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Featured Application: Automatic cell counting and clustering were performed on the blurred 
images of cardiomyocytes with different shapes and sizes. 

Abstract: The isolation and observation of cardiomyocytes serve as the fundamental approach to 
cardiovascular research. The state-of-the-practice for the isolation and observation relies on manual 
operation of the entire culture process. Such a manual approach not only incurs high human errors, 
but also takes a long period of time. This paper proposes a new computer-aided paradigm to 
automatically, accurately, and efficiently perform the clustering and counting of cardiomyocytes, 
one of the key procedures for evaluating the success rate of cardiomyocytes isolation and the quality 
of culture medium. The key challenge of the proposed method lies in the unique, rod-like shape of 
cardiomyocytes, which has been hardly addressed in literature. Our proposed method employs a 
novel algorithm inspired by hesitant fuzzy sets and integrates an efficient implementation into the 
whole process of analyzing cardiomyocytes. The system, along with the data extracted from adult 
rats’ cardiomyocytes, has been experimentally evaluated with Matlab, showing promising results. 
The false accept rate (FAR) and the false reject rate (FRR) are as low as 1.46% and 1.97%, respectively. 
The accuracy rate is up to 98.7%—20% higher than the manual approach—and the processing time 
is reduced from tens of seconds to 3–5 s—an order of magnitude performance improvement. 
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1. Introduction 

According to the World Health Organization (WHO), more than 12 million people die of heart 
disease each year [1]. Heart disease has become the number one killer of global population and the 
incidence is getting increasingly younger. Because the cardiac organ function is directly related to the 
cardiovascular function, studying the characteristics of cardiomyocytes is one of the fundamental 
approaches to studying heart diseases and cardiovascular diseases. In studying cardiomyocytes 
during medical cell research, one crucial step is to isolate and observe cardiomyocytes because the 
cardiomyocytes isolated from adult animals carry many characteristics representing disease-relevant 
models that are not available in cells from other developmental stages. Moreover, because the 
functional properties of adult cardiomyocytes are irreplaceable in other developmental stages, adult 
cardiomyocytes have become an important tool for studying cardiac structure, metabolism, function, 
pathophysiology, and its mechanisms [2,3]. With the advances of the genetic studies on cardiac 
functions using cellular electrophysiology and molecular biology approaches, adult cardiomyocytes 
have been widely used [4]. At present, most adult rat cardiomyocytes not only resemble human cells 
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in structure and function, but also exclude fibroblasts [5] interference in the vitro culture. The normal 
cardiomyocytes that have just been isolated are in the shape of rods. Thus, we can distinguish the 
status of the cardiomyocytes according to the morphological characteristics of the cardiomyocytes. 
Nevertheless, the immediate rod rate after cardiomyocytes separation was low (only 10% to 15%). It 
is also difficult to configure cultures that extend the physiological activity of cardiomyocytes. In order 
to enable the technician to discover the success rate and the quality of the culture liquid in a timely 
manner, an automated computer system is highly desired to timely count the isolated cardiomyocytes 
and observe the morphological changes of the subsequent culture process, e.g., through cell 
clustering. 

Clustering is the process of dividing a series of objects, schemes, or events into several classes 
that are not predefined (i.e., unsupervised). The characteristics of objects in each class are more akin 
to each other than those from distinct classes. Cluster analysis usually takes mathematical methods 
to classify objective items according to certain criteria, relying on the similarity of samples as the 
principle of division; therefore, choosing an appropriate similarity becomes a key factor to a 
successful clustering [6]. Currently, most studies on cell clustering in biology [7,8] focus on how to 
prevent cell clustering growth in the process of culture. However, for the studies on cell classification 
[9–11], most of them are known target categories, and the target to be classified has obvious 
characteristics of which category it belongs to. In the classification of cardiomyocyte shape, manual 
approaches are criticized for the fact that different people may hold discrepant judgments on which 
cardiomyocytes should be classified into which group. However, common clustering algorithms 
(such as k-means algorithm [12], graph theory clustering algorithm [13], and density clustering 
algorithm [14]) cannot work for solving the problem of cardiomyocyte clustering because their 
thoughts are, respectively, according to determining which category it belongs to based on the 
distance between the object to be clustered and the center point, or according to determining 
classification based on graph theory and network detection ideas, or divide the type by comparing 
the number of objects in the circle of the unclassified object with the radius r of the circle and the 
critical minimum number. Some target recognition and detection algorithms based on clustering [15–
18] are applicable to specific algorithms in image processing according to different application 
scenarios, which will be introduced in detail. However, the cardiomyocytes in this paper need to be 
clustered according to their morphological characteristics in the culture medium, so these algorithms 
are not suitable for the cardiomyocytes clustering. 

In 2009, Torra and Narukawa [19] proposed hesitant fuzzy sets, where the degree of membership 
of a fuzzy set is a set of possible numerical values that can intuitively describe the opinions given by 
different decision makers. This can balance the different preferences of decision makers and obtain 
more reasonable and comprehensive results, thus reducing the data loss and bias [20]. In addition, in 
the literature [19,21], Torra discussed the differences and connections between hesitant fuzzy sets and 
intuitionistic fuzzy sets [22], type 2 fuzzy sets [23], and fuzzy multiple sets [24], and point out that 
hesitant fuzzy sets contain intuitionistic fuzzy sets, which are special cases of type 2 fuzzy sets, and 
have the same form as fuzzy multiple sets, but different algorithms. However, the items to be 
clustered in this work are adult cardiomyocytes in the culture medium. With the increase of culturing 
time, the cardiomyocytes will slowly die from the long rod-shaped physiologically intact cells; in this 
process, people might not be able to accurately distinguish the cells. In this paper, we employ the 
hesitant fuzzy set theory to assign the specific classification attributes and confidence intervals of 
adult rat cardiomyocytes, enabling an automatic clustering of cardiomyocytes that allows researchers 
to quickly understand the state of cardiac cells in the culture. This kind of cell clustering based on 
hesitant fuzzy sets is not only applicable to the statistical changes of cell morphology in the culture 
process of cardiac muscle cells, but also potentially useful for the clustering of other types of cells 
whose shape are arbitrary. The proposed new algorithm is built up on the fuzzy set theory and to the 
best of our knowledge, is the very first work on computer-aided analyzing approaches over 
cardiomyocytes. 

In summary, the contributions of this paper are the design and implementation of a new real-
time automatic clustering and counting system for cardiomyocytes. The remainder of this paper is 
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organized as follows. Section II reviews related cell-counting technologies. In Section III, we present 
the proposed system, including the culture and recording of cardiomyocytes, the automatic counting 
approaches, and the automatic clustering through hesitant fuzzy sets. Section IV reports experimental 
results by analyzing real cardiomyocytes with the implemented system prototype; results show that 
the system incurs low error rates and delivers both high accuracy and high performance compared 
with the conventional manual approaches. In Section V, we conclude the paper with future research 
directions. 

2. Related Work 

Existing methods for counting cardiomyocytes are mostly manual or semi-automated 
operations, such as the blood cell counting plate [25], the trypan blue staining count [26], and the 
visual field counting method [27]. Manual counting not only takes a long time but also incurs human 
errors. Therefore, an automatic counting system is highly desired. Semi-automated approaches exist 
to record the cardiomyocyte state (e.g., frequency scaling, morphological changes) in the culture of 
cardiomyocytes. In [28], the cardiomyocyte motion field is calculated in real time by GPU 
acceleration, and the autotrophic model is used to analyze the contraction frequency of 
cardiomyocytes. In [29], a microelectrode-array (MEA)-based dual-function cardiomyocytes 
biosensor system explores the impedance detection function, monitors the rhythmic beat of 
cardiomyocytes, and simultaneously records the extracellular potential. Unfortunately, both of the 
above approaches show significant errors. Under normal circumstances, the observation of 
cardiomyocytes mainly depends on ordinary light microscopy. Therefore, the state of the practice of 
observation and statistics of cardiomyocytes are still largely dependent on manual approaches, 
including recording the cultivation of cardiomyocytes, extracting and clustering the target objects, 
counting the number of cells, and so forth. However, there are few automatic and efficient 
cardiomyocyte counting methods built upon efficient algorithms and computer systems. The state of 
the practice of automatic counting in this area is for red blood cells due to its unique shape. In the 
following part, we will review important work in counting cells. 

Previous literature mainly focused on red blood cells. In [30], an automatic mosaic method is 
proposed to improve the reliability of live/dead cell counts by representing the entire red blood cell 
as a grid mosaic. In [31], an approach is proposed to improve the accuracy of cell counting by learning 
the parameter set of each application to reduce the error during fine-tuned filtering. For counting red 
blood cells, mathematical morphology and Otsu threshold method [32] are proposed to determine 
the round red blood cells, non-circular red blood cells, and overlapping red blood cells. For grayscale 
images [33], estimating the minimum and maximum number of red blood cells can be achieved by 
obtaining red blood cell, masking small circle transformation, and then detecting and counting the 
cells with the iterative soft threshold after removing conflicting red blood cells. Another approach 
[34] is to simulate human visual system by a computer-aided system and automatically detect red 
blood cells and white blood cells in the image. There are also many methods using artificial 
intelligence and machine learning to perform red blood cell counts. In [35], supervised learning and 
optimal clustering are employed along with spatial color classification to separate overlapping cells 
and count the number of fetal and maternal red blood cells. Classification of red blood cell images 
using spectral angle mapping (SAM) [36] is proposed; SAM leverages support vector machine (SVM) 
and establishes a standard red blood cell model for matching the red blood cells. The approach 
proposed by [37] takes convolution lexical learning and coding for red blood cell detection and 
counting in holographic lens imaging. Two types of single-frame processing based on machine 
learning [38] are proposed for lensless red blood cell counting, i.e., based on extreme learning 
machines and convolutional neural networks. Existing methods of counting white blood cells include 
[39], which detects more accurate regional boundaries by using gradient-based region growth and 
neighborhood effects after region segmentation. Each region is classified according to its shape, size, 
color, and texture features using different fuzzy and non-fuzzy techniques, respectively. 

Cell counting methods for non-red blood cells are also available. In [40], a self-counting 
mechanism is proposed for flagellate trypanosomes infecting human cells: Firstly, morphological pre-
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treatment removes complex image backgrounds; secondly, unsupervised classification is used to 
segment collections; thirdly, threshold processing is used to preserve infected cells; and finally, cells 
are processed by morphological treatment and filtered by average. In [41], a robust segmentation 
method is proposed for counting milk somatic cells on a microscope slide image. By changing the 
original RGB(Red-Green-Blue, three primary colors) format of the image to the lab color space and 
applying the k-means clustering algorithm to remove debris and other background features, a new 
gray-level threshold processing method is proposed, and the remaining boundary units are separated 
in the final segmentation step of applying the watershed transform. In [42], a new approach is 
proposed using powerful cell detection and online dictionary learning for automatic Ki-67 counting. 

The state-of-the-art research on target detection and recognition based on clustering features can 
be summarized as follows: In [15], a block-based color cluster background modeling and a 
foreground detection algorithm that possesses efficient processing and low memory requirement in 
a complex scene was proposed. In training phase, the color cluster and pixel distribution line (PDL) 
are efficiently used to reduce the background information. In the detection phase, the foreground 
objects were extracted precisely and fast in a complex scene by comparing the color clusters and PDLs. 
In [16], a salient object detection (SOD) approach was proposed to automatically isolate important 
objects from the background in images. In [17], a subcategory-aware CNN (S-CNN) was proposed to 
solve the object intra-class variation problem. In the proposed technique, the training samples were 
first grouped into multiple subcategories automatically through a novel instance sharing maximum 
margin clustering process. A multi-component aggregated channel feature (ACF) detector was then 
trained to produce more latent training samples, where each ACF component corresponds to one 
clustered subcategory. The produced latent samples together with their subcategory labels were 
further fed into a CNN classifier to filter out false proposals for object detection. In addition, an 
iterative learning algorithm was designed for the joint optimization of image subcategorization, 
multi-component ACF detector, and subcategory-aware CNN classifier. In [18], a scalable bi-level 
parallel object detection framework based on heterogeneous manycore cluster was established to 
improve object detection performance for embedded device. First, the fundamental principle of local 
binary pattern and cascade classifier combined object-detection method was introduced as the basis 
of the research. Second, a set of key algorithms designed to parallel access and process image for 
object detection based on Parallella manycore platform was proposed to improve the detection speed 
and the computational resource efficiency on a single node. Third, a message passing interface-based 
distributed framework was established for cluster environment to further improve the performance. 
Finally, an experiment of face detection application was conducted to evaluate the accuracy and 
performance of this framework. 

Due to the size difference and shape non-fixation of cardiomyocytes, and the difficulty of 
cardiomyocytes motion blur and high noise in experimental image acquisition, the above algorithms 
cannot accurately count and cluster cardiomyocytes. The main contribution of this paper is the design 
and implementation of a new real-time automatic counting based on cardiomyocyte morphology and 
clustering system for cardiomyocytes based on hesitant fuzzy sets. This algorithm can quickly let the 
experimenter know the number of currently viable cardiomyocytes in the culture medium and the 
current morphological changes of these cardiomyocytes. This work, to the best of our knowledge, is 
the first automatic tool to count cardiomyocytes. 

3. Methods and Algorithms 

In the process of the myocardial cell culture, the experimenter is required to conduct real-time 
recording of the medium cell changes in physiological characteristics. The process of apoptosis, in 
the training process for 2–3 days, is recorded; also, the degree of myocardial cell apoptosis is tracked 
to facilitate the classification. In order to observe the effects of transgenes on the contractile function 
of adult rat cardiac myocytes, it is necessary to establish an effective and stable method for isolation 
and culture of adult rat cardiac cells. This system should promptly report the experiment’s success 
rate and the appropriateness of the culture through repeated experiments, which can help to form 
more effective separation n and culture methods. We illustrate the overall workflow for automatic 
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cell counting in Figure 1, starting from the top-left corner. The proposed system consists of the 
following key steps: (i) Obtaining cardiomyocytes; (ii) extracting images; (iii) counting algorithms; 
and (iv) clustering with hesitant fuzzy sets. 

 
Figure 1. Workflow of automatic cardiomyocyte clustering and counting. 

3.1. Isolation and Culture of Adult Rat Cardiomyocytes 

Adult SD(Sprague-Dawley) rats, male or female, weighing between 200–250 g, were provided 
by the Experimental Animal Center of Xuzhou Medical College. SD rats were injected with 5000 U kg 
of heparin intraperitoneally. After 10 min, they were anesthetized with 1% pentobarbital sodium. The 
heart was quickly opened and immediately placed in ice-cold oxygen-saturated calcium free solution. 
All the blood vessels were cut around the heart except the aorta, connective tissue, and the upper 
part of the aortic arch. The heart was then hung on the Langendorff perfusion device. The insertion 
depth of the cannula should not exceed the aortic valve and should be fixed by wire ligation. After 
the aorta was retrogradely perfused without calcium solution, after 5 min, the enzyme solution was 
perfused for 20 to 30 min. The temperature around the heart and the temperature of the perfusate 
were maintained at 37 °C during the whole perfusion, and the flow rate was 6 mL min⁄ . 

When the heart became soft, it was cut into dissolved 25 mg collagenase in 5–6 mL warm Powell 
medium with 12.5 μL CaClଶ(30 μM); the atria and basal tissue were cut off, the ventricular tissue was 
cut into pieces of about 1 mm × 1 mm × 1 mm, and was gently blown with a thick open pipette. Single 
cell and cell clusters fell off, then were filtered with 200 mesh nylon mesh. The filtrate was allowed 
to stand at room temperature for 20 min, the cells were naturally sediment, the supernatant was then 
removed, 12 mL of warm Powell medium was further added to 120 μL of 𝐶𝑎𝐶𝑙ଶ (1 mM) for natural 
sedimentation, and the cells were allowed to stand at room temperature for one hour until use. The 
cells were seeded in a 12-well culture plate, and each well was about 2 × 134 cells; cells were cultured 
in a CO2 incubator in a serum-free high-dose DMEM. 

Under the inverted light microscope, the cardiomyocytes mainly showed the following forms: 
The better-performing cardiomyocytes were long rod-shaped cells stretched, the cell membrane was 
intact, the surface was smooth, the refractive index was strong, and the cells had no obvious 
pulsation, showing a clear horizontal pattern. The pattern has sharp edges at both ends—the ratio of 
length to width is {4 ≤ 𝑙 ≤ 6}:1 (l is the length of cardiomyocytes); the cardiomyocytes are blurred in 
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horizontal stripes, and there are vesicles in the cells; some of the cardiomyocytes are rounded and 
blunt at both ends. Bending or contracture, the volume becomes larger, and the cell membrane surface 
is blistered; the other cardiomyocytes become round or severely atrophied into dead cells. The 
purpose of this system is to distinguish between four types of cardiomyocytes and counts of cells of 
type A, B, and C at each time period, as shown in Figure 2. 

 
Figure 2. Different categories from the collected cardiomyocytes:(A) Normal Cardiomyocytes;(B) The 
cardiomyocytes contain small bubbles;(C) Contractures of cardiomyocytes at both ends;(D) Dead 
cardiomyocytes. 

3.2. Videotaping the Procedure 

In the process of adult rat cardiomyocyte culture, we used the Leica DCM8 model optical 
microscope to record the cardiomyocytes culture process in real time at 10 × magnification with CCD 
camera. The shooting frequency is up to 830 frames/s, with resolution of 720 × 404 × 96-pixel RGB 
color. The images shown in this article are gray-scale imaging after magnifying 10 times under an 
optical microscope. 

3.3. Automatic Counting for Cardiomyocytes 

The proposed system works as follows. First, the experimenter (i.e., medical staff) determines 
the specific stage of the cardiomyocytes culture process to be analyzed; the system then records a 
certain part in the cardiomyocytes culture video and stores the video into a time-series image. 
Furthermore, the system then arbitrarily selects an image in the same time period as shown in Figure 
3(A). In this paper, based on the unique rod-like characteristics of adult rat cardiomyocytes, a multi-
morphological automatic counting algorithm is developed. Secondly, we remove dead cells and other 
impurities according to the morphological characteristics of cardiomyocytes in the medium, and then 
automatically count the three types of cells A, B, C, and the cardiomyocytes between these three 
states, which are observed with naked eye. The different states of cardiomyocytes can be roughly 
distinguished. Thirdly, in order to let the computer system automatically distinguish the different 
states of cardiomyocytes, this paper proposes to employ hesitant fuzzy sets and clustering algorithms 
to automatically classify different forms of cardiomyocytes. 

We detail the automatic procedure using a concrete example as follows. The whole process of 
automatic counting algorithm of cardiac muscle cells is shown in Figure 1. Figure 3 is a more specific 
explanation of how Figure 1 performs the physical transformation of cell count. Therefore, by 
combining Figures 1 and 3, we can better understand the whole process of cell count. Figure 3(A) is 
the grayscale transformation of one of the color images arbitrarily selected from the time series image. 
The purpose of automatic cell counting is to remove impurities and dead cardiac cells in Figure 3(A) 
and obtain cardiac cells that are still biologically active. In order to be able to extract the edges of the 
cells, first, the gray histogram statistics are obtained as shown in Figure 3(B); the gray value of Figure 
3(A) is concentrated between 105 and 140, and the image can be binarized by repeated experiments 
of the accuracy of the cell counting. The threshold is set to  𝑏𝑖𝑛𝑎𝑟𝑦௟௘௩௘௟ = 105 256⁄  because this 
threshold makes the edge sharpness of the cell the highest. Then, the grayscale image in Figure 3(A) 
is converted into binary image by threshold transformation method, and the grayscale value of the 
cell edge contour is converted into 255 and the others into 0, which lays a foundation for the next step 
of cell edge extraction, as shown in Figure 3(C). Then, we need to extract the edge of the cell; canny 
edge detection algorithm is mainly used [43], which can be divided into the following five steps: (a) 
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Gaussian filtering is applied to smooth the image with the purpose of removing noise; (b) find the 
intensity gradients of the image; (c) non-maximum suppression technology is applied to eliminate 
side error detection; (d) apply the method of double threshold to determine the possible (potential) 
boundary; and (e) use lag technology to track boundaries.  

 
Figure 3. Example of various key phases in categorizing and counting cardiomyocytes: (A) Raw data; 
(B) histograms; (C) binarization; (D) edging; (E) qualification; (F) counting.

According to the normal ratio of length to width of cardiomyocytes {4 ≤ 𝑙 ≤ 6}:1, the system set 
the length of cardiomyocytes at {30 ≤ 𝑙 ≤ 70} and the width range to {10 ≤ 𝑑 ≤ 20}(d is the width of 
the cardiomyocytes) in millimeters. Then, the rod-shaped cardiomyocytes are distinguished from 
dead cells and impurities as shown in Figure 3(D) by following these three steps: (i) calculate the 
offset of the slope of each segment; (ii) calculate the angle of each segment; and (iii) filter the results. 
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Before delineating the edge of rod-shaped cardiomyocytes, we first obtain the information on all the 
line segments, and then filter out the short and non-straight-line segments. The remaining line 
segments are the straight lines of the rod-shaped cardiomyocytes we are interested in. Then, we 
perform linear regression analysis, obtain the length slope of these lines, and other information to 
prepare for the following clusters. At this point, we get the results of linear regression as shown in 
Figure 3(E), and finally cluster the results according to the distance relationship. The line segment 
(within the range of reasonable cardiomyocyte width) is considered to be the edge of the same cell as 
shown in Figure 3(F). In our example, the total number of identified cardiomyocytes was 73. 

3.4. Hesitant Fuzzy Sets for Clustering 

We will focus on the relevant contents of hesitation fuzzy sets (HFSs) [19] and correlation 
coefficients of HFSs [44]. 

Definition 1. [19] let X be a reference set, a hesitant fuzzy set (HFS) A on X is defined in terms of a function ℎ஺ (𝑥) when applied to X returns a finite subset of [0,1], i.e., A = {< 𝑥, h୅(x) > |𝑥 ∈ 𝑋} (1) 

where h୅ (x) is a set of some different values in [0,1], representing the possible membership degrees 
of the element x ∈ X to A. For convenience, we call h୅ (x) a hesitant fuzzy element (HFE). 

Let X = {xଵ, xଶ, ⋯ , x୬} be a discrete universe of discourse, A and B be two HFSs on X denoted as A = {< x୧, h୅(x୧) > |x୧ ∈ X, i = 1,2, ⋯ , n} and B = {< x୧, h୆ (x୧) > |x୧ ∈ X, i = 1,2, ⋯ , n}, respectively. 
It is noted that the number of values in different HFEs may be different. To compute the 

correlation coefficients between two HFSs, let l୧ = max {l ൫h୅ (x୧)൯, l ൫h୆ (x୧)൯} for each x୧ in X, where l ൫h୅(x୧)൯ and l ൫h୆(x୧)൯  represent the number of values in h୅ (x୧) and h୆ (x୧) , respectively. When l ൫h୅ (x୧)൯ ≠ l ൫h୆ (x୧)൯, one can make them to have the same number of elements by adding some 
elements to the HFE, which has less number of elements. In terms of the pessimistic principle, the 
smallest element will be added, while in the opposite case, the optimistic principle may be adopted. 
In the present work, we use the former case. Especially, if l ൫h୅ (x୧)൯ < 𝑙 ൫h୆ (x୧)൯ , then h୅ (x୧) should 
be extended by adding the minimum value in it until it has the same length as h୆ (x୧) . This idea has 
been successfully applied to distance and similarity measures for HFSs. 

According to [19], a hesitant fuzzy set (HFS) A on a reference set X is defined in terms of a 
function ℎ஺ (𝑥) , which takes X as input and returns a finite subset of [0,1]. The correlation [44] 
between two HFS’s A and B are defined as: 

𝐶ுிௌ(𝐴, 𝐵) = ෍(1𝑙௜ ෍ ℎ஺഑(ೕ)(𝑥௜)௟೔
௝ୀଵ ∙ ℎ஻഑(ೕ)(𝑥௜))௡

௜ୀଵ  (2) 

where 𝐴ఋ(௜)  indicates the j-th largest value in A. In practical applications, the elements 𝑋௜ ’s (i =1,2, ⋯ , n in X) all have different weights. Let 𝑤 = (𝑤ଵ, 𝑤ଶ, ⋯ , 𝑤௡)்  be the weight vector of 𝑥௜  with 𝑤௜ ≥0, and ∑ 𝑤௜ = 1௡௜ୀଵ . In our proposed algorithm, we normalize the correlation coefficient as follows: 

𝜌ுிௌ(A, B) = 𝐶ுிௌ(𝐴, 𝐵)[𝐶ுிௌ(𝐴, 𝐴)]ଵଶ ∙ [𝐶ுிௌ(𝐵, 𝐵)]ଵଶ = ∑ 𝑤௜(1𝑙௜ ∑ ℎ஺഑(ೕ)(𝑥௜)௟೔௝ୀଵ ℎ஻഑(ೕ)(𝑥௜))௡௜ୀଵ[∑ 𝑤௜௡௜ୀଵ (1𝑙௜ ∑ ℎ஺഑(ೕ)ଶ (𝑥௜௟೔௝ୀଵ )]ଵଶ ∙ [∑ 𝑤௜௡௜ୀଵ (1𝑙௜ ∑ ℎ஻഑(ೕ)ଶ (𝑥௜௟೔௝ୀଵ )]ଵଶ. (3) 

Definition 2. [44] Let 𝐴௝(𝑗 = 1,2, ⋯ , 𝑚) be m HFSs, and 𝐶 = (𝜌௜௝)௠×௠ be a correlation matrix, where 𝜌௜௝ =𝜌(𝐴௜, 𝐴௝) denotes the correlation coefficient of two HFSs 𝐴௜ and 𝐴௝ and satisfies: 

1. 0 ≤ 𝜌௜௝ ≤ 1, 𝑖, 𝑗 = 1,2, ⋯ , 𝑚 ; 
2. 𝜌௜௜ = 1, 𝑖 = 1,2, ⋯ , 𝑚 ; 
3. 𝜌௜௝ = 𝜌௝௜, 𝑖, 𝑗 = 1,2, ⋯ , 𝑚 . 
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We will introduce the related properties of the correlation coefficient of the hesitant fuzzy set in 
the literature [45] to explain, as follows. 

Definition 3. Let 𝐶 = (𝜌௜௝)௠ × ௠  be a correlation matrix, if 𝐶ଶ = 𝐶°𝐶 = (𝜌௜௝)௠ × ௠ , then 𝐶ଶ  is called a 
composition matrix of C, where  𝜌௜௝ = max௞ ൛min ൫ρ௜௞, ρ௞௝൯ൟ, 𝑖, 𝑗 = 1,2, ⋯ , 𝑚. (4) 

Theorem 1. Let 𝐶 = (𝜌௜௝)௠ × ௠ be a correlation matrix. Then, the composition matrix 𝐶ଶ = 𝐶 °𝐶 = (𝜌௜௝)௠ × ௠ 
is also a correlation matrix. 

Theorem 2. Let C be a correlation matrix. Then, for any nonnegative integers 𝑚ଵ and 𝑚ଶ , the composition 
matrix 𝐶௠భା௠మ derived from 𝐶௠భା௠మ = 𝐶௠భ × 𝐶௠మ is still a correlation matrix. 

Definition 4. Let C = (𝜌௜௝) ௠ × ௠ be a correlation matrix, if 𝐶ଶ ⊆ 𝐶 , i.e., max୩ ൛min  ൛ρ௜௞, ρ௞௝ൟൟ ≤ ρ௜௝, 𝑖, 𝑗 = 1,2, ⋯ , m, (5) 

then C is called an equivalent correlation matrix. 

Theorem 3. Let 𝐶 = (𝜌௜௝)௠×௠ be a correlation matrix. Then, after the finite times of compositions: 𝐶 → 𝐶ଶ →𝐶ସ → ⋯ 𝐶ଶೖ → ⋯ , there must exist a positive integer k such that 𝐶ଶೖ = 𝐶ଶ(ೖశభ) and 𝐶ଶೖ is also an equivalent 
correlation matrix. 

Definition 5. Let 𝐶 = (𝜌௜௝)௠ × ௠ be an equivalent correlation matrix. Then, we call 𝐶ఒ = (𝜌௜௝ (𝜆))௠ × ௠ the 𝜆 -cutting matrix of C, where ρ௜௝ (λ) = ൜0 if 𝜌௜௝ <  𝜆,1 if 𝜌௜௝ ≥  λ,  𝑖, 𝑗 = 1,2, ⋯ , m (6) 

and 𝜆 is the confidence level with 𝜆 ∈ [0,1] . 
In multi-attribute decision making, different attributes play different roles in the final decision 

and should be given different weights. In this paper, different weights represent the priorities of 
different attributes for categorizing cardiomyocytes. We use 𝐴 = (𝐴ଵ, 𝐴ଶ, ⋯ , 𝐴୫), X = (𝑋ଵ, 𝑋ଶ, ⋯ , 𝑋୬), 𝑤 = (𝑤ଵ, 𝑤ଶ, ⋯ , 𝑤௡)் to indicate the object set, the attribute set, and the weight vector, respectively. 
The formal algorithm of extending hesitant fuzzy sets for classifying cardiomyocytes is as follows: 
Firstly, according to Equation (3), to calculate the correlation coefficient 𝜌௜௝ of any two hesitant fuzzy 
sets (i.e., two different cardiomyocytes) 𝐴௜ and 𝐴௝ under the attribute set, we construct a correlation 
matrix C = (𝜌௜௝)௠ × ௠ , where 𝜌௜௝ = 𝜌(𝐴௜, 𝐴௝) . Secondly, we check whether 𝐶 = (𝜌௜௝)௠ × ௠  is an 
equivalent correlation matrix. In other words, we check whether 𝐶ଶ ⊆ 𝐶 , where  𝐶ଶ = 𝐶 ° 𝐶 =(𝜌௜௝ᇱ )௠ × ௠ , 𝜌௜௝ᇱ = 𝑀𝐴𝑋௞ {𝑀𝐼𝑁 (𝜌௜௞, 𝜌௞௝)} , and 1 ≤ 𝑖 ≤ 𝑘 ≤ 𝑗 ≤ 𝑚 . If it does not hold, we repeatedly 
construct the equivalent correlation matrix 𝐶ଶೖ: 𝐶 → 𝐶ଶ → 𝐶ସ → ⋯ , until 𝐶ଶೖ = 𝐶ଶೖశభ . Thirdly, for a 
confidence level 𝜆 , we construct a 𝜆 -cutting Matrix 𝐶ఒ = (𝜌௜௝(𝜆))௠ × ௠ in order to classify the HFS’s 𝐻௝′ s (𝑗 = 1,2, ⋯ , m) . If all elements of the i-th line (column) in 𝐶ఒ are the same as the corresponding 
elements of the j-th line (column) in 𝐶ఒ , then the HFS’s 𝐴௜ and 𝐴௝ are of the same type. See Algorithm 
1 for details. 

Algorithm 1. Automatic classification algorithm of cardiomyocytes based on hesitating fuzzy set 
1. Cardiomyocytes to be evaluated were selected as the evaluation objects of the hesitating fuzzy 
set, and denoted by { 𝐴ଵ, 𝐴ଶ, ⋯ , 𝐴୫ }; 
2. According to the given attribute parameters, the correlation coefficient between them is 
calculated according to formula (3), and a matrix of correlation coefficients C = (𝜌௜௝)௠ × ௠ is 
constructed; 
3. If 𝐶 = (𝜌௜௝)௠ × ௠ is an equivalent correlation matrix, then 
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Check whether it satisfies 𝐶ଶ ⊆ C , where 𝐶ଶ = 𝐶 ° 𝐶 = ቀ𝜌௜௝ቁ௠ × ௠ , 𝜌௜௝ = 𝑚𝑎𝑥௞ ൛min  ൫𝜌௜௞, 𝜌௞௝൯ൟ,  𝑖, 𝑗 = 1,2, ⋯ , 𝑚. 
Otherwise, construct the equivalent correlation matrix 𝐶ଶೖ : C → 𝐶ଶ → 𝐶ସ → ⋯ 𝐶ଶೖ → ⋯ , 𝑢𝑛𝑡𝑖𝑙 𝐶ଶೖ = 𝐶ଶ(ೖశభ)  
End if 
5. Using definition 5, construct a 𝜆 -cutting Matrix 𝐶ఒ = (𝜌௜௝(𝜆))௠ × ௠ in order to classify the HFS’s 𝐻௝′ s (𝑗 = 1,2, ⋯ , 𝑚) . 
6. If 𝜆 = 1 then 
All the elements are in a class of their own 
7. Otherwise, classify these m cardiomyocytes according to 𝜆  
8. End if 

Following the above Algorithm 1, we can classify all m HFS’s. Obviously, when 𝜆 = 1, each 
object forms a class by itself; as the value of 𝜆 decreases, the object gradually becomes coarser and 
merged into a bigger class. When 𝜆 changes from 1 to 0, the number of classifications changes from 
m to 1 and finally forms a dynamic cluster spectrum. 

4. Experimentation and Evaluation 

4.1. Experimental Setup 

The dataset was provided by our collaborator from the Xuzhou Medical College. We utilized a 
complex wavelet transform domain local phase coherence-based method for no-reference image 
sharpness assessment [46]. Sharpness assessment is often measured through blurriness evaluation, 
as blur is the most common cause of the degradation of image sharpness. Spatial domain algorithms 
often rely on detecting the variations of global or local statistical features such as variance, 
autocorrelation, kurtosis, derivative energy, and edge spread. Transform domain methods are mostly 
based on the fact that blur leads to energy attenuation at high spatial frequencies. The global or local 
frequency energy falloff can then be measured in different ways to identify image blur. We need to 
evaluate the activity of cardiomyocytes not only from the aspect ratio and edge sharpness of 
cardiomyocytes, but also from the definition of individual cardiomyocytes. Here, we introduced the 
energy gradient function [47]  dେ୓୒  to reflect the contrast of individual cardiomyocytes, so as to 
evaluate the definition of images in real time. As described in the literature [47], the ratio of the 
maximum value and the average value is obtained through the dynamic focusing window to measure 
the image definition. 

4.2. Parameter Space 

Table 1 presents the relevant parameters used in our experiments. (𝑙: 𝑑) indicates the ratio of 
length to width of cardiomyocytes; 𝐸௘௦ indicates the sharpness of the edge of cardiomyocytes; its 
maximum sharpness value is 100. However, according to the evaluation of this algorithm, the edge 
sharpness of the image cells in this experiment can reach up to 70, as shown in Table 1. When its value 
reaches 70, it can be rated as 1. 𝑑஼ைே indicates the contrast of cardiomyocyte images to represent the 
energy gradient of each cardiomyocyte. As shown in Table 1, the attribute set in our study is 
composed of three properties: 𝑋 = {𝑋ଵ, 𝑋ଶ, 𝑋ଷ}, where 𝑋ଵ indicates the length:width ratio of the cell, 𝑋ଶ indicates the entirety of the cytomembrane, and 𝑋ଷ indicates the clarity of the cell, respectively. 
The according weight vector is 𝑤 = {𝑤ଵ, 𝑤ଶ, 𝑤ଷ}் = {0.5,0.25,0.25}். 

Table 1. Parameter space. 

Type Parameters Scores 
l:d (0,1]:1 0 
l:d (1,2]:1 (0.3,0.6] 
l:d (2,4]:1 (0.6,0.8] 
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l:d (4,6]:1 (0.8,1]  𝐸௘௦  [0,10] [0,0.2]  𝐸௘௦  (10,20] (0.2,0.5]  𝐸௘௦  (20,30] (0.5,0.6]  𝐸௘௦  (30,40] (0.6,0.7]  𝐸௘௦  (40,50] (0.7,0.8]  𝐸௘௦  (50,60] (0.8,0.9]  𝐸௘௦  (60,70] (0.9,1]  𝑑஼ைே  [1,1.25]:1 [0,0.2]  𝑑஼ைே  (1.25,1.8]:1 (0.2,0.4]  𝑑஼ைே  (1.8,2]:1 (0.4,0.6]  𝑑஼ைே  (2,3]:1 (0.6,0.9]  𝑑஼ைே  (3,5]:1 (0.9,1] 

4.3. Clustering Cardiomyocyte Cells 

For the sake of brevity, we only show the steps of applying the proposed algorithm for the first 
10 cardiomyocytes. According to the early assumptions, the cardiomyocytes are divided into three 
categories. The value of 𝜆 in this example is set to 0.9795 < 𝜆 < 0.9904. Table 2 reports the mean 
value of each attribute of each cardiomyocyte in the evaluation. For instance, 𝐴଻ belongs to class A 
cardiomyocytes, 𝐴ହ belongs to class C cells, and others belong to class B cells. This result, to some 
extent, shows only the probability (or confidence intervals), as a result of applying fuzzy sets. We 
would like to highlight that for certain applications like cardiomyocyte classification, a precise result 
is often not required; usually, the experimenter only needs a high-level understanding of different 
classifications represented by the myocardial cells. 

For the integrity of the experiment, we performed the same clustering operation on the 
remaining cardiomyocytes, and obtained the following results: {Aଵ଼, Aଶ଺, Aଷଶ, Aଷହ, Aହଽ } belong to class 
A cardiomyocytes, { Aଶ଴, Aଶଷ, Aଶସ, Aଶ଼, Aଶଽ, Aସ଻, Aସ଼, Aହଵ, Aହଷ, Aହ଺, A଺଻, A଻ଷ } belong to class C 
cardiomyocytes, and others belong to class B cells. From the point of the results of statistics, 17.8% of 
the myocardial cells had died, and only 8.2% are in the best active state. 

Table 2. Categorization confidence. 

Parameter Types X1 X2 X3 
A1 {0.7,0.8,0.9} {0.7,0.8} {0.7,0.8,0.9} 
A2 {0.6,0.7} {0.6,0.7} {0.5,0.6} 
A3 {0.2,0.3} {0.2,0.3} {0.2,0.4} 
A4 {0.3,0.4} {0.2,0.3} {0.2,0.5} 
A5 {0.2,0.3} {0.3,0.4} {0.2} 
A6 {0.5} {0.4,0.6} {0.4} 
A7 {0.6,0.8} {0.7,0.8} {0.7,0.8,0.9} 
A8 {0.6,0.7} {0.4,0.5} {0.6} 
A9 {0.5,0.7} {0.5,0.6} {0.4,0.5} 
A10 {0.7,0.8} {0.6,0.7} {0.5,0.6} 

4.4. Evaluating Cell Counting 

When evaluating cell counting, we use two metrics to evaluate the reliability, namely the false 
accept rate (FAR) and the false reject rate (FRR). FAR represents the ratio of dead cells that are 
mistakenly counted toward to the result; FRR represents the ratio of living cells that are not counted 
in the number of viable cells. Formally, FAR and FRR are defined as: FAR = 𝐸ி஺ோ 𝑁ி஺ோ⁄  and FRR =𝐸ிோோ 𝑁ிோோ⁄ , where 𝐸ி஺ோ indicates the miscalculated number of dead cardiomyocytes, 𝐸ிோோ indicates 
the number of living cardiomyocytes that were not counted in the total cardiomyocytes, and 𝑁ிோோ 
and 𝑁ி஺ோ indicate the total number of cardiomyocytes in both scenarios, respectively. A high FAR 
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makes the cell-counting system inaccurate because the system accounts for too many dead cells or 
impurities; a high FRR causes the system to miss the living cells and the number of live cells counted 
is not accurate. One design goal of our proposed system is to achieve low, if not negligible, FAR and 
FRR rates. Although cardiomyocytes can generally survive for about seven days in the medium, they 
basically lose the rod-like characteristics on the third day. Therefore, in our experiment, only 50 
microscope fields are collected for the first 48 h. Cardiomyocyte counts are performed in 50 different 
regions. For the same reason, experiments conducted at different timestamps do exhibit discrepant 
results. Specifically, we expect that in the initial stage of culture, the accuracy should be higher than 
that of the later stages because most of the cardiomyocytes in the early stage retain the rod shape and 
are easy to be detected by our system. In the image-processing experiments above, the 
cardiomyocytes are cultured for 6–8 h. 

We report the experimental results in Figure 4. The X-axis indicates the experimental serial 
number (ID), e(FAR) indicates the number of dead cardiomyocytes that are mistakenly counted in a 
specific experiment, e(FRR) indicates the number of live cardiomyocytes that should have been 
counted in a specific experiment, and TOTAL represents the total number of cardiomyocytes counted 
each time. That is, 𝐸ி஺ோ = ∑ 𝑒௜(௡௜ୀଵ 𝐹𝐴𝑅)  and  𝐸ிோோ = ∑ 𝑒௜௡௜ୀଵ (𝐹𝑅𝑅) , where i corresponds to the 
experiment ID in Figure 4. The accuracy of the counting system is higher in the earlier stages because 
the myocardial cells retain the rod-like shapes. Overall, by looking at the span of 50 h, our system 
achieves both low error rates: FAR = 1.46%, FRR = 1.97%. However, when the cardiomyocytes are 
analyzed in the time range of 36–48 h, the errors rates increase to: FAR = 3.26%, FRR = 4.94%. 

 
Figure 4. Counting of cardiomyocyte during a 48 h period. 

4.5. Comparison to the Conventional Approach 

The automatic classification and counting algorithm for cardiomyocytes is rarely reported in the 
scientific literature. The main contribution of this paper is the proposal of a new computerized tool 
for automatically counting the cells with both high accuracy and high performance. To this end, the 
proposed system is mainly compared to the state-of-the-practice manual counting. We select 50 fields 
of images for each incubation period to count, calculate the mean values, and compare the two 
approaches in Figure 5. 

As shown in Figure 5A, we can see that the accuracy of the proposed system does as expected; 
it decreases over time as the accuracy of manual counting increases. We have previously explained 
why the accuracy would decrease for automatic counting. The results of the manual case can be best 
explained by the fact that the number of rod-shaped cardiomyocytes decreases at later stages and 
therefore the human errors in manual counting is significantly reduced. Of note, the highest accuracy 
rate of manual counting reaches 82.1%, yet is still lower than the lowest possible accuracy rate of the 
proposed system, 89.1%. It should be also noted that at the most important timing (i.e., the first 
observation), the highest accuracy rate of the automatic tool is as high as 98.7%, compared to the 
mediocre accuracy of the manual approach under 75%. The largest part of this automatic 
cardiomyocyte classification algorithm is that it can timely inform the experimenter of the status of 
cardiomyocytes in the culture medium, so as to facilitate the experimenter to add culture liquid later. 
If the whole culture process is looked at, this algorithm can help the experimenter to focus on the 
whole apoptosis process of a specific cardiomyocyte. 

As shown in Figure 5B, the time required for automatic counting is almost unchanged, ranging 
between 3.9–5.3 s. For manual counting, the consumed time is roughly negatively proportional to the 
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number of live cells. As a result, there is a decrease in the time consumption over time. To be more 
exact, the time of manual counting takes 92 s at the beginning and 49 s in the last observation, which 
is orders of magnitude slower than the proposed system. This clearly shows the advantage of our 
proposed method in saving time during the counting of myocardial cells. On larger scales (i.e., 
selecting images of different stages), our proposed method would perform even better at a wide range 
when compared to the manual approach. Hence, our proposed approach eliminates various 
challenges faced with manual counting and relieves medical staff of the huge stress experienced 
during manual counting, which is more prone to experimental errors. 

 
Figure 5. Comparison with the conventional approach: (A) Accuracy of the manual method and the 
proposed system, (B) performance of the manual method and the proposed system.

5. Conclusions and Discussion 

This paper presents the design and implementation of an automatic counting system for adult 
cardiomyocytes. The key idea is to extend the hesitant fuzzy set theory and customize it in the context 
of a biomedical environment. Hesitant fuzzy sets have obvious advantages for fuzzy image 
classification. This system solved the movement noise influence of the traditional algorithm and the 
amorphous particle image automatic clustering to ensure medical subjects quickly understand the 
entire process of the myocardial cell culture. The system is extensively evaluated with adult 
cardiomyocytes and compared with the state-of-the-practice approaches. Experimental results show 
that the proposed system incurs low error rates (as low as 1.85%) and outperforms the manual 
counting approach in terms of both accuracy (98.7% vs. 75%) and performance (3.9 s vs. 92 s). In the 
future, we plan to carry out extreme-scale experiments to verify the applicability and effectiveness of 
the proposed system. We also plan to extend the platform to new applications in addition to 
cardiomyocyte analysis. 
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