracking of sub-channels. The accurate
estimation of the support set by dynamic programming is shown in Figure 3. The situation of sub-bands
(-1~-L) is symmetrical with that of sub-bands (L~1), not shown in Figure 3.
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Figure 3. Dynamic programming strategy for support set estimation.

Without loss of generality, three sub-bands correspond to one sub-channel in Figure 3. In the
tracking state, the amplitudes of multi-frequency functions λil are equal for the sub-bands. Once the
power information of the single hop is detected in the ith sub-channel by σi[n], the amplitudes of
multi-frequency functions for the ith sub-channel are dynamically programmed and other sub-channels
stay the same.

Suppose that the corresponding sub-bands for the ith sub-channel are k, k+1 and k+2. In the
tracking state, the amplitudes of multi-frequency functions are

λi,k = λi,k+1 = λi,k+2 = λt (19)

The power estimation of the ith sub-channel is σt.
If the observed single hop does not cross sub-channels, there are 5 kinds of relationships between

the single hop and sub-bands:
H0: The hop is only in the kth sub-band (as the single hop C in Figure 3).
H1: The hop crosses the kth sub-band and (k+1)th sub-band.
H2: The hop is only in the (k+1)th sub-band.
H3: The hop is crosses the (k+1)th sub-band and (k+2)th sub-band (as the single hop A in Figure 3).
H4: The hop is only in the (k+2)th sub-band.
In the proposed system, the relationships are identified by dynamic programming.
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First, a gain factor β(β > 1) is applied for the amplitudes of multi-frequency functions. Thus
we obtain 

λi,k =
1√
β
λt

λi,k+1 = λt

λi,k+2 =
√
βλt

(20)

For the cross-sub-band single hop, the power in each sub-band should not be less than γ(γ < 1)
of the total power. Generally, γ is not less than 5%. The four thresholds in Figure 3 for identification
can be expressed as 

µL =
1−γ
β σt

µSL = (1− γ)σt +
γ
βσt

µSH = (1− γ)σt + γβσt

µH = (1− γ)βσt

(21)

Suppose the power estimation is σd after dynamic programming. The identification for the
relationships can be expressed as 

H0 : σd < µL

H1 : µL ≤ σd < µSL
H2 : µSL ≤ σd < µSH
H3 : µSH ≤ σd < µH

H4 : σd ≥ µH

(22)

If the observed single hop crosses sub-channels, the situations are opposite between two adjacent
sub-channels after dynamic programming (as single hop B in Figure 3), which is easy to distinguish.

The result of identification is the estimation of support sets. Based on Equation (18), the multiple
signal can be separated in the order of sub-bands. The algorithm for the separation is shown in Figure 4.
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The detail of the strategy can be summarized as follows:
Input: Received signals.
Step 1: Detect the sub-channels of FH signals by σi[n] based on Equation (12).
Step 2: If a frequency hop occurred, obtain the TOA estimation of the new hop by Equation (13).
Step 3: Refresh the amplitudes of multi-frequency functions of the sub-bands by dynamic

programming in the sub-channels that were detected in Step 1. Extract the sub-bands as the support
set by Equation (22).

Step 4: Recover the signal in the order of sub-bands by Equation (18).
Step 5: Get the relative power of zi[n] in Step 4.
Step 6: Separate the multiple signals by TOA, obtained in Step 2. If the signals cannot be separated

by TOA, take relative power into consideration for the separation.
Output: Separated signals zr[n], r = 1, . . . , R.

4. Simulations and Discussion

In this section, signal tracking and sorting performance are analyzed by numerical simulations.
The intermediate result of TOA estimation and dynamic programming are also discussed. The
simulation settings are shown in Table 1.

Table 1. Simulation settings.

Parameter Value

Sub-band number L 195
Periodic sequence frequency fp 51.3 MHz

Baseband sampling rate fs 51.3 MHz
Sub-channel number m 32, 50

Amplitude of smoothing filter 1
Carrier frequency [2, 7 GHz]

Hop rate 10 khop/s
Single hop bandwidth B 30 MHz

Mode type DQPSK
Shaping filter Raised cosine FIR

Without loss of generality, a differential quadrature reference phase shift keying (DQPSK)
modulated multiple signal is applied in this section. The carrier frequency of source signals is
transformed to [0, 5 GHz] as the input of our system and the sub-band number is L = 195. Thus,
the Nyquist sampling rate is fnyq = 10 GHz. The periodic frequency is fp = fnyq/L ≈ 51.3 MHz.
The baseband sampling rate is fs = fp = 51.3 MHz, which is the theoretical minimum. The total
sampling rates of our system are fs × 32 = 1.6416 GHz for m = 32 and fs × 50 = 2.565 GHz for m = 50,
which is much lower than the Nyquist sampling rate. The number of sampling points for a single hop
is fs/1× 104 = 5130, which is enough for further processing. Each signal is shaped by the raised cosine
finite impulse filter (FIR), which has been widely used in practice.

4.1. FH Signal Tracking

In this section, the FH signal tracking and dynamic programming performance is analyzed.
The simulation results of signal tracking are shown in Figure 5. In the present study, the number of
sub-channels is set as m = 50 and each sub-channel contains two pairs of sub-bands for signal tracking.
The SNR for each signal is 10 dB on the equivalent narrow band.

Four hops of each source are shown in Figure 5 as examples. It can be seen that the power
estimation of sub-channels is effective. Hopping between sub-channels is taken for the TOA estimation,
marked by a red line in Figure 6. During a single hop, the power estimation is not stable, because
the length of the smoothing filter in the time domain is limited and the noise of all the sub-bands
is superimposed.
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The performance of the TOA estimation is shown in Figure 6, where Ls represents the length of
the smoothing filter. It can be concluded that SNR is the main factor affecting the TOA estimation
when it is lower than 10 dB, because the disturbance of noise cannot be removed by the smoothing
filter. The TOA estimation is relatively accurate and stable when SNR is higher than 10 dB, and the
main factor that affects the estimation is the length of the smoothing filter. The longer the smoothing
filter, the better the estimation, because it represents the accumulation of time in the time domain.
Based on Equation (12), long-term estimation is closer to real TOA, but it loses real-time performance.
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In the application, a compromise between accuracy and real-time requirement should be made for a
better performance and the filter delay should be eliminated.

Figure 7 shows the support set estimation by dynamic programming, where Pd is the success rate
of the estimation. The length of the smoothing filter for this simulation is Ls = 256. The number of
sub-channel is set as m = 32 and each sub-channel contains three pairs of sub-bands.
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It can be concluded that with increased SNR, the success rate becomes higher. The gain factor
has a significant impact on the probability of estimation. When the SNR is higher than 9dB and the
gain rate is higher than 8, the success rate is stable at over 90%. As the power of a single hop is
relatively stable and the MWC system spreads all the information of input signals, including noise, to
the baseband, the inherent characteristics of the noise limit the sensitivity of estimation. Comparing
Figure 7a,b, it can be seen that the signal power limit ratio of the sub-bands γ is not the main factor for
the estimation. The lower the ratio, the worse the success rate. For practical applications, the choice of
gain factor should consider the channel condition and the requirement of estimation accuracy.

4.2. FH Signal Sorting

In this section, the performance of FH signal sorting is analyzed. The performance of separation
is evaluated in terms of the average signal-to-interference ratio (SIR).

SIR = 10 log10


N∑

n=1
E
{
s2

n(t)
}

N∑
n=1

E
{
(sn(t) − ŝn(t))

2
}
 (23)

where sn(t) is the source signal, and ŝn(t) is the separated signal, which is an estimation of sn(t).
The higher the SIR, the more similar the separated signal to the source, which means better performance.

Figure 8 shows the performance of FH signal sorting. In the present study, the number of sources is
three. For our system, the number of sub-channels is set as m = 50 and each sub-channel contains two
pairs of sub-bands for signal tracking, and Ls = 256, β = 8, γ = 10%. Compared with the subspace-based
algorithm [3], the proposed algorithm performs better. As the subspace-based algorithm is based
on calculating a mixing matrix and comparative power, the error of matrix estimation will lead to
amplitude fluctuation of the separated signals. The proposed algorithm can avoid the influence of
sub-bands that do not contain signals and filter the noise out of the band. In Figure 8, the orthogonal
matching pursuit (OMP) algorithm [31] for recovery is taken as a reference. The performance of OMP
does not involve separation. It is shown here as a performance upper bound under ideal conditions.
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The single hop is considered long enough as a stationary signal. The SIR performance of the proposed
algorithm is a little worse than the OMP recovery method, because the noise of the sub-bands is
amplified. The performance improves at high SNR and gets closer to recovery, because the noise
is no longer the main cause of performance degradation. Our method has the advantages of fewer
calculation requirements and adjustability.
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Figure 8. Performance comparison against SNR.

Figure 9 shows the performance of FH signal separation against number of sources Ns. In the
present study, the number of sub-channels is set as m = 50 and each sub-channel contains two pairs of
sub-bands for signal tracking; Ls = 256, β = 8 andγ = 10%. It can be concluded that with more sources,
the SIR for separated signals decreases, because the signals interfere with each other and the estimation
of relative power degrades. Thus, the sparsity of signals should be considered in the application of
CS systems.
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5. Conclusions

In this paper, we propose a dynamic programming MWC structure for non-cooperative tracking
and sorting of FH signals. First, based on the power estimation in the time domain, the sub-bands
that contain FH signals can be tracked in real time. The number of sampling points and amount of
calculation are significantly reduced compared to the traditional methods. Second, we can separate
multiple FH signals by the tracking results of TOA and comparative power. The theoretical analysis
and numerical simulations demonstrate the validity and correctness of our method. The experimental
results illustrate that CS has obvious advantages in blind tracking and sorting of signals. The SIR of
the separation results is relatively high, which is effective for further processing. In future research,
we would like to explore DOA estimation by MWC and other CS structures to establish a more
comprehensive sorting system for multiple FH signals.
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Appendix A

This part shows the precise description of the mixing function pi(t).
The basic structure of MWC is shown in Figure A1 [31]. We assume that x(t) is a continuous time
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Figure A1. MWC under-sampling system.

MWC consists of m parallel channels. In each channel, the multiband signal x(t) is multiplied
with a different mixing function, and pi(t), i = 1, 2, . . . , m. Each mixing function is periodic with the
period Tp = 1/ fp. pi(t) is set as a sign function for each of the M equal time intervals and other forms
are possible, as the system only requires pi(t) periods, which is expressed as follows

αik = pi(t), k
Tp
M ≤ t ≤ (k + 1)

Tp
M (A1)

where 0 ≤ k ≤M− 1 and αik ∈ {+1,−1}.
The purpose of this mixing function is to create aliases, so that the mixed signals x′i (t) have

information about the entire spectrum in the baseband Fp =
[
−

fp
2 ,

fp
2

]
. Taking the ith channel as an

example, the Fourier expansion of pi(t) is as below

pi(t) =
+∞∑

l=−∞

cile j2πl fpt (A2)
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where cil is the Fourier series coefficient and is expressed as

cil =
1

Tp

∫ Tp

0
pi(t)e− j2πl fptdt (A3)

The Fourier transform of the mixing signal x′i (t) = x(t)pi(t) is

x′i ( f ) =
+∞∑

l=−∞

cilX( f − l fp) (A4)

Suppose that the filter H( f ) is an ideal rectangular function. Consequently, the uniform sequence
yi[n] has only frequencies in the [− fs/2, fs/2]. The DTFT of yi[n] is expressed as

Yi
(
e j2π f Ts

)
=

+L0∑
l=−L0

cilX( f − l fp), f ∈ Fs (A5)

where L0 is selected as the smallest integer as

−
fs
2
+ (L0 + 1) fp ≥

fnyq

2
→ L0 =

⌈
fnyq + fs

2 fp

⌉
− 1 (A6)

where fs = 1/Ts is the sampling rate; and d•emeans round up.

Appendix B

This part shows a brief description of the expectation restricted isometry property (ExRIP).
Assume that δK is a isometry constant, 0 < δK < 1. The definition of restricted isometry property

(RIP) is [37]
(1− δK)‖u‖2 ≤ ‖Φu‖2 ≤ (1 + δK)‖u‖2 (A7)

where δK is the minimum value satisfying formula. If Equation (A7) holds for any K-sparse vector ‖u‖,
then the matrix Φ satisfies the RIP of isometry constant δK. Definition [37]: A matrix has the ExRIP,
if Equation (A7) holds with probability at least p for K-sparse random vectors u whose support is
uniformly distributed and whose non-zeros are independent identically distributed random variables.

The detailed procedure to prove that MWC has ExRIP has been proposed in [37].
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