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Abstract: A new piezoelectric composite, macro fiber composite (MFC) is recombined with
piezoceramic fibers, an epoxy resin basal body, and an interdigitated electrode. It has been widely
applied in vibration reduction and deformation control of thin-walled structures, due to its great
deformability and flexibility. Research on its actuation performance is mostly concentrated on the MFC
actuating force calculation based on classical plate theory (CPT), and the overall modeling of MFC
and its structure. However, they have some deficiencies in the tedious calculating process and neglect
of shear deformation, respectively. To obtain a precise MFC actuating force, the sinusoidal shear
deformation theory (SSDT) is adopted to deduce the MFC actuating force formula, and global–local
displacement distribution functions are introduced to help the MFC laminated plate structure satisfy
the deformation compatibility and stress balance. For instance, in the end displacement calculation of
the MFC laminated beam structure. The experimental result of the MFC laminated beam is compared
with those of the MFC actuating force based on SSDT and on CPT, which indicates that the MFC
actuating force formula based on SSDT can reach higher computational accuracy.

Keywords: macro fiber composite; MFC laminated structure; sinusoidal shear deformation theory

1. Introduction

As a widely used piezoelectric smart material, piezoceramics can have an actuating performance
through the inverse piezoelectric effect and a sensing performance through the direct piezoelectric
effect. They are often applied in areas such as structural vibration reduction, energy harvesting, and
health monitoring, etc. [1–3]. Piezoceramics are characterized by their high sensitivity and good
thermal stability, albeit poor flexibility. Therefore, the National Aeronautics and Space Administration
(NASA) lab in Langley has developed a new type of piezoelectric smart material, macro fiber composite
(MFC) [4], which is recombined with piezoceramic fiber rods with rectangular sections, an epoxy resin
basal body, a copper electrode, and a polymer film. With a higher electromechanical transformation
efficiency and better flexibility, MFC has wide application prospects and research value.

In the vibration reduction of thin-walled structures and deformation control, MFC has received
extensive attention. In the study of controlling the vibration response of thin-walled structures with
MFC, its actuating force can be obtained by two methods: (i) overall modeling is made for the MFC
and the structure, then voltage directly serves as the input to perform a simulating calculation for the
structure; (ii) or the MFC is equivalent to the external actuating force to be exerted on the structure
for the simulating calculation. With regard to the former, Dano and Jullière [5] studied MFC’s active
control over thermally-induced deformation of the composite plate, performed finite element modeling
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of the MFC and flat plate construction with ABAQUS finite element software, obtained the actuating
force of the MFC by the finite element method, proposed an active closed-loop control algorithm, and
verified the feasibility of the MFC control over thermally-induced deformation. Kim et al. [6] have
performed overall modeling for the MFC and shell structure, and then solved the actuating force of
the MFC by the variation principle and finite element discretization. On this basis, they undertook a
vibration reduction simulation and experimental analysis for an end-sealing shell structure attached
to the MFC with a negative velocity feedback method. Through overall modeling of the MFC and
thin-walled cylindrical structure, Sohn et al. [7,8] calculated the actuating force of the MFC by using
the Donnell–Mushtari shell theory and Lagrange equation, as well as the variational principle and
finite element discretization, respectively. Based on this, they have studied the vibration control effect
of the cylindrical structure with the MFC in air and in water, which proved that the MFC can effectively
reduce vibrations in both conditions. Zhang et al. [9] performed a finite element analysis on the MFC
integrated plate structure with different fiber orientations, established the linear electromechanical
coupling model of the MFC integrated plate-shell structure, analyzed the actuating force of the MFC by
variational principle and finite element discretization, and performed contrastive analysis between the
simulation results and the experimental results. Aiming for vibrational control of flexible structures,
Wang et al. [10] studied the optimal configuration of the MFC actuator, established a model for MFC
integrated plate-shell structures with the finite element method, and obtained the actuating force of the
MFC by the Hamilton’s principle. On this basis, they provided the best location and fiber orientation
for MFCs in different working conditions. Zhou et al. [11] have studied the aeroelastic stability
of composite plates embedded within MFCs in supersonic flows, and established the dynamical
equation of MFC and plate structure through virtual work principle, and gave the actuating force
expression of the MFC, which indicates that both MFC lamination angles and temperature variation
will produce remarkable influences on the aeroelastic stability boundary of curved composite plates in
supersonic airflows.

Accurate simulation results can be obtained by overall modeling of the MFC and structure.
However, this is hard to implement for complicated structures. With regard to the structure, the mass
of the MFC slice is negligible and produces little influence on the structural mode. As a result, the
MFC is equivalent to the external actuating force to be exerted onto the structure, which is a simpler
and more reasonable method. Gao et al. [12] arranged MFCs on vertical fin structures to deduce the
MFC equivalent actuating bending moment equation and the sensing voltage equation by utilizing the
classical plate theory (CPT), and accomplished the simulation and experiment of vibrational control of
vertical fin structures based on negative feedback by establishing a simplified model of the vertical
fin structures attached to the MFC with ABAQUS finite element software, proving that MFCs have a
great controlling effect on the vertical fin structures. Li et al. [13] studied the equivalent actuating force
based on the elastic deformation theory under the condition of partial abhesion of the MFC, analyzed
the influence of the percentage and location of delamination on actuating performance, and verified
the experimental result. Ma et al. [14] studied MFC’s active control over a cantilever beam structure in
axial motion, calculated the actuating force of the MFC by CPT, and used the MFC as an equivalent
actuating force to be exerted onto the cantilever beam structure, proving that the MFC can effectively
restrain vibration of the cantilever beam structure. Dong et al. [15] modeled a plate structure integrated
with a piezoelectric actuator in a semi-analytical fashion, and applied the analytical equivalent force to
the finite element models. The equivalent force is deduced from the bending effort balance between
the equivalent loads, and is verified by the actuating experiment of composite laminates integrated
with the P1 type of MFC. The experimental results were in good agreement with the simulation results.
Sun et al. [16] designed an active serrated microflap based on an MFC to reduce the fatigue load of
wind turbine blades, obtained the actuating force of the MFC by CPT and the variation principle, and
established a feedback control system suitable for the microflap by making MFC equivalent to the
actuating force, indicating that this active serrated microflap can effectively reduce fatigue load. At
present, the calculating methods of the MFC equivalent actuating force have mostly been concentrated
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on considering the bending deformation and tensile deformation of the MFC integrated plate structure,
but ignored the influence of shear deformation. Aiming for piezoceramics, Crawley and Luis [17]
studied the actuating force and actuating bending moment formulas considering shear deformation
of the stickup layer and provided a distribution curve of piezoceramic’s actuating force to simulate
the actuating performance of the piezoelectric material well. Thereafter, Crawley and Anderson [18]
studied the actuating force formula of a piezoelectric material considering bending deformation, but
not considering shear deformation. Sonti et al. [19] took uniformly polarized piezoelectric actuators
with different shapes as the study objects. By analyzing their equivalent forces and wavenumber
spectrum, the influence of the shape of the piezoelectric actuators on the modal response of flat plates
is studied, and the general expression of equivalent force of piezoelectric actuators was deduced by the
small deflection theory. The results show that the uniformly polarized piezoelectric actuator has a high
order mode coupling trend regardless of the shape of the piezoelectric actuator. Deraemaeker et al. [20]
deduced the analytical expressions of equivalent forces of an orthotropic piezoelectric actuator based
on the small deflection theory under general conditions by the Hamilton’s principle and two different
mathematical methods. Both methods obtained the same analytical expressions of equivalent forces.
Since the thickness of the stickup layer is much smaller than that of the actuator and structure, Im and
Atluri [21] perfected this calculation method, ignoring the influence of the stickup layer, and deduced
the complete piezoceramic actuating force formula with higher accuracy by further considering the
influence of beam shear deformation on shear stress between the piezoelectric material and the beam
structure. It is indicated that a better actuating force formula can be obtained by considering shear
deformation of the piezoelectric material and the structure. Therefore, the MFC actuating force needs
to consider shear deformation of the MFC and the structure.

With regard to laminated plate structures, it is hard to obtain a precise stress–strain result by only
considering the bending deformation and tensile deformation. Shear deformation is taken into account
for a more precise result [22–24]. The stickup position of MFC integrated plate-shell structures can be
treated as a bistratal laminated plate structure, so the shear deformation theory can be applied into the
actuating force formula calculation of MFC integrated plate structures. Because the sinusoidal shear
deformation theory (SSDT) can precisely simulate the deformation and internal force calculation of
laminated plate structures [25,26], this paper introduces a local displacement distribution function with
the SSDT, proposes a new MFC actuating force formula, and performs contrastive analysis between the
new formula and the one based on classical plate theory (CPT) [27,28]. To make a detailed explanation
of the applicability of the MFC actuating force formula, the MFC laminated beam structure in [29]
is exemplified to analyze the MFC internal force distribution and free end displacement in different
working conditions, which proves the applicability of the theory in this paper.

2. The Constitutive Relation of MFC

The P1 type and P2 type MFCs have been chosen to be the study objects. The polarization direction
of the former is parallel to the fiber orientation, while that of the latter is parallel to through-thickness
direction, as is shown in Figure 1. The constitutive relation of the MFC is [30,31]:

εi = sE
ijσ j + dmiEm

Dm = dmiσi + κσimEm
, (1)

where sE
ij represents the flexible coefficient when the electric field intensity is constant, i is the strain

direction of the MFC, and j is the stress direction of MFC; dmi represents the piezoelectric strain
coefficient, m is the electric field action direction; Dm represents the electric displacement in the i
direction; κσim is the dielectric constant when stress is constant; Em is the electric field intensity exerted
in the m direction.
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Figure 1. The structure chart of the macro fiber composite (MFC). (a) The P1 type of MFC; (b) The 
P2 type of MFC. 
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Figure 1. The structure chart of the macro fiber composite (MFC). (a) The P1 type of MFC; (b) The P2
type of MFC.
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where Epx and Epy are the elasticity modulus of the MFC along the directions of the x axis and y axis;
νp is the Poisson’s ratio of the MFC; Gp is the shear modulus of the MFC; in the P1 type MFC, d31 is the
strain of the MFC produced along the direction of the y axis in the electric field action in the direction
of the x axis; d33 is the strain of the MFC produced along the direction of the x axis in the electric field
action in the direction of the x axis. In the P2 type MFC, d31 is the strain of MFC produced along the
direction of z axis in the electric field action in the direction of x axis; d32 is the strain of the MFC
produced along the direction of the z axis in the electric field action in the direction of the y axis; Ex is
the electric field intensity in the direction of the x axis. Ez is the electric field intensity in the direction
of the z axis.

3. The Actuating Equation of an MFC Laminated Plate Structure

The laminated plate is made by single-face stickup piece of MFC, whose size is shown in Figure 2,
with the original point of coordinate axes in the central position of the plate. l1 and l2 are the MFC’s
effective width and length; R is the distance between the plate midline and the upper surface of the
MFC; hp is the thickness of the MFC; the thickness of the plate is 2r, the elasticity modulus is Es, the
shear elasticity is Gs, Poisson’s ratio is νs.
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Figure 2. MFC laminated plate structure.

The action of voltage will create axial, bending and shear deformations of the MFC attached to the
plate’s surface. The actuating force caused by the deformations will be transmitted through the layer
sticking up between the MFC and the plate. To consider the influence of the shear deformation of the
MFC laminated plate on the MFC actuating force, SSDT [32] is adopted to deduce the MFC actuating
force formula. Considering that differences exist in material parameters between the MFC and the
plate, deformation compatibility and stress balance should be ensured between them, global–local
displacement distribution functions are introduced to establish the stress balance equation of MFC
laminated plate, and then, according to the equal shear force between the MFC and the plate, the
system of stress partial differential equations is simplified and solved to obtain the interfacial shear
force between the MFC and the plate structure and the actuating force and actuating bending moment
of the MFC.

The following hypothesis is assumed for the MFC actuating force calculation: (1) the MFC and
plate structure are entirely adhered without considering the thickness of the stickup layer [21]; (2) the
MFC curvature along the directions of the x and y axes can be viewed as constant [19]; (3) no shear
deformation exists at the midline position of the xy in-plane MFC laminated plate [33].

According to the SSDT proposed by Touratier [25], displacement of the MFC laminated plate
is composed of axial displacement, displacement created by bending deformation and by shear
deformation. Suppose that the displacement w(x, y, z) in the normal direction of the structure has
nothing to do with z, then the displacement and strain on the MFC laminated plate can be indicated as:

u(x, y, z) = u0(x, y) − z∂w(x,y)
∂x +ψx(x, y) fx(z)

v(x, y, z) = v0(x, y) − z∂w(x,y)
∂y +ψy(x, y) fy(z)

w(x, y, z) = w(x, y)

, (5)

where u0(x, y) and v0(x, y) are the displacements in the mid-place position along the x and y axes;
w(x, y) is the lateral displacement of the plate; ψx(x, y) and ψy(x, y) are the shear deformations of the
cross section along the x and y axes; fx(z) and fy(z) are the displacement distribution functions along
the thickness in the x and y directions.

Due to different material properties of the MFC and the plate structure, global–local displacement
distribution functions are introduced to ensure deformation compatibility and stress balance between
them, among which fg(z) is the global displacement distribution function and fl(z) is the local
displacement distribution function. Consequently, the sectional global–local displacement distribution
functions of MFC laminated plate are:

fx(z) = fy(z) = fg(z) + fl(z), fg(z) =
(

R+r
π

)
sin

(
πz

R+r

)
fl(z) =

{
a1ξ1 + b1ξ1

2, z ∈ [R, r]
a2ξ2 + b2ξ2

2, z ∈ [r,−r]
, (6)
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where ξ1 and ξ2 are local coordinates of the section.

ξ1 =
2z−R− r

R− r
, ξ2 =

z
r

, (7)

According to deformation compatibility and stress balance, the shear stress between the upper surface
of the MFC and the lower surface of the plate is 0, and the displacement of the raised layer between
the MFC and the plate structure should remain continuous and their shear stresses should be equal.
The relevant parameters of the local displacement distribution function can be obtained from the
above-mentioned boundary conditions:

a1 =
(r−R)((3Gp−4Gs)r cos( πr

R+r )+(3Gpr+Gs(R−r)) cos( πR
R+r ))

12Gpr+6Gs(R−r)

a2 =
r((−7Gpr+3GpR+6Gs(r−R)) cos( πr

R+r )+Gp(R−r) cos( πR
R+r ))

12Gpr+6Gs(R−r)

b1 =
(R−r)((3Gp−4Gs)r cos( πr

R+r )+(−3Gpr+2Gs(r−R)) cos( πR
R+r ))

24Gpr+12Gs(R−r)

b2 =
Gpr((5r+3R) cos( πr

R+r )+(R−r) cos( πR
R+r ))

24Gpr+12Gs(R−r)

. (8)

To establish the relationship between shearing strain and displacement, the MFC is used as the
object to obtain its shearing strain in xz plane with Equation (5):

γzx(x, y, z) =
∂u
∂z

+
∂w
∂x

=
1

Λpx

(
uR − ur +

∫ R

r

∂w(x, y)
∂x

dz
)

d fx(z)
dz

, (9)

Λpx = Λpy =
R + r
π

(
sin

(
πR

R + r

)
− sin

(
πr

R + r

))
+ 2a1, (10)

where uR and ur represent the displacements at the positions of z = R and z = r along the direction of
the x axis.

The stress balance equation of the upper surface of the MFC is obtained according to the stress
balance of the MFC:

dσpx,R

dx
+

GpΩpx,R

Λpx

(
uR − ur +

∫ R

r

∂w(x, y)
∂x

dz
)
= 0, (11)

Ωpx,R = Ωpy,R =
8b1

(R− r)2 −
π

R + r
sin

(
πR

R + r

)
, (12)

where σpx,R is the normal stress of the upper surface of the MFC along the direction of the x axis.
Similarly, the shearing strain of the plate structure in the xz plane is:

γzx(x, y, z) =
1

Λsx

(
ur − u−r +

∫ r

−r

∂w(x, y)
∂x

dz
)

d fx(z)
dz

, (13)

Λsx = Λsy = 2a2 +
R + r
π

sin
(
πr

R + r

)
, (14)

where u−r represents the displacement at the position of z = −r along the direction of the x axis.
Similarly, the stress balance equation of the upper surface of the plate can be obtained with its

upper surface as the object:

dσsx,r

dx
+

GsΩsx,r

Λsx

(
ur − u−r +

∫ r

−r

∂w(x, y)
∂x

dz
)
= 0, (15)

Ωsx,r = Ωsy,r = −
2b2

r2 +
π

R + r
sin

(
πr

R + r

)
, (16)

where σsx,R is the normal stress of the upper surface of the plate along the direction of the x axis.
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According to the equal shear stress on the raised interface, Equations (5), (9) and (13) are combined:

Gp

(
ψx(x, y) + ∂w(x,y)

∂x

)
d fx(z)

dz

∣∣∣∣
z=r+

= Gs

(
ψx(x, y) + ∂w(x,y)

∂x

)
d fx(z)

dz

∣∣∣∣
z=r−

Gp
Λpx

(
uR − ur +

∫ R
r

∂w(x,y)
∂x dz

)
d fx(z)

dz = Gs
Λsx

(
ur − u−r +

∫ r
−r

∂w(x,y)
∂x dz

)
d fx(z)

dz

, (17)

where z = r+ represents the lower surface of the MFC; z = r− represents the upper surface of the
plate structure.

Equation (17) is simplified as:

ur =
Λsx

Λpx

(
uR − ur +

∫ R

r

∂w(x, y)
∂x

dz
)
+ u−r −

∫ r

−r

∂w(x, y)
∂x

dz. (18)

Equation (18) is substituted into Equation (15) to eliminate the displacement u−r of the lower
surface of the plate along the direction of x axis, obtaining:

dσsx,r

dx
+

GsΩsx,r

Λpx

(
uR − ur +

∫ R

r

∂w(x, y)
∂x

dz
)
= 0. (19)

According to the stress–strain relationship, Equations (11) and (19) are translated into the system
of strain partial differential equations of the upper surface of the MFC and the upper surface of the
plate:

d2εsx,r
dx2 +

GsΩsx,rhp
QsΛpx

(
εpx,R−εsx,r

hp
+

∂2w(x,y)
∂x2

)
= 0

d2εpx,R

dx2 +
GpΩpx,Rhp

QE
11Λpx

(
εpx,R−εsx,r

hp
+

∂2w(x,y)
∂x2

)
= 0

, (20)

where Qs =
Es

1−v2
s
.

According to the piezoceramics actuating force formula put forward by Crawley et al. [19], the
mutation of MFC stress–strain along the direction of the x axis appears only at the border position
of the piezoelectric material, while its stress–strain at other positions almost remains constant. A
proportional relationship exists between the MFC curvature and the normal strain distribution of the
cross-section, and the normal strain distribution except that at border position remains constant. Thus,
supposing that the curvature of the MFC laminated plate structure along the direction of the x axis is
constant, then it is obtained by Equation (20):

d4εsx,r

dx4
+

GsΩsx,r

QsΛpx

(
ε′′px,R − ε

′′

sx,r

)
= 0,

d4εpx,R

dx4
+

GpΩpx,R

QE
11Λpx

(
ε′′px,R − ε

′′

sx,r

)
= 0. (21)

Because no normal stress at the border position of the upper surface of the MFC and the normal
strain along the direction of x axis is symmetric around the y axis, the following is obtained:

εpx,R = X1 cosh(αx) + Y1, εsx,r = X2 cosh(αx) + Y2, (22)

where

α =

√
GsΩsx,r

QsΛpx
−

GpΩpx,R

QE
11Λpx

. (23)

Equation (22) is the general solution form of the strain distribution of the upper surface of the
MFC. To calculate the strain distribution of the upper surface of the MFC further, the strain at the
midline position and the border position of the upper surface of the MFC should be obtained. Since
the raised position between the MFC and the plate is symmetrical and no shear deformation is at the
midline position, ψx(0, y) in Equation (5) is 0 and the midline position is shown in Figure 3. With
Equation (5), the strain εx,c and εy,c can be obtained at the midline position of the MFC laminated plate
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along the directions of the x and y axes, as shown in Equation (24). Then, according to the mechanical
equilibrium equation of the section at the midline position, membrane strain ε′x0 and ε′y0, and curvature
γx and γy can be obtained to calculate the strain εpx,c and εpy,c at the midline position on the upper
surface of the MFC along the directions of the x and y axes [24], as is shown in Equation (25). For the
P1 type MFC, εx0 = d33Ex, εy0 = d31Ex; for the P2 type MFC, εx0 = d31Ez, εy0 = d32Ez.

εx,c = ε′x0 + zγx, εy,c = ε′y0 + zγy, (24)

εpx,c = ε′x0 + γxR, εpy,c = ε′y0 + γyR, (25)

where,

γx =
νp(BQ−AR′)(T2

−SU′)(εy0+νpεx0)+(CU′−DT)(Q2
−PR′)(εx0+νpεy0)

(ν2
p−1)(Q2−PR′)(T2−SU′)

ε′x0 =
νp(AQ−BP)(T2

−SU′)(εy0+νpεx0)+(DS−CT)(Q2
−PR′)(εx0+νpεy0)

(ν2
p−1)(Q2−PR′)(T2−SU′)

γy =
(AR′−BQ)(T2

−SU′)(εy0+νpεx0)+νp(DT−CU′)(Q2
−PR′)(εx0+νpεy0)

(ν2
p−1)(Q2−PR′)(T2−SU′)

ε′y0 =
(BP−AQ)(T2

−SU′)(εy0+νpεx0)+νp(CT−DS)(Q2
−PR′)(εx0+νpεy0)

(ν2
p−1)(Q2−PR′)(T2−SU′)

, (26)

A =
(R2
−r2)Epy

2(1−ν2
p)

, B =
hpEpy

1−ν2
p

, C =
AEpx
Epy

, D =
BEpx
Epy

, P =
2r3Es+(R3

−r3)Epy

3(1−ν2
p)

Q =
Epy(R2

−r2)
2(1−ν2

p)
, R′ =

2rEs+hpEpy

1−ν2
p

, S =
2r3Es+(R3

−r3)Epx

3(1−ν2
p)

T =
Epx(R2

−r2)
2(1−ν2

p)
, U′ =

2rEs+hpEpx

1−ν2
p

. (27)
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Figure 3. Boundary position of the MFC laminated plate.

Figure 4 shows the stress of the infinitesimal element at the border position on the upper
surface of the MFC. Equation (22) explains that the gradient change of the strain exists along the
longer border position of the infinitesimal element. Therefore, the strain εpx,e and εpy,e at the border
position of the upper surface of the MFC can be obtained through the stress balance equation of the
infinitesimal element:

QE
11

(
εpx,e − εx0

)
+ QE

12

(
εy0 cosh(βy)
cosh(0.5βl1)

+ εpy,c

(
1− cosh(βy)

cosh(0.5βl1)

)
− εy0

)
= 0

QE
21

(
εx0 cosh(αx)
cosh(0.5αl2)

+ εpy,c

(
1− cosh(αx)

cosh(0.5αl2)

)
− εx0

)
+ QE

22

(
εpy,e − εy0

)
= 0

. (28)
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Figure 4 shows the stress of the infinitesimal element at the border position on the upper surface 
of the MFC. Equation (22) explains that the gradient change of the strain exists along the longer 
border position of the infinitesimal element. Therefore, the strain px,eε  and py,eε  at the border 

position of the upper surface of the MFC can be obtained through the stress balance equation of the 
infinitesimal element: 
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( )
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xE E
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Q +ε - -ε +Q ε -ε =
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The strain at the border position on the upper surface of the MFC is:

εpx,e = εx0 +
QE

12
QE

11

(
εy0 − εpy,c

)(
1− cosh(βy)

cosh(0.5βl1)

)
εpy,e = εy0 +

QE
21

QE
22

(
εx0 − εpx,c

)(
1− cosh(αx)

cosh(0.5αl2)

) . (29)

According to Equation (29), mutations of εpx,e and εpy,e exist at the two corners of the border
position of the MFC in the directions of the x and y axes, but normal strain at other border positions
remains essentially constant. Therefore, the normal strain at the border position on the upper surface
of the MFC can be regarded as a constant value:

εpx,e = εx0 +
Q12

Q11

(
εy0 − εpy,c

)
, εpy,e = εy0 +

Q21

Q22

(
εx0 − εpx,c

)
. (30)

Equations (25) and (30) are substituted into Equation (22) to obtain the normal strain of the upper
surface of the MFC along the direction of the x axis:

εpx,R =
εpx,e cosh(αx)

cosh(0.5αl2)
+ εpx,c

(
1−

cosh(αx)
cosh(0.5αl2)

)
. (31)

Equations (9), (11) and (31) are combined to obtain the interfacial shear stress between the MFC
and the plate structure along the direction of the x axis, namely, the actuating stress of the MFC along
the direction of the x axis:

τx =
α frQE

11 cosh(αx)

Ωpx,R cosh(0.5αl2)

(
εpx,c − εpx,e

)
, (32)

where,

fr = 1−
4r2

(R + r)2 +
2a1 − 4b1

hp
, (33)

In a similar way, the interfacial shear stress along the direction of the y axis is obtained, namely,
the actuating stress of the MFC along the direction of the y axis:

τy =
β frQE

22sinh(βy)

Ωpy,R cosh(0.5βl1)

(
εpy,c − εpy,e

)
, (34)

where,

β =

√
GsΩsy,r

QsΛpy
−

GpΩpy,R

QE
22Λpy

, Ωsy,r = Ωsx,r, Λsy = Λsx, Ωpy,R = Ωpx,R, Λpy = Λpx. (35)

According to Equations (25), (26) and (30), εpx,c, εpy,c, εpx,e and εpy,e all include an influence of the
piezoelectric effect in the directions of the x and y axes, and the magnitude of the interfacial shear
stress τx and τy is related to the piezoelectric effect in the directions of the x and y axes. According
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to Equations (32) and (34), the total actuating forces Tx and Ty of the MFC at the center of the MFC
laminated plate structure can be obtained:

Tx =
frl1QE

11

Ωpx,R

(
εpx,c − εpx,e

)
, Ty =

frl2QE
22

Ωpy,R

(
εpy,c − εpy,e

)
. (36)

Equation (36) indicates that the MFC actuating force is related to the elasticity modulus and
the thickness of the plate structure. To explore their relationship, we have analyzed the relationship
between the elasticity modulus of the plate, the thickness of plate and the total actuating force of the
M2814-P1 type and the M2814-P2 type of MFC along the direction of the x axis under a voltage of
1500 V, as shown in Figure 5. It shows that the total actuating force of the MFC increases with the
elasticity modulus and the thickness of the beam structure at first, then its growth rate gradually slows
down and tends to become stable. There is a non-linear relationship between the actuating force of the
MFC, the structural elasticity modulus and the thickness.

(a)  (b) 

Figure 5. The relationship between  the  total actuating  force of  the MFC,  thickness, and  the 

structural elasticity modulus, in (a) the M2814‐P1 type; (b) the M2814‐P2 type. 

 

Figure 5. The relationship between the total actuating force of the MFC, thickness, and the structural
elasticity modulus, in (a) the M2814-P1 type; (b) the M2814-P2 type.

A comparison has been made between the distribution formula of the mean normal stress based
on SSDT and that based on CPT to analyze the distribution regularities of the mean normal stress of
the MFC in MFC laminated plates. Since the normal stress at the sticking border position is 0 [16], the
mean normal stress of the MFC can be obtained through the stress balance:

σpx =
f QE

11

(
εx,e − εpx,c

)
Ωpx,R(R− r)

(
1−

cosh(αx)
cosh(0.5αl2)

)
, σpy =

f QE
22

(
εy,e − εpy,c

)
Ωpy,R(R− r)

(
1−

cosh(βy)
cosh(0.5βl1)

)
. (37)

The mean stress of the MFC based on CPT can be described as [24]:

σpx,cpt =
1

R−r

(∫ R
r QE

11

(
ε′x0 + γxz− εx0

)
+ QE

12

(
ε′y0 + γyz− εy0

)
dz

)
σpy,cpt =

1
R−r

(∫ R
r QE

21

(
ε′x0 + γxz− εx0

)
+ QE

22

(
ε′y0 + γyz− εy0

)
dz

) . (38)

By comparing Equations (37) and (38), it is proved that the MFC mean normal stress formula based
on SSDT provides the distribution regularities of the MFC mean normal stress as a type of hyperbolic
cosine function with consideration of shear deformation, while the one based on CPT cannot, because
it only considers the stress–strain distribution of the MFC laminated plate structure along the direction
of thickness, ignoring in-plane shear deformation, and cannot obtain the shear stress distribution and
the normal stress distribution between the MFC and plate structure.
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4. Example Analysis of MFC Laminated Beam Structure

To explain the precision of the MFC actuating force formula based on SSDT, the actuating
experiment and finite element analysis of the MFC laminated beam in [29] is exemplified for analysis
and discussion. It adopts the M2814-P1 and M2814-P2 types of MFC, with the distance between the
raised position and the fixed end being 10 mm. The MFC laminated beam structure is shown in
Figure 6, and the parameters of the P1 type and the P2 type of MFC and those of the beam’s structure
in are shown in Table 1. The MFC actuating force formula based on SSDT deduced in this paper is used
to calculate the mean internal force distribution of the two types of MFC under voltages of 50–300 V
and 60–360 V, as shown in Figures 7 and 8.Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 17 
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Figure 6. Model of the MFC laminated beam structure.

Table 1. Parameters of the beam structure and MFC [29].

Material Beam MFC−P1 MFC−P2

Elasticity modulus (GPa) 210
29.4 30.336
15.2 15.85

Shearing modulus (GPa) 80 6.06 5.515
Density (kg·m-3) 7850 5440 5440
Poisson’s ratio 0.31 0.312 0.31

Piezoelectric strain constant
d33(P1)/d31(P2) (C/N) / 467 −170

Piezoelectric strain constant
d31(P1)/d32(P2) (C/N) / –210 −100

Geometric dimension (mm3) 80 × 22 × 1.5 28 × 14 × 0.3 28 × 14 × 0.3
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Figure 7 shows that under a fixed voltage, the MFC internal force along the direction of the y axis
is much smaller than that along the direction of the x axis, meaning the direction of the x axis is the
main actuating direction in the P1 type of MFC. It states that the deformability of the P1 type along the
direction of the x axis is better than that along the direction of the y axis, conforming to its characteristic
deformation. In the directions of the x and y axes, the marginal internal force of the P1 type at the
stickup position is small, the internal force increases rapidly towards the central position and tends to
be stable, and the MFC in the direction of the x axis takes on a compression state while the MFC in the
direction of the y axis takes on a tension state. Similarly, Figure 8 shows the same characteristics for the
P2 type. This is created by the shear lag between the MFC and the beam structure, which reflects that
at the border position of the MFC, the interfacial shear stress is much greater than that at the center and
the shear stress tends to sharply declining from the positions at the border towards the center. This
makes the MFC normal stress mutate at border positions, which take on hyperbolic cosine function
distributions. According to the MFC’s internal force distribution, its shear deformation is one of the
primary factors on actuating force transmission.

In [29], actuating experiments were performed on a beam structure attached to the P1 and P2 type
MFCs, respectively. Displacement and differences compared between the maximum and minimum end
displacement were made in two working conditions of the same thickness and different thicknesses
under changing voltages, respectively. As for the P1 MFC, the voltages of the maximum and minimum
end displacement were −500 V and 1500 V; as for the P2 type, the voltages of the maximum and
minimum end displacement are 240 V and −120 V. In the first place, the MFC actuating formulas based
on SSDT and on CPT were used to conduct a simulation calculation on the end displacement of an MFC
laminated beam of 1.5 mm thickness using ANSYS finite element software. In a simulation calculation
of the MFC actuating force based on SSDT, MFC sub-sectional actuating forces were calculated with an
effective length of 0.5 mm in the actuating direction, and then exerted to the corresponding sticking
position through the surface effect unit in ANSYS. When the MFC actuating formula based on CPT was
used, the MFC actuating force was directly exerted to the fringe nodes at the stickup position for the
simulation calculation. The two simulation results are finally compared with the experimental result
in [29], as shown in Figure 9. It can be seen that the simulation result from the MFC actuating force
formula based on SSDT is closer to the experimental result. The maximum deviation is 2.45% between
the MFC actuating force simulation results based on SSDT attached to the P1 type of MFC and the
experimental results, while the maximum deviation is 9.07% between the MFC actuating simulation
results based on CPT and the experimental results. A maximum deviation of 6.44% was found between
the MFC actuating force simulation results based on SSDT attached to the P2 type of MFC and the
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experimental results, while a maximum deviation of 9.56% was found between the MFC actuating
simulation results based on CPT and the experimental results.
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To make a further analysis about the actuating action of the MFC actuating force formula based
on SSDT with different thicknesses deduced in this paper, a simulation and experimental comparison
is made for the differences between the maximum and minimum end displacement with different
thicknesses is shown in Figure 10. It can be seen that the simulation results of the MFC actuating
force formula based on SSDT is closer to the experimental results. As for the P1 type of MFC, the
maximum deviation is 5.78% between the MFC actuating force simulation results based on SSDT
and the experimental results, while the maximum deviation is 18.03% between the MFC actuating
force simulation result based on CPT and the experimental results. As for the P2 type of MFC, the
maximum deviation is 7.82% between the MFC actuating force simulation results based on SSDT and
the experimental results, while the maximum deviation is 13.50% between the MFC actuating force
simulation results based on CPT and the experimental results. When the MFC actuating force formula
based on SSDT is used, the simulation results of end displacement of the thicker beam are better than
that of the thinner beam. In summary, compared with the MFC actuating force formula based on CPT,
the one based on SSDT provides more precise simulation results.
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5. Conclusions

Based on SSDT, this paper deduced an MFC actuating force formula considering shear deformation,
and drew its conclusion by verifying the simulation precision and applicability with reference to the
experimental results in [29]:

1. An MFC actuating force formula based on SSDT was presented. According to the MFC actuating
force formula, the interfacial shear stress between the MFC and the plate structure takes on a type
of hyperbolic sine function. The influence of the elasticity modulus and thickness of the plate
structure on the MFC actuating force was analyzed, which indicated that the relationship between
the MFC’s total actuating force, the elasticity modulus and the thickness of the plate structure
appears to be non-linear, and that under fixed voltages the MFC actuating force increases with
the structural elasticity modulus and thickness, and then gradually tends to become stable.

2. The MFC laminated beam in [29] served as the object to analyze the MFC mean internal force
distribution under different voltages. The result is that the MFC mean internal force distribution
took on a type of hyperbolic cosine function, and the MFC internal force was smaller at the
sticking border position, then increased rapidly in the center and tended to become stable. As for
the P1 type of MFC, the MFC actuating force in the direction of the x axis is greater than that of
the y axis; as for the P2 type of MFC, the MFC actuating forces are close in the directions of the x
and y axes.

3. A simulation analysis was made for the two conditions in [29], and the comparison was conducted
between the simulation results and the experimental results, which showed the simulation results
of end displacement from the MFC actuating force formula based on SSDT were better than those
based on CPT. This proves that with greater precision and applicability, the MFC actuating force
formula based on SSDT can be further popularized into the areas of MFC vibration reduction and
actuation for beam-plate structures.
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