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Featured Application: Service-oriented data sharing is one of the big challenges we have to
face in the fifth generation (5G) cellular networks scenarios, such as massive Machine Type
Communications (mMTC) and Ultra-Reliable and Low Latency Communications (URLLC). It
is inefficient for current techniques to directly share data for the increasingly diverse vertical
applications due to the difficulty of cross-application interoperability without unified name
resolution. ICN is an emerging technology with the advantages of unified naming and name
resolution and the ability to share data on the network layer. Our proposed system, called
Enhanced Name Resolution System (ENRS), has the potential to be applied to serval vertical fields,
for example, the Internet of Things (IoT) and vehicle networking. The topology-independent
nature of ICN with the identifier–locator separation and name resolution give us the opportunity
to define new solutions to tackle the scalable and low-latency problems to provide open data
services through name resolution function.

Abstract: The challenging requirements of the fifth generation (5G) cellular networks motivate the need
to explore the feasibility of delivering services over new network architectures. Information-Centric
Networking (ICN) is an emerging and promising network to satisfy 5G requirements. The name
resolution is at the heart of ICN. We focus on satisfying the delay-sensitive requirement of the
Name Resolution Service (NRS) in a 5G-ICN integrated network. We aim to design a local NRS
that provides a deterministic low latency name resolution service. In this paper, we propose a
temporally hierarchical deployment architecture for an Enhanced Name Resolution System (ENRS) to
realize deterministic latency. The ENRS quantifiably organizes the nodes into hierarchical and nested
domains by latency constraints. We design demand-aware name registration and resolution schemes
to achieve constant forwarding hops in order to realize local resolution and forwarding locality. We
introduce a tolerable latency-based peer resolver forwarding algorithm to improve the query hit
ratio. We present a proactive name binding replicas distribution approach based on temporal–spatial
features to reduce the resolution latency and query traffic. The video streaming monitoring service
in Smart Home is used as a typical use case to show the continuity of service guaranteed by ENRS.
Analysis demonstrates that ENRS can achieve deterministic latency. Evaluation results show that the
average query hit ratio of ENRS outperforms the K-NearestNeighbor-Distributed Name Resolution
System (KNN-DNRS) and Random Name Resolution System (Random-NRS) with 23.2% and 18.1%,
respectively. The query traffic overhead of ENRS is up to 33.3 times smaller than KNN-DNRS.
ENRS can process up to 21 GB/s name resolution traffic when the user nodes are in the magnitude
order of 106.
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1. Introduction

The aim of 5G is to provide unlimited access to tremendous amounts of information and the
ability to share data anywhere, anytime, by anyone [1]. Traditional Transmission Control Protocol
(TCP)/Internet Protocol (IP) based networks have only been successful in reducing the end-to-end
operating latencies to the order of tens of milliseconds. The 5G network puts forward a challenging
performance for latency. For industrial applications, the end-to-end latencies should be to the order
of a few milliseconds [2], for the Tactile Internet [3] the end-to-end latencies should be around one
millisecond, and for the one-way front-haul in wireless cellular networks the latencies should be to
the order of 100 microseconds. The Internet is now facing the problem of IP semantic overloaded.
The IP address plays both the roles of the network layer identifier and the transport layer locator,
which impose serious limitations in supporting mobility, scalability, and security, among others. Thus,
separating the identity and location are requirements of future network design [4–7].

Since users are concerned about the information itself rather than the host that provides the
information, the content-centric communication model can be used to improve the inter-layer
mismatch problem between the applications and the network communication [8]. Information-Centric
Networking (ICN) is an emerging network architecture that defines a communication model for
accessing named data by separating content from its physical location. ICN adopts the identifier
(ID)/locator split architecture. The identifier and the locator are classified into two different namespaces,
and then the mappings between them are established, which can effectively solve the IP semantic
overloaded problem. ICN has many outstanding advantages, such as simplified mobility support,
efficient in-network caching, inherent security, etc. The superior attributes of ICN fit well with the
objectives of 5G, which makes it a promising candidate to define a new solution to relieve the limitations
of the traditional approaches. Thus, integration of 5G and ICN technologies has been proposed.

In the past decade, several ICN architectures have been proposed, e.g., Data-Oriented Network
Architecture(DONA) [9], Network of Information (NetInf) [10], Publish/Subscribe for Internet Routing
Paradigm(PSIRP)/Publish-Subscribe Internet Technologies (PURSUIT) [11,12], COntent Mediator
architecture for contentaware nETworks (COMET) [13], Content-Centric Network (CCN)/Named-Data
Network (NDN) [14,15], CONVERGENCE [16], The Scalable and Adaptive Internet Solution (SAIL) [17],
and MobilityFirst (MF) [18]. There are two typical naming schemes of ICN, i.e., hierarchical
names, which have similar structures, such as the Uniform Resource Locator (URL), and flat names,
which support self-certifying that the named-data’s integrity is to be verified without a public key
infrastructure (PKI) [19]. There are two kinds of name resolution approaches, i.e., routing-by-name
and lookup-by-name. The routing-by-name approach is a one-way mechanism where the Named
Data Object (NDO) request is forwarded based on the NDO’s name. The request of an NDO is routed
to an NDO’s provider, and subsequently sends the NDO to the requesting host by following the
reverse path over which the request was forwarded [20]. The lookup-by-name approach is a 2-step
mechanism supported by a Name Resolution System (NRS). The first step is to translate the name to
the source locator(s) where the NDO is stored; the second step is to forward the request message from
the subscriber to the source based on the locator(s).

CCN/NDN [14,15] adopts the hierarchical names and the name resolution process is coupled
with data routing. In COVERGENCE [16], it is similar to NDN, as the name resolution and data
routing are coupled. The Border Node (BN) plays the role of mapping an ID onto one or multiple
Network Addresses (NAs). If an appropriate route is not found for some Border Nodes, then the
NRS is used. CONVERGENCE is compatible with IP by using IP option extension to deliver the
CONVERGENCE packet.

DONA [9] employs a self-verified flat name and the Resolution Handlers (RHs) maintain all of
the information of the names. In DONA, every Autonomous System (AS) has more than one logical
RH, which are connected to each other to form a hierarchical NRS. In PURSUIT [12], the REndezvous
NEtwork (RENE), which is made up of a collection of Rendezvous Nodes (RNs), plays the role of
name resolution and constitutes the global NRS. Each AS can have its own RENE and the RENE on
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the top of each AS acts as the global RENE for global name resolution. In SAIL [17], there exist local
NRS and global NRS. Users first query the local NRS, and if there is no requested content, then the
resolution message isforwarded to the global NRS. In the decoupled model of COMET [13], the Content
Resolution System (CRS) plays the role of name resolution. In MF [18], each information object in MF
has a flat name Global Unique Identifier (GUID), and GUID is translated into NA(s) via a Global Name
Resolution Service (GNRS).

In this paper, we focus on the name resolution service when integrating ICN into 5G networks. The
key functionalities of ICN architectures are naming, name resolution, data routing, mobility, caching,
and security [19], and the name resolution is the heart of ICN. The requirements of ICN NRS are divided
into three aspects, including delay sensitivity, accuracy, and resolution guarantee [21]. Xylomenos et
al. classified the requirements of ICN NRS as: (i) content locality, (ii) local resolution and forwarding
locality, (iii) simplified deployment to support efficient name resolution [22]. Though many ICN name
resolution approaches have been proposed, there are still some limitations on adapting them to fulfill
the requirements of 5G networks. On the one hand, the latency of name resolution cannot be guaranteed.
Service types, including content distribution, video conferencing, and Machine-to-Machine (M2M)
applications, are sensitive to latency, while Distributed Hash Table (DHT)-based name resolution
approaches are overlay designs. The routing path may be mismatched with the underlay routing path,
resulting in long latency. On the other hand, on-demand name registration and resolution are lacking
to fulfill differentiated requirements for heterogeneous environments and applications.

The content and data produced by the Internet are exploding. The number of mobile devices has
reached 3 billion, and more than 5 billion new videos are generated every day, and in the near future,
there will be more than 100 billion IoT devices. In ICN, the magnitude of information objects can reach
1013 and can be furtherly increased to 1015 [22]. How to obtain NDO through location-independent
names and how to support tera-scale name storage and name resolution are some of the most important
challenges in ICN network architecture design. The name information in the NRS should be placed as
close as possible to the users, and the NRS should be able to route the data request to the nearest copy
to reduce response latency. Therefore, it is urgent to realize local resolution and forwarding locality to
minimize the inter-domain traffic and reduce the lookup latency.

In addition, the trend of the future network is transferred from best-effort to deterministic data
transmission. Deterministic transmission under harsh conditions is in great demand for the application
services in industrial environments and in vehicle networking, etc. Nowadays, as Time-Sensitive
Network (TSN) have been embodied, there are many existing solutions for the physical and Media
Access Control (MAC) layers, however, there still need more innovative research efforts to realize
overall deterministic end-to-end transmission upon whole internet protocol stacks. As name resolution
is at the heart of ICN, to meet the delay-sensitive requirement of NRS in a 5G-ICN network, we try to
introduce the concept of Deterministic Latency into NRS on the network layer.

The main contributions of this paper are divided into four aspects as follows.

• We propose a temporally hierarchical deployment architecture with an Enhanced Name Resolution
System (ENRS) to provide a deterministic low-latency name resolution service for the 5G-ICN
integrated network. ENRS is realized by quantitating the hierarchical and nested areas by
transmission latency constraints from the user nodes to the service-providing resolvers in
finer grains.

• We introduce partitioning-based registration and resolution schemes based on response time
requirements to realize local resolution and forwarding locality by constant forwarding hops. We
present a tolerable latency-based peer resolver forwarding algorithm to improve the hit ratio. In
addition, we discuss the partition imbalance problem.

• We design a proactive distribution approach of name binding replicas based on temporal–spatial
features to reduce the resolution latency and resolution traffic, which can predict the number
and distribution of name replicas individually and cache the replicas of names in resolvers in a
hierarchical and directional way.
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• A typical use case of a video streaming monitoring service in Smart Home is utilized to show the
continuity of service guaranteed by ENRS.

The remainder of this paper is structured as follows. In Section 2, we introduce the related work
from two aspects, i.e., scalability and latency. In Section 3, we describe the system model and basic
functions of ENRS. In Section 4, we demonstrate the use case to show the service continuity guaranteed
by ENRS. In Section 5, we analyze the name resolution latency of ENRS and evaluate the performance
of ENRS. In Section 6, we discuss the problem of partition imbalance, UE provision, and mobility on
demand. Finally, we summarize our results and conclusions in Section 7.

2. Related Work

The key features of the ICN NRS include scalability, resolution latency, and control overhead. In
recent years, there have been many works that have optimized the performance of ICN NRS. In this
paper, we focus on two aspects of NRS: the scalability and the resolution latency.

2.1. Scalability

Scalability is a key issue for ICN name resolution design. For hierarchical name-based NRS,
scalability can be improved by aggregating the hierarchical names. For the flat name based NRS, since
flat names are difficult to aggregate, the hierarchical aggregation of the flat names can be realized based
on domain division.

Sun et al. proposed a scalable Name-based Inter-Domain Routing (NIDR) system based on
hierarchical naming to support the resolution of large-scale information objects, as well as to reduce
the inter-domain traffic [23]. NIDR adapts two key technologies to increase its scalability. Firstly,
NIDR utilizes a URL-like content naming structure and routes by the domain name of the content
name rather than the full content name. Secondly, only a small subset of Internet domain names were
announced at the inter-domain level. Domain names unknown to the NIDR system were first mapped
(and routed) to their corresponding Attachment Point (AP) networks in the NIDR by a name resolution
service. By limiting the number of domain names, NIDR systems can reduce the control overhead and
improve the scalability of the NRS.

Junhua Hong et al. proposed a CCN-based name mapping system (NRS-MS), which provides
name resolution services for CCN [24]. The NRS-MS saved and maintained the mappings of names,
such as name-to-name and name-to-locator. NRS-MS added the name resolution step to address the
scalability issue of CCN routing and to support producer mobility in ICN. Siris proposed an approach
using a popularity-aware intra-domain mobile content management model, on the basis of which
the NRS tracks the current location of mobile content only when the content has a sufficiently high
popularity and sufficiently low mobility, while it discovers low popularity/highly mobile content
via broadcasting [25]. Scalability gains lie in reducing total signaling and memory requirements of
the NRS.

One popular approach to improve the scalability for flat name-based NRS is to use a DHT-based
routing method to store the name bindings in appropriate resolvers via hash functions. Nested and
hierarchical DHT architecture were utilized to implement distributed and scalable NRS based on flat
names, such as Multi-level Distributed Hash Table (MDHT) [22], Hierarchical Distributed Hash Table
(HDHT) [26], Scalable Multi-level Virtual Distributed Hash Table (SVMDHT) [27], and Hierarchical
Pastry (H-Pastry) [28]. However, the administrative scope of the DHT mechanism is a prominent
problem [20], and the existing methods have almost no specific solutions to solve the problem of
hierarchical and nested area division and management.

Junhua Hong et al. proposed a container structure to represent the residing place of content
or information objects for scalable routing of flat names [29]. This article utilized a hierarchical
container rather than hierarchical naming to improve the system scalability. In addition, to improve the
manageability of the container, a nested structure was adopted to allow recursive querying. The concept
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of a container can be extented to real-world networks, for example, local, regional, or Internet Service
Provider (ISP). Vasilakos et al. [30] demonstrated the feasibility of deploying DONA by leveraging
cloud computing facilities and discussesed the potential of cloud technologies towards enhancing the
scalability of DONA.

To overcome the shortcomings of DHT, NRSs based on Bloom Filter (BF) were proposed. BF is
mainly used to check whether an element exists in a set and can be used as the aggregating information
of the existential state of the flat name, which can help improve the system scalability. BF has two
major benefits: one is that BF has a fixed constant time of insertion and search, which is completely
independent of the number of names that already exist in the set. Another important and powerful
property of bloom filter is the efficient support for the union of bloom filters with the same size and
set of hash functions, which can be implemented with bitwise OR [31]. Katsaros et al. demonstrated
the feasibility of using BF for inter-domain name resolution and implemented a BF on the top-level
Autonomous System (AS) domain [32]. Hong et al. and Lee et al. proposed a BF-NRS based on flat
name, and employed BF for inter-domain name information exchange [29,33]. Hong et al. proposed
a hierarchical NRS based on BF. BF was deployed in dedicated BF servers, and a BF-based tree
structure was constructed according to the spatial hierarchy to provide different levels of information
abstraction [31]. In each BF server, not only a local BF was stored but also the BFs of neighbor nodes
and child nodes.

2.2. Resolution Latency

Resolution latency is another key indicator of the NRS. The name resolution itself does not
require much bandwidth, while the query latency is critical. In 5G and emerging networks, as
the network capacity increases, "milliseconds count" [34]. For distributed ICN NRSs, low latency
demands that the NRSs complete the name resolution procedures with minimal delay, thus efficient
routing and load balancing methods are needed. For an NRS with low latency characteristics, the
complexity of resolution latency should be O (1), i.e., should not depend on the number of nodes
in the network [34]. At the same time, the name resolution system should support the forwarding
locality, which is constributed to reduce the inter-domain traffic and resolution delay [26]. Resolution
message forwarding locality means that if two communication endpoints (i.e., sender and receiver) are
in the same network domain, the resolution path should also be included in that domain to minimize
inter-domain traffic [22].

Dannewitz et al. proposed a generic hierarchical global NRS framework HDHT with flat
naming [26]. The request registration and forwarding paths in the framework can match with the
underlying network topologies. The domain (i.e., subsystem) of HDHT is autonomous, the locality
of the request is exploited, the name resolution of the constant hop count is supported, and the
scopes of publications are limited, which effectively reduce the resolution latency and the system
control overhead.

Eum et al. proposed an “Efficient yet Simple” (ES) model for constructing a DHT-based ICN
NRS topology with a self-organizing feature to achieve low latency resolution and reduce the control
overhead of the NRS, as well as adapting to highly dynamic environments [35]. The ES model had
a small diameter. Thus, the number of routing hops of the query message was reduced, which can
effectively shorten the query latency and save network resources.

Dong and Wang proposed a distributed ICN name resolution method for IoT scenarios [36,37]. A
specialized ICN router was selected as the Home Node for collecting and maintaining all the necessary
information for name resolution, and a decision-tree-based classification model was utilized to assign
the Home Node for newly published content.

Leaving multiple replicas of names in the distributed NRS is an effective way to reduce the
resolution delay and enable the localization of query traffic. Vu et al. proposed a distributed resolution
mechanism Direct Mapping(DMap) [38] for GUID and NA mapping in GNRS [18]. DMap maps the
GUIDs to the NAs of AS-level gateway routers through K (K ≥ 1) consistent hash functions and caches
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the GUID in the gateway routers. Caching K (K ≥ 1) GUID replicas in multiple ASs ensures that
requestors can obtain resolution responses through a single-hop, which is beneficial for low-latency
name resolution. Research [39–42] has shown that network size, content location dynamics, and
content popularity have a great impact on name resolution performance. However, when selecting
the storage location of the GUID replicas, DMap does not consider the popularity and the location
distribution of contents.

A hierarchical method GMap [35] for multi-replica placement of GUID and NA mappings in
GNRS was proposed. GMap was developed based on DMap. It utilizes hierarchical replica caching
method to make full use of query localization to achieve fast name resolution. GMap caches K replicas
for each GUID, similar to DMap. However, GMap divides the global network into finer granularity,
such as global, national, and urban networks, thus leaving K1, K2, and K3 replicas at different levels,
with K1, K2, K3 satisfying K1 + K2 + K3 = K. GMap retains the advantage of DMap to exploit single-hop
querying and GMap significantly reduces the resolution latency compared with DMap. However,
GMap only considers the spatial distribution of names and ignores the popularity of the content, which
results in a waste of bandwidth and storage.

Auspice [43] innovatively proposed an intelligent global name-binding replica placement based on
demand perception, which made full use of the spatial and temporal features of contents to distribute
the name replicas to reduce the resolution latency of the NRS. Auspice divides the network nodes
into hierarchical and non-overlapping regions based on the underlaying networks, and sets a replica
placement controller to collect load characteristics, such as visit frequency and update frequency of
names. Auspice determines the number of copies K by a heuristic copy placement algorithm based on
demand dynamically and adaptively. The value of K satisfies the minimum threshold with which that
K1 of K were selected based on the location, so that the name resolution response can be obtained at
the nearest location, and K2 (K2 = K − K1) copies are randomly placed for load balancing.

The distribution of the resolver in the NRS and the organization forms of name records also affect
the performance of NRS. Elbreiki et al. discussed the distribution problem of NRS and proposed a new
Distributed Name Resolution System (DNRS) to solve this problem [44]. DNRS selects the resolver to
publish names by considering the publishing time cost at the NRS. The DNRS mechanism balances the
storage capacity and the workload of the distributed resolvers. Partitioning the network into different
domains increases the flexibility and scalability of the NRS. Hassan et al. proposed a new Dynamic
Name Resolution Mechanism (DNRM), which exploits the K-NearestNeighbor (KNN) algorithm to
select registration and the resolver to improve the performance of the NRS [45]. By adding the phase,
means, and other outputs, DNRM guarantees that users can obtain the name resolution service from
the nearest resolvers.

3. Enhanced Name Resolution System

3.1. System Model

Figure 1 shows the system model of the Enhanced Name Resolution System (ENRS). The ENRS
is a flat-name based local NRS, which provides a deterministic low latency name resolution service.
ENRS adopts the 2-step resolution mechanism. In our system, we employ 128-bit Entity ID (EID) as
the identifier and use IP (IPv4 or IPv6) addresses as NAs. Each entity has an EID; the generation
and distribution of EIDs can be completed offline. Flat names provide some advantages compared
to hierarchical ones, such as higher flexibility, simpler name allocation, and benefits in terms of
persistency and privacy. Using IP addresses can improve the forward compatibility of ENRS with
current equipment.

ENRS is realized by partitioning the network into nested Hierarchical Elastic Areas (HEAs) with a
dedicated resolver, named the HEA Manager (HM), assigned to each HEA. We envision at least one
HM per HEA; the hierarchical model of ENRS can improve the scalability of ENRS and the nested
structure is beneficial to the system management. Each HM has a unique ID, stores the mappings
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of EIDs and NAs in their local DataBase (DB), and provides the basic functions of name binding
registration, querying, and updates for the nodes in the same HEA. The HM in each HEA is deployed
at a location that satisfies the bounded and deterministic latency between the user node to the HM.
The HEAs in the same hierarchy are non-overlapping and have the same latency bounds; different
hierarchies have different latency bounds. The higher the level of HEA, the greater the latency bounds.
The equipment that evolves in the same HEA is User Equipment (UE), routers, and other intermediate
equipment. For each HM, it also stores a Dynamic Neighbor HM Table (DNHT). DNHT is made up of
the information of its peer HMs, including the IDs of peer HMs and distances (i.e., latency) between
itself and its peer HMs.
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Mobility is an important issue worth considering. The position of the resolver serving a HEA
will not change once the HEA has been partitioned at the first stage; the nodes involved in a HEA
will be updated if nodes move into or leave the HEA, and the bindings of EIDs and NAs stored in
the HEA will be updated also. The 5G system adopts the Control-Plane and User-Plane Separation
(CUPS) architecture. In our ENRS, UE first sends an EID resolution request to the local hierarchical
HM based on response time requirements to get the NA(s) of EID through Control-Plane functions,
such as extensional Access and Management Function (AMF++) and extensional Session and Mobility
Function (SMF++) [46] When the NA(s) re returned, then UE will send a data request to the NA(s) and
perform the cache strategies through User Plane Function (UPF).

To achieve scalable name resolution and fast name retrieval, each HM uses a Bloom Filter (BF) as
name information aggregation for EIDs. The BF is implemented based on a bitmap, which is a fixed
length array. The diagram of BF’s working principles is shown in Figure 2. The working steps are as
follows. First, initialize the array and set all of the parts of the array as zero. When a new element
(i.e., EID) is added to the BF, the element is first mapped through K hash functions sequentially. Each
mapping will generate a hash value. This value corresponds to a point in the bit array, and then the
point is marked as 1. When querying whether an element (i.e., EID) exists in the BF, the same mapping
method using the same hash functions is employed. If one of the points selected is not 1, it can be
judged that the element must not exist in the set. Conversely, if the values of all K points are 1, the
element may exist in the set. All the BFs at the different levels of HEAs form a BF-based tree structure.
BFs stored in different HMs can be exchanged periodically. The trade-off between the false positive
rate and BF size should be thought over.
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In current TCP/IP-based networks, the Domain Name System (DNS) plays the role of global name
resolution, which resolve URLs to IP addresses. Some researchings have tried to use DNS to realize the
name resolution service in ICN, for example, information-centric DNS (iDNS) [47] and NDN DNS
(NDNS) [48]. ENRS maps and resolves EIDs to NAs. Both DNS and ENRS are hierarchical strutures,
and the functionalities of DNS and ENRS are similar, but different. The main differences between DNS
and ENRS are divided into four aspects, as listed below:

(1) They are different in working layers of the Internet. The DNS works on the application-layer,
while our ENRS work on the network-layer.

(2) The binding methods for them are different. DNS uses the early-binding technology so that
the bindings of URL and IP are static. If the IP is unreachable when routing data, the session is
interrupted. While ENRS is supported for the late-binding technique [49], the bindings of EIDs and
NAs are dynamic. If the IP is unreachable, the equipment can initialize a new query with EID to get the
latest IP destination. In addition, URL is a hierarchical name and is related to the position the content
resides, while EID is permanent and location-independent.

(3) Their name record caching methods are different. Both DNS and ENRS can cache name records,
however, DNS’s cache is effected by user requests, while ENRS employs a proactive name caching
method to realize the nearest-replica-routing of ICN, which will be introduced in Section 3.3.

(4) Their message forwarding methods are different. DNS is in favor of recursive querying, while
ENRS supports constant hop resolution.

In addition, our ENRS is also different from existing hierarchical and nested ICN NRS, e.g.,
DONA [9], HDHT [26], H-Pastry [28], and CURING [50], which organize the hierarchical and
nested structure based on the hierarchical structure of the underlying inter-domain topology, i.e.,
at theAutonomous System (AS) level, the Point of Presence (POP) level, or the Access Node (AN)
level. Our ENRS not only considers the underlying topology, but also quantifies the hierarchical and
nested areas by transmission latency constraints from the user nodes to the serviced resolvers. ENRS
divides the service area into finer grains and helps to solve the administrative domain partitioning
problem. Metrics such as the worst-case latency and nodes with a bound on latency are utilized as
deterministic constraints.

3.2. Partitioning-Based Registration and Resolution

3.2.1. HEA partitioning algorithm

We have proposed a Latency-aware Hierarchical Partitioning (LHP) algorithm, which is a
graph-partitioning-based algorithm, to solve the problem of HM placement. The LHP algorithm takes
G(V, E, W) (abbreviated as G) as an input set of potential locations for deploying resolvers with the
latency matrix D, threshold parameter set {Ti} and hierarchical parameter L, and returns the HM
location sets and HEA node sets as outputs. For a given G(V, E, W) and matrix D, the steps of the LHP
algorithm to divide the graph into L hierarchies with a set of {Ti} by using the top-down partitioning
method are as follows. The symbols used in the LPH algorithm are shown in Table 1. The pseudocode
of the LHP algorithm is shown in Algorithm 1.
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Table 1. The meaning of symbols in Algorithm 1.

Symbol Meaning Symbol Meaning

i the hierarchical number of Hierarchical Elastic Areas
(HEA) j the count of selected resolver location

k the count of partitional i-th level HEA Vm
i the node set of Gm

i
Ti the partitioning latency bound of i-th level HEA Nm

i the node count of Gm
i

HMik the k-th resolver of i-th level HEA N the node count of G

A j
i

the candidated resolver location of j-th HEA in i-th
level. Ci the count of i-th level HEA

Ri the resolver location set of all the i-th level HEA Hk
i

the set of nodes belonging to the k-th

HEA in i-th level

Si Gm
i

the node set of i-th level input graph the m-th subgraph
of G in i-th level

-Si the node set of i-th level input graph -

Step 1: Initialization: i = L, j = 0, k = 0, Si =
{
vp

}
.

Step 2: Read G(V, E, W) and get the partitioning latency bound Ti for i-th level HEAs;
Step 3: Cut the edges in G whose weight is larger than Ti. In this way, G may be divided into one

or more connected subgraphs
{
Gm

i (V
m
i , Em

i , Wm
i )

}
, 1 ≤ m ≤M. Sort

{
Gm

i

}
by descending order according

to Nm
i .

Step 4: For each Gm
i , if Nm

i = 1, then set the isolated node as A j
i of i-th level HEA, HMik = A j

i .

Then, add A j
i into Ri and Hk

i . j = j + 1, k = k + 1. At the end of Gm
i partitioning, go to step 9, or else go

to step 5.
Step 5: If Nm

i > 1, firstly, select the vp from Vm
i , whose weighted sum of bandwidth (CPU) storage

capacity is the best, then set vp as HMik. Set HMik = A j
i and add A j

i into Ri. Next, go to step 6.

Step 6: Set A j
i as the root, use Breath-First Search (BFS) to find the satisfied vp on the path to A j

i ,
whose latency is less than Ti and add them into Hk

i . j = j + 1, k = k + 1.

Step 7: Delete A j
i and all the selected vp from Vm

i . If i− 1 > 0, then add A j
i and vp into Si−1, which

is the set of all the nodes to form the (i-1)-th level HEA inside the Gm
i .

Step 8: Check whether Vm
i is empty. If Vm

i = ∅, then go to step 9. Otherwise, go back to step 5,
repeating the process of selecting new anchor nodes and using BFS to find satisfied vp to form new i-th
level HEAs until Vm

i is empty.
Step 9: Check if all Gm

i have been partitioned. If satisfied, then go to step 10. Otherwise, return to
step 4.

Step 10: If i− 1 > 0, then set i = i− 1.
Step 11: Get the latency information of nodes in Si−1 from G and D to generate a new graph

G′(V′, E′, W′).
Step 12: Then set G′(V′, E′, W′) as the input graph of the (i-1)-th level HEA partitioning. That is,

G = G′(V′, E′, W′). Next, return to step 2 until i = 1.



Appl. Sci. 2019, 9, 2891 10 of 26

Algorithm 1. Latency-aware HEA Partitioning

Input: G(V, E, W), {Ti}, L, D
Output: {HMik},

{
Hk

i

}
, 1 ≤ i ≤ L, 1 ≤ k ≤ Ki

Parameters: HMk
i , A j

i , Gm
i (V

m
i , Em

i , Wm
i ), Vm

i , Nm
i

1: Initialization: i = L, j = 0, k = 0, Si =
{
vp

}
2: While (i ≥ 1) do:
3: Get Ti;
4: Delete the edges in G where wpq ≥ Ti to cut off G;
5: Assume that we get M counts maximum connected component

{
Gm

i (V
m
i , Em

i , Wm
i )

}
, 1 ≤ m ≤M;

6: Sort all of the Gm
i (V

m
i , Em

i , Wm
i ) by descending order according to Nm

i ;
7: for m from 1 to M do:
8: Get Gm

i (V
m
i , Em

i , Wm
i );

9: if Nm
i = 1 then:

10: Set the isolated node as A j
i of i-th level HEA; HMik = A j

i
11: Add the node into Hk

i ;
12: k = k + 1;
13: j = j + 1;
14: end if
15: else:
16: Select an anchor node A j

i from Vm
i whose weighted sum of bandwidth, CPU, storage capacity

is the best as HMik; HMik = A j
i ;

17: Set A j
i as root, then use BFS to find those vp on the path to A j

i whose latency is less than or
equal than Ti and add them into Hk

i ;
18: Delete A j

i and all the selected vp from Vm
i ;

19: if i− 1 > 0:
20: Add HMk

i and selected vp into Si−1;
21: end if
22: k = k + 1;
23: j = j + 1;
24: if Vm

i = ∅ then:
25: finish processing Gm

i ;
26: end if
27: else:
28: return to 16;
29: end if
30: end if
31: end for
32: Ci = k
33: if i− 1 > 0:
34: i = i− 1
35: get the connection information of nodes in Si−1 from G to generate a new graph G′(V′, E′, W′);
36: set G as the input graph of the (i-1)-th level HEA partitioning; G = G′(V′, E′, W′);
37: return to 2;
38: end if
39: end while

3.2.2. Name Registration and Name Resolution Schemes

The name resolution function in ENRS follows the Publish/Subscribe paradigm, i.e., publishers
(content providers) and subscribers (content consumers) will interact with ENRS through a set of HMs.
Publishers and subscribers will interact with ENRS via different local HMs, which are designated
through network attachment. Name resolution is developed based on the following control messages.
We define three types of massages in ENRS as follows:
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• REGISTER (Servt, EID, NA, Td, Tsend);
• QUERY (EID, Servt, Td, Tremain, Tsend);
• UPDATE (Servt, EID, NA, Td, Tsend).

(A) Customized Parameters
These parameters are defined to assist the selections of HMs and to decide the diffusion scopes of

registration and resolution messages. The definition of parameters as follows:
(i) Service Type Option (STO) parameter: represented as Servt, 8 bits, which is used to distinguish

the service type to decide the scopes of latency requirements. The service type can be factory automatic,
vehicular networking service, mobile video service, etc.

(ii) Enhanced Name Resolution Threshold (ENRT) parameter: represented as Tn, 8 bits, it ranges
from 0–255 ms; Tn is the latency requirement threshold provided by ENRS.

(iii) Name Resolution Delay Requirement (NRDR) parameter: represented as Td, 8 bits. Td ranges
from 0 to 255 ms. Td is a service-oriented and predetermined round-trip response time requirement
parameter of name registration and resolution, which is utilized to assist the strategy selection. If
there is no special delay requirement for an EID, then Td = 0. Usually, the EIDs generated by the
same application or service have the same Td. Td is set based on the requestor’s criteria or the
contextual information.

(v) Timestamp parameter: represented as Tsend, 32 bits, Tsend is the timestamp when the message
is sent.

(vi) Remaining Tolerable Latency (RTL) optional parameter: represented as Tremain, 8 bits. Tremain
is the remaining available time to query a name. Tremain will decide whether to forward the request
to the peer neighbors of HM when the Tolerable Latency Based Peer HM Forwarding algorithm is
available, which will be discussed further below.

(B) Name Registration and Name Resolution
Name registration is aimed at publishing the bindings of EIDs and NAs in the ENRS’s distributed

resolvers. Name resolution finds the residing place of one copy of a name binding. Hierarchical NRSs
have different name resolution approaches. For example, in CURLING, Content Resolution Servers
(CRS) propagate registration and resolution requests only to their provider AS, which is the root of the
tree structure of hierarchical resolution nodes, as shown in Figure 3a.
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Similar to CURLING, ENRS only forwards the registration and resolution requests to certain HMs
by single-hop, but is not limited to AS-level. ENRS develops area-partitioning based registration and
resolution request schemes according to the response time requirements, not only to realize constant
query hops, but also to achieve local resolution and forwarding locality.

In ENRS, the REGISTER message will be forwarded to proper HMs in different hierarchical
HEA the requestor belongs to by quantitative comparison results of the round-trip response time
requirement Td and the transmission latency constraints Ti between the user nodes to the i-th level
HM. The message forwarding conditions are divided into three cases as below. The examples of name
registration and resolution processes are shown in Figure 3b–d.

(a) Name Registration
Case 1: if 0 < Td/2 < T2, the REGISTER message will be forwarded to the HM of bottom-level

HEA that the requestor belongs to, e.g., HM11.
Case 2: if Ti ≤ Td/2 < Ti+1, 2 ≤ i ≤ L− 1, the REGISTER message will be forwarded to the HM of

the i-th level HEA the requestor belongs to, e.g., HM21.
Case 3: if TL ≤ Td/2 ≤ Tn, the REGISTER message will be forwarded to the HM of the top-level

HEA, e.g., HM31.
In ENRS, the procedure of the name update is similar to name registration. For a global NRS,

it is expected to handle about 10 billion mobile devices’ connecting requests through more than 100
networks a day, equivalent to 10 million resolutions and updates per second due to mobility. ENRS is
a local NRS, the load of which is much smaller than the global ENRS, while the resolution and update
frequencies are still worth considering. We assume that 100 ENRS sub-systems form a global NRS,
thus each ENRS is expected to process about 10 million mobile devices’ a day and 10 thousand update
requests per second. Thus, fast update and synchronization mechanisms under mobility conditions
must be designed to make EID accessible. The issue of name binding synchronization is beyond the
scope of this paper.

(b) Name Resolution
The name resolution procedure is the inverse of name registration. For a given EID with Td, the

QUERY message will be forwarded to the i-th HM according to the quantitative comparison results of
Td/2 and Ti. The situations can also be divided into three cases as follows:

Case 1: if 0 < Td/2 < T2, the QUERY message will be forwarded to the HM of bottom level HEA
that the requestor belongs to, e.g., HM11.

Case 2: if Ti ≤ Td/2 < Ti+1, 2 ≤ i ≤ L− 1, the QUERY message will be forwarded to the i-th level
HM that the requestor belongs to, e.g., HM21.

Case 3: if TL ≤ Td/2 ≤ Tn, the QUERY message will be forwarded to the HM of top-level HEA
that the requestor belongs to, e.g., HM31.

In order to improve the hit ratio of ENRS, we define three message forwarding types between the
neighboring HMs in the DNHT:

• HEA-Unicast: A HM server unicasts to a certain peer HM.
• HEA-Broadcast: A HM server broadcasts the messages to the entire DNHT.
• HEA-Multicast: A HM server casts the messages to a group of HMs in the DNHT.

As we described above, in Case 1 of the name resolution scheme, the QUERY request is forwarded
to the bottom level HM. If the HM does not have requested EID, it will not disseminate the request
to its neighbors, since for an ultra-low latency service, the timeout response is meaningless. While
different from Case 1, in Case 2 and Case 3, if the QUERY request is forwarded to the middle level
HM, whether to forward the name resolution message to the neighbors of HM will be decided by the
Tolerable Latency-Based Peer HM Forwarding algorithm, which is subject to Td, Tremain, and Tsend. We
propose a Tolerable Latency-Based Peer HM Forwarding algorithm. The parameter updating and
message forwarding methods are showed in Algorithm 2. The meaning of symbols used in Algorithm
2 are described in Table 2. If Tremain is set as −1, Algorithm 2 is invalidated, while if Tremain is a positive



Appl. Sci. 2019, 9, 2891 13 of 26

integer, Algorithm 2 is available. When the QUERY message is sent by the requestor. Tremain will
be updated each time the message is forwarded. If the load of ENRS is small, we can simply use
HEA-Broadcast method to flood the query messages. If the load of ENRS is high, we can use Algorithm
2 to reduce the signalling overhead of ENRS.

Table 2. The meaning of symbols in Algorithm 2.

Symbol Meaning Symbol Meaning

S f the peer resolver set to forward message Tcos t the time cost for single hop
Trecv the time receiving the request HMik current resolver
Ttrans the total delay from requestor to current node HMip the peer neighboring resolver of HMik
Tp the delay between HMip and HMik

{
HMip

}
the node set in the DNHT of HMik

Algorithm 2. Tolerable Latency-Based Peer HM Forwarding

Input: Td, Tremain, Tsend, Trecv, HMik,
{
HMip

}
, {Tp}.

Output: S f .
Parameters: Tcos t, Ttrans.

1: Initialization: Tcos t = 0, Ttrans = 0, S f = ∅
2: Tcos t = Trecv − Tsend
3: Tremain = Tremain − Tcos t

4: Ttrans = Td − Tremain
5: if Tremain > 0 then:
6: for each HMip in the

{
HMip

}
do:

7: if there exist HMip whose latency to HMik, that is Tp satisfies
Tremain ≥ 2 ∗ Tp + Ttrans then:

8: Add HMip into S f .
9: end if
10: else:
11: S f = ∅
12: end if
13: end for
14: end if
15: if Tremain = 0 or S f = ∅ then:
16: return query failure response to HMik.
17: end if
18: else:
19: HMik writes the updated Tremain and Tsend in the QUERY message.
20: HMik forwards the QUERY message to the node(s) in S f .
21: end if

As shown in Figure 3b–d, we demonstrate different situations of providers and subscribers that
are located in the same HEAs of different levels in ENRS. Based on our name resolution schemes, if the
providers and subscribers are in the same network domain, the resolution path can also be contained
in that domain. Thus, local resolution at different granularity and the forwarding locality can be
achieved; as a consequence, the inter-domain traffic will be minimized. In Case 2 and Case 3, if the
scope of latency to the peer HMs is tolerable, the query request will be forwarded to the peer links of
HMs, which can effectively manage the spreading scopes of the messages. What is more, ENRS can
avoid frequent updating of name bindings in the same HEA when UEs move within a HEA, which is
beneficial for reducing the update traffic and decreasing the maintenance overhead.

Mobility has become a basic requirement of communication networks because of the explosive
growth of wireless and mobile devices. Mobility objectives can be divided into two types in ICN:
producer mobility and consumer mobility. In our system, both the producer and consumer mobility
can be primarily handled by the ENRS by supporting late-binding technology [49]. To support mobility
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if an entity (e.g., UE, IoT device, data entity) is moved and attached to a new Point of Access (PoA), it
has to re-register in ENRS with its new NA(s) and must be updated in time to make itself accessible for
other entities in the ENRS.

From a new aspect, ENRS is a local NRS. Thus, different levels of HMs represent different control
traffic offloading capabilities from the global NRS. If a name query request is satisfied by ENRS, then
the query load is offloaded by ENRS from the global NRS. The offloading rate is equal to the hit ratio
and the merit of ENRS is that it is more intuitive when thinking about the traffic load.

3.3. Proactive Distribution of Name Binding Replicas

Caching has been proved to be an effective way to reduce latency, to get fast look-up responses
for local requests, as well as to improve the hit ratio [38,43]. We considered using proactive name
bindings replica placement and caching policies to leave multiple replicas of EID-NA bindings in the
resolvers to improve the performance of ENRS. With more name record replicas, the number of nodes
involved in the name resolution may be reduced, and with more name bindings duplicated to different
hierarchies or the peer HM servers in the ENRS, the name resolution request can be responded to
in a more agile manner. In addition, increasing the redundancy of name bindings can improve the
fault-tolerance and resilience of ENRS.

We prefer the off-path caching approach in restricting the name-binding replicas to be pre-deployed
in ENRS because of its manageability and deployability. New copies of name bindings can be created
by caching the name bindings of popular objects in ENRS‘s resolvers. In ENRS, we take both the
locality and popularity of the names into account when placing the replicas of name bindings.

A specific node called the Cache Manager (CM) is designated in each hierarchical HEA. It can
be deployed in the HM of the same HEA, or deployed in a dedicated server at the same position
of HM. CM is used to collect the request’s information and some state information for EIDs in their
domination areas. Significant factors, i.e., visited frequency, visited time of names, the geographical
location distribution of users, and the distance between users and HMs, as well as user behavior
information, e.g., moving speed and moving direction in mobility scenarios, are used to predict the
replication factor K and the spreading scopes or transmission directions of name binding replicas for
each EID or specific groups of EIDs, i.e., the EIDs produced by the same application, to ensure that
users can get a name resolution response nearby. We call this mechanism Dynamic ENRS. Intelligent
approaches, such as machine learning algorithms, can be used to predict the replicas’ distribution
of EIDs.

We define Degree of Active(DoA) and Request Position Set(RPS) for EIDs also. DoA is comprised
of parameters for EID’s popularity and request characters. The RPS contains the user ID, whose visiting
frequency of certain EIDs is larger than the threshold. The definitions of DoV and RPS are shown in
Equation (1) and Equation (2). In Equation (1) and Equation (2), x represents EID, p(x) represents the
popularity of x, Fu(x) represents the update frequency of x, Fv(x) represents the visited frequency of x,
Fthres

v is the threshold of Fv(x) to be added into RPS. DoA will decide the K of each EID and RPS will
decide the distribution of K replicas in hierarchy.

DoA(x) = α ∗ p(x) + β ∗ Fu(x) + r ∗ Fv(x), α > 0, β > 0,γ > 0,α+ β+ γ = 1 (1)

∀Fv(x) ∈ RPS, Fv(x) ≥ Fthres
v (2)

The diagram of Dynamic ENRS for name record replica diffusion in the tree topology of ENRS is
shown in Figure 4. Differing from DMap [38], GMap [43], and Auspice [51] as being limited by the
temporally hierarchical structure of ENRS, the pushing flow of the replicas is directional and must be
pushed from the top-layer HMs to the bottom-layer HMs to satisfy the latency conditions, which are
used when partitioning the hierarchical structure of HEAs. We use a flag to distinguish the source EID
and replicated EID.
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The name binding replicas should also be registered in the BF. To reduce the overhead of HM,
we could use collaborative caching approaches for name bindings within DNHT in one or multiple
hops. What is more, we can use some location-aware techniques, such as the GPS of UE, to select the
NAs that are closest to the users to get a fast look-up response for local requests. Further, to protect
the privacy of users and to make authorization and certification easy, we can also make constraints
on specific nested HEAs to cache the name bindings so that the scope of each published copy can be
limited. The synchronization problem of multiple copies of EID-NA bindings should be considered.

3.4. Deployment

Deployability is important for a real-world NRS. If the NRS system can be deployed from the
edges, then the deployment can be simplified [22]. For example, parts of the NRS can be deployed and
used without immediately requiring a full deployment.

The deployment of ENRS can be flexible, since HMs in different levels are decoupled, and the
registration and resolution approaches are independent of the cross-layer relationships between HMs.
The lowest level of HM can be deployed on the AN level equipment, e.g., RAN, to meet the ultra-low
latency requirements. The highest level of HM can be deployed on AS-level equipment, e.g., the cloud
data center, to meet the general latency requirements. The intermedia level of HM between AN-level
and AS-level can be deployed selectively based on differential low-latency demands.

In our system, the name resolution service interfaces are exposed to UE by an agent via network
attachment, so that the name resolution service is transparent to UE. The service interfaces that the
ENRS agent provides are as follows:

• the interface to the global naming system to get EID for data;
• the partitioning parameters of each level of HEAs the ENRS agent belongs to;
• the HM addresses of each level of HEAs the ENRS agent belongs to.

The ENRS agent will intercept the requests that are sent to the ENRS and forward them to the
proper HM according to different message types and service parameters. The ENRS agent can be
deployed in any equipment or device that is connected to the 5G-ICN network.

4. Use Case Scenario

As a typical IoT scenario, the video stream monitoring service in Smart Home is used to show
how the proposed naming and name resolution mechanisms work in ENRS together with other
infrastructures to guarantee the continuity of service.

The live streaming data are stored by IoT Gateway (GW) with data of a dynamically refreshed file
as the named object. We use a push-based real-time video streaming service provided by a camera
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using a publisher–subscriber model because a push-based model is more suitable for IoT scenarios [52].
In Figure 5, The Global Naming and Name Certification System (GNNCS) is responsible for EID
assignment and authorization. The illustration of the use case scenario is shown in Figure 5. The
workflow is as follows.Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 25 
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Step 1: The IoT-GW (Producer) initiates a registration request to the GNNCS to obtain the EID
of the real-time video streaming service with the Human Readable Name (HRN). Then, the GNNCS
allocates a unique EID for it.

Step 2: After receiving the EID of the real-time video streaming service, the IoT-GW sends a
name registration request to ENRS with the binding of EID and NA, as well as other parameters,
such as Td. The ENRS Agent intercepts the message and forwards it to ENRS according to the name
registration strategies.

Step 3: If a UE (Consumer) wants to get the real-time video streaming service, firstly, the UE will
search the GNNCS with HRN by explicit or implicit look-up to get the service EID.

Step 4: After the UE has obtained the EID, it will store the binding of HRN and EID in its local
cache. Then, the UE will send a name resolution message with EID and other parameters to the ENRS,
according to the name resolution strategies, to obtain the NA(s).

Step 5: After the UE has obtained the NA(s) by service EID, the bindings of EID and NA will be
stored in UE. Then, the UE will send a data request that carries the EID of UE, EID of service, and EID
of destination and NA(s) of requested data to the network; the data routing path will be generated
according to the NA(s). The name resolution path and the data routing path could be dissymmetric.

Step 6: When the IoT-GW receives the data request message with EIDs, it will add the UE’s EID
into the video service subscription table. Once the camera produces new content, the IoT-GW will
name the video stream with the service EID and push it to all the subscribers by getting the NAs of all
the UEs’ EIDs. For real-time video services, the latest content provided by the camera will be stored in
the network, the expired ones being ignored. Thus, we can use the same EID to represent the latest
video data generated by the camera. The binding of the real-time video service’s EID and its NA will
only register once in ENRS until the NA changed. By querying the unique service EID, we can get the
real-time video streaming service with its newest NA.

For a pull-based, non-real-time service supported by ENRS, the steps of getting the content
produced by these services are similar to the real-time video streaming service mentioned above.
However, what is different is that each new data chunk should be registered in the ENRS with its
unique EID, while the EID of the real-time video streaming service is only registered once with the
same EID. In the pull-based model, each time a consumer requests new data, it needs to send an ICN
name resolution request to the name resolution system to get the NA with data EID.
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5. Analysis and Evaluation

To investigate the performance of ENRS, we focus on five major aspects: (i) name resolution
latency, (ii) hit ratio of the system, (iii) throughput, (v) offloading traffic of the name resolution by
ENRS from global NRS, and (vi) the control overhead.

Our evaluation offers a comparison with DONA [9], KNN-DNRS [44,45] and Random-NRS.
Random-NRS randomly selects K resolvers to register and query names, and we set K=1 in Random-NRS
for fairness of comparison. DNRS adopts the KNN clustering algorithm to partition the network to
classify the subscribers or publishers among NRS and distribute the name bindings into different NRSs
by considering the time taken to publish the names in the NRS. The time to publish a name in the NRS
is calculated by Ta-Tb, where Ta represents the time taken for NRS to receive the message of name
binding and Tb represents the time taken for the publisher to send the name binding.

The experiment environment was created in Python 3.7 running on Ubuntu 14.04 LTS with 32 GB
RAM. We conducted the simulation in 15 rounds for each graph with the LHP algorithm and chose
different numbers of nodes to query different scales of EIDs. In the simulation, the nodes and EIDs
were randomly selected, the latency demand distribution for EIDs was uninformed based on T1, T2,
and T3, and the query requests to be forwarded to each HM level were equiprobable. KNN-DNRS and
Random-NRS were run under the same conditions of resolver distribution, the same numbers of query
nodes, and the same numbers of EIDs to look-up. The settings of the experiment are shown in Table 3.
We got the results and analyzed the performance of ENRS as follows.

Table 3. Evaluation setting.

Parameter Value Parameter Value

L 3 BF length 1MB
Latency scope (ms) (0,10] m degree 2

Entity ID (EID) published 10,000
Number of nodes 100,200,400,800,1600

EID queried 1000,2000,4000,8000
Publisher proportion 1.0
Subscriber proportion 1/4, 1/2, 3/4

5.1. Theoretical Resolution Latency Analysis

The latency of each step in the name resolution procedures of ENRS are as follows.
Step 1. The transmission delay T1 from a requestor to the i-th HMi j.
Step 2. Retrieval time T2 in HMi j’s local DB.
Step 3. The transmission delay T3 from HMi j to its peer neighbor resolver HMik.
Step 4. Retrieval time T4 HMik’s local DB, T4 = T2.
Step 5. The transmission delay T5 from HMik to HMi j, T5 = T3 (according to the symmetry).
Step 6. The transmission delay T6 from HMi j to the requestor, T6 = T1 (according to the symmetry).

The whole latency of the name resolution can be described as Equation (3):

T =
∑

i

Ti (3)

In the steps mentioned above, Steps 1, 2, and 6 are essential for name resolution. We assume
that the probability of completing name resolution by Steps 1, 2, and 6 is P1, and the probability of
achieving the name resolution after performing Steps 4 and 5 is P2, P1 + P2 = 1. Thus, the average
resolution delay can be expressed as Equation (4):

T = P1∗(T 1+T2+T6) + (1− P 1) ∗ ( T 1+T2+T3+T4+T5+T6
)

(4)
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According to symmetry, Equation (2) can be simplified as Equation (5):

T = 2(T1 + T2 + T3) − P1 ∗ T2 − 2P1 ∗ T3 (5)

where P1 = 0, Tmax = 2(T1 + T2 + T3). When P1 = 1, Tmin = 2T1 + T2. According to a previous
study [22], the single look-up latency of a 4 TB solid state drive (SSD) is about 15 µs. Thus, T3 is in
the nanosecond magnitude. The end-to-end delay of the 5G control plane should be in the order of a
millisecond [2], 1ms

15µs ≈ 67. Thus, T2 << T1, T3; Tmax and Tmin can be represented as Equation (6) and
Equation (7):

Tmax ≈ 2(T1 + T3) (6)

Tmin ≈ 2T1 (7)

From Equation (6) and Equation (7) we can learn that the name resolution latency is subject
to transmission latency T1, T3. T1 and T3 are related to the deterministic partition bound Ti. If
deterministic partition bound Ti is given, the uppers and collars of name resolution latency are
deterministic. Therefore, deterministic name resolution latency can be achieved in ENRS.

5.2. Resolver Count

We have calculated the HM count deployed to satisfy the transmission latency constraints under
different node sizes, and the simlation result is shown in Figure 6. From Figure 6 we can learn that
the count of deployed HMs grows exponentially along with the increase of node size. With more
distributed nodes to serve, more resolvers are demanded to meet the latency constraints. When the
node size is 100, the HM count is 15, and increases to 178 when the node size increases to 3200. To
improve the resource utilization rate, we can use the curve in Figure 6 to estimate the number of
resolvers required for deployment when the node size is in a large scale, to balance the transmission
latency threshold and the computing storage resources required.
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5.3. Hit Ratio

Figure 7a shows the average hit ratio comparison versus different sizes of graphs. It illustrates that
the average hit ratio of ENRS outperforms KNN-DNRS and Random-NRS at a minimum of 23.2% and
18.1%, respectively, and a maximum of 31.0% and 29.4%, respectively. We notice that in Figure 7a, all
of the query hit ratios of ENRS, KNN-DNRS, and Random-NRS decline with the increase of node sizes
because the user node distributions are more dispersed, thus, the names registered in the resolvers are
more scattered correspondingly, leading to a lower hit ratio.
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5.4. Throughput

According to a previous study [22], a resolution node should be able to manage up to 66,500
query requests per second with an average of 2 get requests/s per user, and a single resolution node
can handle more than 8300 users with a single storage unit. The GET request is the same as QUERY
requests in this paper. In ENRS, we deploy nearly 70 HMs for 1600 user nodes according to the latency
constraints, which are shown in Figure 6. We assume that the user nodes are in the magnitude of 106,
thus more than 1400 HMs are needed according to Figure 6. The length of the QUERY message in
ENRS is 248 bits. Thus, the name resolution traffic processed by ENRS can be up to 1400 × 66,500 ×
248 bit ≈ 21 GB/s, which can effectively reduce the control-plane traffic of the backbone network.

5.5. Offloading Traffic

In this session, we calculate the name resolution traffic offloaded by ENRS from the global NRS.
We set the L3 HMs as the global NRS deployed on AS-level and set the L1 and L2 level HMs as the
local NRS. The lengths of the REGISTER message and QUERY message are 240 bits and 248 bits. We
conduct the network size as ranging from 100 to 1600, and the number of queries varies from 1000 to
8000. We add up all the traffic offloaded by HMs in each hierarchy if the requested EID is satisfied by
ENRS. The results are shown in Figure 8.

From Figure 8 we can learn that L2 HM has higher offloading traffic and the offloading traffic
declines with the growth of node size because the hit ratio decreases, as seen in Figure 7. From Figure 8
we also learn that the offloading rate of L1 tends to be stable at about 2.0%. Though multi-copy of name
bindings can help to improve the hit ratio as well as the offloading traffic, ENRS requires a trade-off

between the storage cost and the benefit of the offloading rate. The control traffic offloaded by ENRS
is significant.



Appl. Sci. 2019, 9, 2891 20 of 26

Appl. Sci. 2019, 9, x FOR PEER REVIEW 19 of 25 

(L2) decrease when the node sizes increase. In ENRS, the higher the level of HEA, the wider the area 
it covers, thus more nodes are engaged in the same HM, leading to more name bindings aggregating 
in the same HM, so that the hit probability is improved. With the growth of nodes, more HEAs are 
produced, thus more HMs must be deployed to satisfy the different transmission latency conditions. 
Therefore, the EID stored in HMs are more dispersed and the hit ratios become lower. 

 

Figure 7. The comparison of average hit ratio. (a) demonstrate the variation tends of average hit ratio 
with different number of nodes in ENRS, KNN-DNRS and Random-NRS. (b) shows the variation of 
average hit ratio of each hierarchical HMs in ENRS with different number of nudes. 

5.4. Throughput 

According to a previous study [22], a resolution node should be able to manage up to 66,500 
query requests per second with an average of 2 get requests/s per user, and a single resolution node 
can handle more than 8300 users with a single storage unit. The GET request is the same as QUERY 
requests in this paper. In ENRS, we deploy nearly 70 HMs for 1600 user nodes according to the latency 
constraints, which are shown in Figure 6. We assume that the user nodes are in the magnitude of 106, 
thus more than 1400 HMs are needed according to Figure 6. The length of the QUERY message in 
ENRS is 248 bits. Thus, the name resolution traffic processed by ENRS can be up to 1400 × 66500 × 
248bit ≈ 21 GB/s, which can effectively reduce the control-plane traffic of the backbone network.   

5.5. Offloading Traffic 

 
Figure 8. The total offloading traffic (MB) in different levels of HMs in ENRS with different query
counts. (a) demonstrate the variation of offloading traffic in L1 and L2 HMs with different number of
nodes when the query count is 1000. (b–d) demonstrate the variation of offloading traffic in L1 and L2
HMs with different number of nodes when the query counts are 2000, 4000 and 8000 respectively.

5.6. Control Overhead

We compare the message lengths of ENRS, KNN-DNRS, and Random-NRS, and get the result
in Table 3. As shown in Table 4. The lengths of the REGISTER messages of ENRS, KNN-DNRS, and
Random-NRS are 240 bits, 224 bits, and 224 bits, respectively. The lengths of the QUERY messages of
ENRS, KNN-DNRS, and Random-NRS are 248 bit, 224 bits, and 224 bits, respectively. As we mentioned
in Section 3.2.2, except for EID, NA, and timestamps, we also define some customized parameters
to realize our name registration and resolution mechanisms, i.e., 8-bit STO parameter, 8-bit ENRT
parameter, 8-bit NRDR parameter. The RTL is an optional parameter, thus we omit it when comparing
the message length.

Table 4. The length of messages.

System Name REGISTER Message QUERY Message

ENRS 240 bits 248 bits
KNN-DNRS 224 bits 224 bits

Random-NRS 224 bits 224 bits

We evaluate the total query traffic with different numbers of queries with different query nodes.
The result is shown is Figure 9. As shown in Figure 9, the total traffic overhead of ENRS is the smallest
compared with KNN-DNRS and Random-NRS with different query distributions. The query traffic
overhead of KNN-DNRS and Random-NRS are 33.3-times and 2-times larger than ENRS, respectively,
with the increase of queries. In ENRS, we assign different hierarchical resolvers for every node to satisfy
different response requirements and make constraints on the forwarding hops of queries. Thus, the
paths of look-ups are deterministic, so the look-up traffic overhead is relatively stable and controllable.
With the same number of resolvers available, KNN-DNRS has to calculate the end-to-end latency with
every resolver to select the nearest one to register or query, so the traffic of name resolution increases
sharply with the increase of node sizes and queries. In Random-NRS, nodes randomly select a resolver
to register and query. If the resolver does not have the requested name, it will forward the request to
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its neighboring resolvers by flooding, so the traffic overhead is larger than ENRS and increases with
the growth of resolvers.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 20 of 25 

Figure 8. The total offloading traffic (MB) in different levels of HMs in ENRS with different query 
counts. (a) demonstrate the variation of offloading traffic in L1 and L2 HMs with different number of 
nodes when the query count is 1000. (b–d) demonstrate the variation of offloading traffic in L1 and 
L2 HMs with different number of nodes when the query counts are 2000, 4000 and 8000 respectively. 

In this session, we calculate the name resolution traffic offloaded by ENRS from the global NRS. 
We set the L3 HMs as the global NRS deployed on AS-level and set the L1 and L2 level HMs as the 
local NRS. The lengths of the REGISTER message and QUERY message are 240 bits and 248 bits. We 
conduct the network size as ranging from 100 to 1600, and the number of queries varies from 1000 to 
8000. We add up all the traffic offloaded by HMs in each hierarchy if the requested EID is satisfied 
by ENRS. The results are shown in Figure 8. 

From Figure 8 we can learn that L2 HM has higher offloading traffic and the offloading traffic 
declines with the growth of node size because the hit ratio decreases, as seen in Figure 7. From Figure 
8 we also learn that the offloading rate of L1 tends to be stable at about 2.0%. Though multi-copy of 
name bindings can help to improve the hit ratio as well as the offloading traffic, ENRS requires a 
trade-off between the storage cost and the benefit of the offloading rate. The control traffic offloaded 
by ENRS is significant. 

5.6. Control Overhead 

We compare the message lengths of ENRS, KNN-DNRS, and Random-NRS, and get the result 
in Table 3. As shown in Table 4. The lengths of the REGISTER messages of ENRS, KNN-DNRS, and 
Random-NRS are 240 bits, 224 bits, and 224 bits, respectively. The lengths of the QUERY messages of 
ENRS, KNN-DNRS, and Random-NRS are 248 bit, 224 bits, and 224 bits, respectively. As we 
mentioned in Section 3.2.2, except for EID, NA, and timestamps, we also define some customized 
parameters to realize our name registration and resolution mechanisms, i.e., 8-bit STO parameter, 8-
bit ENRT parameter, 8-bit NRDR parameter. The RTL is an optional parameter, thus we omit it when 
comparing the message length.  

Table 4. The length of messages. 

System Name REGISTER message QUERY message 
ENRS 240 bits  248 bits 

KNN-DNRS 224 bits 224 bits 
Random-NRS 224 bits 224 bits 

 

 
Figure 9. The total number of messages versus the numbers of queries; the number of nodes = 200. 
(a) shows the total number of messages with different number of queries when the number of query 
nodes is 50. (b) shows the variation of total number of messages with different number of queries 
when the number of query nodes is 100. (c) shows the total number of messages when the number of 
query nodes is 150. 

Figure 9. The total number of messages versus the numbers of queries; the number of nodes = 200. (a)
shows the total number of messages with different number of queries when the number of query nodes
is 50. (b) shows the variation of total number of messages with different number of queries when the
number of query nodes is 100. (c) shows the total number of messages when the number of query
nodes is 150.

As we introduced in Section 2, there are many proposed DHT-based ICN NRSs. In each DHT-based
NRS, name bindings are offsite storage. The entrances of name queries are selected by the value of
hash (EID). Thus, the query paths may exist as multi-hops, which increase the query traffic overhead
and the query latency, while in ENRS, the entrances of name queries are selected by the location of
the requestor and the response delay requirements, and the query paths are single-hops, of which
the complexity is O(1), thus the query traffic overhead is small. For a DHT-based system, the query
complexity is O(1) in the best case, while in the majority of situations, the complexity would be log N,
where N is the length of EID. Thus, the control overhead of DHT-based NRS may be larger than ENRS
in general.

6. Discussion

6.1. Partition Imbalance Problem

In ENRS, the range and number of LNs selected in a single i-th level HEA are determined
by Ti. However, this may result in the imbalance problem among partitions, i.e., the difference
between the number of LNs assigned in the largest and smallest partitions, which is described as
Partition_Imbalance [53], shown as Equation (8). Consequently, resolvers deployed in large partitions
are overloaded and resolvers deployed in smaller partitions are lightly loaded.

Partition_Imbalance = max
∣∣∣Hk

i

∣∣∣−min
∣∣∣∣H j

i

∣∣∣∣ (8)

In Algorithm 1, we take the bandwidth, computing capacity, and storage capacity of resolvers
into account. We also propose a strategy that takes into account the imbalance of HEAs. The candidate
anchor node can be selected with the following strategy.

Network Centrality of Resolvers: We can reduce the cluster imbalance by taking the capacity of
resolvers into account. We can implement this by choosing the anchor node, which satisfied Equation
(9), to replace Step 16 in Algorithm 1.

d = max(closeness_certrality(vp)) (9)
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Here, d is the ID of the selected position of LN; 0 < p < Nm
i , 1 ≤ m ≤M, 0 ≤ i < L. Choose d as the

anchor node. This strategy ensures that each LN is assigned to the resolver located in the physical
center of the graph.

We define a metric Imbalance_Degree to evaluate the effect of imbalance optimization. The definition
is expressed as Equation (10):

Imbalance_Degree =
K∑

m=0

K∑
n=0

∣∣∣Hm
i

∣∣∣− ∣∣∣Hn
i

∣∣∣, 0 ≤ i < L (10)

6.2. UE Provision

ICN supports UE provision by assigning a unique name to support the data transmission and
service delivery under heterogeneous access technologies using the connectionless communication
model. In our ENRS, to provide differential low-latency name resolution, some extra parameters are
needed, for example, latency requirement parameter Td. The UE should be able to configure these
parameters in the name registration and name resolution requests. What is more, the service-related
parameters may transmission cross-layer from the application layer to the network layer. Thus, specific
inter-layer parameter mapping and adaptation mechanisms should be proposed to improve the Quality
of Service(QoS). To solve the cross-layer incongruity issue on the current Internet architecture, the
interoperability with IP-based infrastructure and ICN-based infrastructure also should be considered.

6.3. Mobility on Demand

In this paper, we focus on the registration and resolution of the micro-mobility of entities in
common scenarios, such as walking speed and vehicle speed, which are less than 500 km/h. We
refer to the macro-mobility as UE moving from one top-level HEA to another peer HEA, and refer to
micro-mobility as UE moving in the same HEA or from one non-top-level HEA to another. We suppose
that if there is a car driving on the road whose moving speed is 120 km/h, a passenger sitting in it is
watching a live 4k or 8k video, since the longest session interrupt time in the 5G control-plane allowed
for enhanced Mobile Broadband (eMBB) is 150 ms [54]. Over the duration of session interruption,
the car can move forward no more than 5 m; even for a high-speed train whose moving speed is
predicted to be 500 km/h, the moving distance is less than 21 m, thus the moving distances are still
in the geo-coverage of a bottom-level HEA. Therefore, we use the HM of bottom-level HEAs, which
is considered to be fine-grained enough as a transit node to handover the name registration and
resolution requests to guarantee the continuity of service.

In order to ensuring the continuity of services at different moving speeds and guarantee the
QoS of latency-sensitive services or applications, avoiding frequent registering or updating of name
binding to reduce the signalling overhead, we developed DNHT-based mobile name registration
and resolution mechanisms in ENRS to support fast and seamless mobility name resolution, which
is a trace-based solution. In the trace-based mobile name resolution approach, when a mobile UE
sends the name registration and resolution requests to the ENRS, the requests will be forwarded and
propagated within the HMs in the DNHT based on Mobility Parameter (MP), and the ENRS will track
the moving path of UE, i.e., the previous PoA and its HEA, and the forwarding path of requests. Then,
the response messages will be propagated along the reverse direction the message passed by. The MP
will decide the direction of message exchange in DNHT. The historical statistics of the UE’s mobility
can be used to predict the UE’s moving trajectory. Thus, the name registration and resolution requests
can be forwarded to the neighbouring HEAs on the UE’s predicted moving path. ENRS will maintain
some mobility parameters or state parameters when tracking the mobile UE, which may improve the
maintenance cost of name registration and name lookup.
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7. Conclusions

In this paper, we proposed an Enhanced Name Resolution System (ENRS) to satisfy the delay
of sensitive requirements of NRS in a 5G-ICN integrated network, which quantifiably organizes the
nodes into hierarchical and nested areas by transmission latency constraints to provide a deterministic
low latency name resolution service. Topological information was embedded in ENRS. To achieve local
resolution and forwarding locality, demand-aware name registration and resolution schemes were
proposed to realize constant forwarding hops, and a tolerable time-based peer resolver forwarding
algorithm was designed to improve the query hit ratio. A proactive name-binding replica distribution
approach, Dynamic ENRS, which can predict the number and distribution of names individually based
on temporal-spatial features, was proposed to reduce the resolution latency and to query traffic. In
addition, a typical use case of a video streaming monitoring service in Smart Home was used to show
the continuity of service guaranteed by ENRS.

Analysis results demonstrated that the upper bound and lower bound of name resolution latency
can be achieved in ENRS. The evaluation showed that the query hit ratio outperformed KNN-DNRS
and Random-NRS at a minimum of 23.2% and 18.1%, respectively, and a maximum of 31.0% and
29.4%, respectively. The query traffic overhead of ENRS was much smaller than both KNN-DNRS
and Random-NRS because of the constant forwarding hop. ENRS is able to process 21 GB/s name
resolution traffic when the user nodes are in the magnitude of 106.
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