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Abstract: We introduced a novel spatial model based on the distribution of generalized extreme
values (GEV) to analyze the maximum intensity levels of earthquakes with incomplete data
(randomly censored) on the Pacific coast of southern Mexico using a random censorship approach.
Spatiotemporal trends were modeled through a non-stationary GEV model. We used a multivariate
smoothing function as a linear predictor of GEV parameters to approximate nonlinear trends.
The model was fitted using a flexible semi-parametric Bayesian approach and the parameters are
estimated via Markov chain Monte-Carlo (MCMC). Through a rigorous simulation study, we showed
the robustness of both the model and the estimation method used. Maps of the location parameter on
the spatial plane for different periods of time show the existence of local variations in the extreme
values of seismicity in the study area. The results indicate strong evidence of an increase in the
magnitude of earthquakes over time. A spatial map of risk with maximum intensity of earthquakes
in a period of 25 years was elaborated.
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1. Introduction

Earthquakes are among the natural disasters that have caused the greatest harm to humanity.
They are one of the main types of natural disasters that can occur without warning, resulting in
devastating effects and even thousands of deaths in a matter of seconds. Nowadays, considerable
efforts have been made to study and investigate the possible causes and mechanisms that trigger
an earthquake, but no method has been able to predict the occurrence of an earthquake. Although
the short-term forecast of an earthquake is currently an unresolved problem, we can still use the
distribution of the maximum to study the extreme values and thus calculate the long-term risks of
intense earthquakes. The occurrence of an earthquake is a problem involving multiple geophysical
processes, such as the movement of magma, the rotation of the Earth, the resistance of materials in
the subduction zones and many other causes and factors. Different models have been proposed to
study the dynamics of the movements produced during an earthquake using statistical physical
approaches [1]. Some research indicates that there are some precursor phenomena such as changes in
seismic activity, electromagnetic signals, variations in the ionosphere and chemical emissions [2–5].
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Ultra-low frequency (ULF) variations in Earth’s electrical and magnetic fields have often been observed
before earthquakes [6], however, the chances of false positives and negatives imply the need for a more
rigorous approach to obtain sufficient credibility in the scientific community [3]. Despite occasional
evidence, no physical quantity related to electromagnetic waves has been completely accepted as a
trigger or warning at the pre-seismic stage [3]. Even for large earthquakes, no precursors have been
detected that provide a reliable forecast and no proven method has been able to predict earthquakes in
the short term [1,3]. More optimistic approaches consider that one of the reasons for the skepticism of
short-term prediction is because the observations of the precursors have not yet been perfected [7].
Although accurate earthquake forecasts are not available, it is possible to establish risks of future events
using statistical inference [3]. One of the most reliable and robust methods for the study of earthquakes,
based on long-term studies, is the statistical technique known as the extreme value theory (EVT).

The EVT is used to model extreme events in a wide variety of environmental, economic and
engineering processes [8]. In environmental sciences, it is used to study the long-term risks of extreme
events such as rainfall [9], winds [10], heat waves [11] and earthquakes [12,13]. The generalized extreme
value (GEV) distribution is an asymptotic distribution built on the assumptions of independence and
stationarity of a suitably long sample. However, although extreme value analysis was developed for
the study of stationary phenomena, it has been adapted for the study of non-stationary observations
with spatiotemporal trends [14].

One of the most common problems related with the information obtained by sensors is the loss of
information caused by the failures of the system responsible for measuring and collecting the data.
This loss can be due to several reasons, e.g. a measuring device suddenly suffering a breakdown and
obtaining an incomplete measurement, or instruments not being calibrated for measurements above
or below a certain level [15]. In such cases, the likelihood must be adjusted to consider the effect of
censored observations, depending on the type of censorship presented in the data [16].

Statistically, a sample is either left-censoring if its measurement cannot be observed but it is
known that it is to the left or below a certain value, or it is right-censoring if its measurement is
above or to the right of a given value. Three types of censorship are considered. Type I occurs when
the observation is below a fixed number. In Type II censored data, a fixed number of observations
is censored. Type III or random censoring occurs when each subject, earthquake maxima in this
case, has a censoring time. In the case of generalized extreme distribution, some studies [17,18]
have investigated the estimation of the extreme value index when the data are subject to random
censorship. Bhattarai [19] used the GEV distribution for the analysis of censored flood samples.
The other distributions belonging to the generalized extreme value distribution, such as the Weibull,
Gumbel and Frétche distributions, have also been widely used in the case of censored samples for both
classical and Bayesian setups [20–22].

The estimation of the parameters of the GEV distribution with censored data has been carried
out using several approaches, including maximum likelihood [23,24] and partial probability weighted
moments and L-moments [25]. The L-moments estimators are less subject to estimation biases being
more efficient than those obtained by the method of moments and are sometimes more accurate in
small samples than those obtained by maximum likelihood [19,26]. Hosking [26] showed that, in the
case of outliers in the data, the method of L-moments is more robust than the conventional moments
methods, since these are linear functions of the data. Subsequently, Hosking [27] extended the theory
of L-moments to the analysis of censored data.

Analysis of censored data is required when data are no consistent, for example, when a sensor
with calibration problems gathers values falling above or below a threshold, or in medical studies
when patients have to leave the study due to health difficulties. However, on certain occasions, it is
required to artificially censor the value measured in data, in order to guarantee obtaining long periods
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of return, particularly in the analysis of extreme flood values [19]. Extreme value of earthquake
intensity data can also be studied by means of Type III censorship because the threshold used in the
censorship mechanism is a random variable. In this sense, the main objective of this study was to
analyze earthquake intensity data with the extreme value model corrected by Type III censorship or
random censorship. We justify the random censorship in our analysis by the following fact. It is known
that an earthquake occurred above a random threshold in certain blocks used to determine the block
maxima; however, their current values are unknown and are marked as censored values.

2. Materials and Methods

2.1. Study Area

The seismicity and tectonics of southern Mexico are characterized by the subduction of the
Cocos and Rivera plates beneath the North America plate [28]. The Cocos plate has been subducting
underneath the North American plate at a constant and relatively shallow angle of 12◦–15◦ at a rate
of about 6 cm/year [29], affecting the seismicity of the states of Michoacan, Guerrero and Oaxaca.
Similarly, the Cocos and North American plates are joined to the Caribbean plate in a trench-shaped
area forming the zone of subduction of the Cocos plate beneath that of the Caribbean, increasing the
seismicity in the states of Oaxaca and Chiapas. The subduction of the Rivera plate beneath the Jalisco
block is relatively low, which affects the states of Colima and Jalisco. Figure 1 shows the study area as
well as the spatial distribution of the maxima of earthquake intensities between 16 September 1992
and 20 February 2018.

Figure 1. Study area.
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2.2. Methodology

2.2.1. The GEV Distribution

Classical results on order statistics on the maximum of a random sample Y1, ..., Yn show that the
distribution of Mn = max (Y1, ..., Yn) degenerates its mass of probabilities into a point as the sample
size increases and consequently the exact distribution of the Mn is a degenerate function when the
sample size is large enough. In such cases, the distribution Mn can be stabilized using a sequence of
constants {bn > 0} and {an}, through Gn = (Mn − an)/bn. Transcendent statistical results show that
the asymptotic distribution of Gn is a non-degenerate, limit distribution known as the generalized
extreme value (GEV) distribution [30]:

G(y) =

exp
{
−
(

1 + κ
(y−µ)

σ

)− 1
κ

}
, κ 6= 0; 1 + κ

(y−µ)
σ > 0

exp
{
− exp

(
− (y−µ)

σ

)}
, κ = 0

where −∞ ≤ y ≤ +∞,−∞ ≤ µ ≤ +∞,−∞ ≤ κ ≤ +∞, σ > 0 (see [31]).

2.2.2. Estimation of the Parameters of the GEV under Random Censoring

Consider a set of n independently and identically distributed random pairs (Mt, δt). Specifically,
in the extreme values framework, we obtain the maximum values Mt, in blocks of information in
which a censored value Ut can exist. We assume that the variables Mt and Ut are independent.
Let Yt = min(Mt, Ut) and δt = I (Mt ≤ Ut), a failure indicator that shows whether the value of Yt is
censored (δt = 0) or not (δt = 1). δt is different from censoring indicator Ct = I (Ut ≤ Mt). Then, the
distribution of Mt, is given by:

Mt ∼ GEV(µt, σt, κ)

Let Gt (yt|µt, σt, κ) be the probability distribution function of Mt, g (yt|µt, σt, κ) is its probability
density function and denote G∗ (yt|µt, σt, κ)= 1− G (yt|µt, σt, κ) as its survival function. Similarly,
let F (u) and f (u) be the survival and density functions of Ut, respectively. The joint density function
of Yt may be obtained from the joint density function of Mt and Ut, thus we can construct the likelihood
function from a random sample of maxima as follows [16]:

L (µt, σt, κ|yt) =
n

∏
i=1

[G∗ (yt; µt, σt, κ) f (yt)]
1−δt [F (yt) g (yt; µt, σt, κ)]δt

Arranging the terms, we finally obtain:

L (µt, σt, κ|yt) =

{
n

∏
i=1

[F (yt)]
δt [ f (yt)]

1−δt

}
∗
{

n

∏
i=1

[G∗ (yt; µt, σt, κ)]1−δt [g (yt; µt, σt, κ)]δt

}

Assuming that the censoring is non-informative, i.e., F (u) and f (u) do not involve the parameter
µt, σt, κ , then the likelihood on the data is:

L (µt, σt, κ|yt) ∝
n

∏
i=1

[G∗ (yt; µt, σt, κ)]1−δt [g (yt; µt, σt, κ)]δt

We analyze the extremes on a spatial region using functions adjusted to the parameters of the
GEV distribution. These functions model the trends in the maxima and relate the parameters with
covariates through functions. In this research, we consider using the following linear predictors:
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µt =
P1

∑
i=1

Xtiβ1i +
P2

∑
i=1

Ztiu1i,

log σt = σ (1)

κt = κ

where{Z}ij = exp
[
−
(∥∥∥xi − kj

∥∥∥)2
]

, i = 1, . . . , n, j = 1, . . . , p2 and kj the jth centroid obtained using

the method of average linkage hierarchical clustering. We construct the design matrix C joining the
columns of X and Z and rewrite the linear predictors as µt = Cb1 ; log σt = σ ; κt = κ.

2.2.3. Bayesian Implementation

The logarithmic scale in which the intensities of the earthquakes are measured directly affects
the tails of the distribution of extreme values and increases the difficulty of correctly estimating the
parameters. Bayesian inference helps solve this problem. Assigning an appropriate a priori distribution,
we can include previous information about the parameters. We incorporate a priori information about
the parameters θt = (µt, σt, κ) of the GEV distribution, using the following hierarchical Bayesian model:

π (θt, ω|yt) ∝ π (yt|θt)π (θt|ω)π (ω) (2)

where π (yt|θt) is the GEV distribution, π (θt|ω) is the a priori distribution of the parameters and
π (ω) is the a priori distribution of the hyperparameters.

Applying the conditions in the parameters given in Equation (1), we reformulate the parameter
and hyperparameter sets using ω∗ = (β1, β2, u1, u2, κ) and ω∗∗ = {σ1, σ2}, respectively. Therefore,
the posterior distribution can be written as:

π (ω∗, ω∗∗|yt) ∝ π (yt|ω∗)π (ω∗|ω∗∗)π (ω∗∗) (3)

where π (yt|ω∗) is the GEV density under the conditions on the parameters given in Equation (1).
We regularize the model using normal distributions with zero mean for the coefficients of the linear
predictor, and a uniform a priori distribution with mean −0.75 for the shape parameter. Therefore,
the prior distribution set for ω∗ are β1 ∼ N

(
0, 104 I

)
, β2 ∼ N

(
0, 104 I

)
, u1|σ1 ∼ N(0, σ2

1
(

IP2 + D′dDd
)
),

u2|σ2 ∼ N
(
0, σ2

2 IP2

)
and κ ∼ Uni f orm(−0.9,−0.59). The prior distribution for the hyperparameters

ω∗∗ is given by σ2
1 ∼ Hal f − Cauchy(25) and σ2

2 ∼ Hal f − Cauchy(25).
We have based the parameters estimation on the average of 300,000 samples drawn by a MCMC

random walk algorithm. To sample the a posteriori distribution, we generate candidates from a normal
density function, and accept with probability:

α (θ∗|θ) = min
(

1,
π (x|θ∗)π (θ∗) Q (θ∗, θ)

π (x|θ)π (θ) Q (θ, θ∗)

)
(4)

where π (θ) is the prior distribution for the parameters, π (x|θ) is the likelihood and Q is the proposal
density. Parameters obtained with the maximum a posteriori (MAP) approach are also provided.
The estimators of the map method are similar to those obtained by the maximum likelihood method,
which, in the case of the a priori normal distribution, bring about the regularization of the model and
the shrinkage of the coefficients of the linear predictor.

2.2.4. Simulation Study

We conducted a simulation study to verify the model efficiency, the numerical convergence and
the limitations in the estimation procedure. We simulated a set of 800 extremes artificially censored
from a GEV model with a parametric setting given by Equation (5) and 40 percent random censorship.
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We chose the x1 and x2 covariates, corresponding to the longitude and latitude, uniformly from the
interval [−91,−107] and [14, 20], respectively.

µt = 8e[
1
2 (x1−17)2+(x2+98.5)2]

σt = σ = 1 (5)

κt = κ = −0.6

To determine how the result is affected by the number of nodes in Equation (1), we adjusted
two models, the first setting p2 = 20 and the second with p2 = 80 in Equation (1). The estimates of
the shape parameter were −0.59 and −0.69, respectively. The estimates of the σ parameter were 1.38
and 1.05, respectively. The functions used to generate the trend of the maxima and defined by the
scale parameter of the GEV distribution, are shown in Figure 2a. Because the function corresponding
to µ involves the product of the exponentials to the square of the covariates x1 and x2, it cannot be
represented as the sum of additive functions of these two covariates. For simplicity, functions for the
scale and shape parameter are constant.

(a) (b) (c)

Figure 2. (a) Real functions and (b,c) functions obtained by fitting the parameters of a non-stationary
GEV model with P2 = 20 and P2 = 80 knots, respectively, to simulated data with a sample size of
n = 500.

The results of the simulation showed that the proposed model correctly estimates the actual
function used for the trend (Figure 2a). Although the magnitude of the estimates differs from the
original, the difference decreases as the number of knots increases, from p = 20 to p = 80 (Figure 2b,c).
Similarly, a comparison of estimators of κ for both p = 20 and p = 80 reveals that estimates of the
shape parameter was more accurate in the p = 20 case, with an error less than 0.01, compared with the
estimate obtained with p = 80, for which the deviation was around 0.1. In contrast, the estimators
of the scale parameter are slightly skewed to the left due to the effect of the a priori distributions on
the parameters.

An independent testing set of 1000 observations was simulated to validate the fitted model.
The correlation between the observed and the estimates was 0.86 and 0.94 with p = 20 and p = 80,
respectively. The parameters estimated by the spline function can barely be interpreted individually
because they constitute a large set of parameters, which have the main objective of approximating
the nonlinear characteristics of an arbitrary function. However, because the variables have been
standardized, it is possible to evaluate the effect of the change of each coefficient on the change in the
parameters of the GEV distribution.
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2.3. Data Collection

The data corresponded to 845 observations of monthly block maxima of earthquake intensities in
the seismological scale of moments, between 16 September 1992 and 20 February 2018, obtained at 97
fixed monitoring stations of the Mexican Seismic Alert System (Figure 1). The SASMEX system is a
network formed by the Sistema de Alerta Sísmica de la Ciudad de México (SAS) and the Sistema de
Alerta Sísmica de Oaxaca (SASO). The SAS was designed and developed by Centro de Instrumentación
y Registro Sísmico (CIRES) in 1988. A few years later, as a result of the damage caused to the state
of Oaxaca by the earthquake that occurred on 15 June 1999, the state government gave CIRES the
responsibility of building the SASO system. In 2012, the Oaxaca and Mexico City authorities agreed to
integrate the functions of SASO and SAS into one system known as SASMEX [32].

2.4. Data Analysis

The extreme values were obtained from space-time blocks using the block maxima approach [33].
In the spatial plane, a total of 22 rectangular space blocks were generated, and the area of each
block was 36,925 km2. In the temporal plane, the width of the time interval was one month. Thus,
the rationale for censoring data in our study is as follows. Some blocks exhibited missing information
(47% of the total number of blocks). Such missing observations could have values, in some cases,
higher than the maximum value observed in the block (see Figure 3). However, in other cases, missing
values could be lower than the minimum found, thus such observations should not be censored
(unfortunately, this information is unknown), thus the maximum found value was “artificially”
censored using a random threshold. Thus, the maximum value was eliminated, and the threshold
estimated was assigned for the block and the observation was then flagged as “censored observation”.
Furthermore, to avoid loss of information for analysis, the difference between the threshold estimated
and the maximum observed was minimal. Therefore, both censored and uncensored observations data
were included to estimate likelihood following the method in Section 2.2.2. We constructed a GEV
model for the Maxima of earthquakes on the Pacific coast of southern Mexico, using multivariate
smoothing functions of spatiotemporal covariates, latitude (s1), longitude (s2) and time (t), to fit the
trends in the non stationary GEV model. To regularize the model and avoid abrupt changes between
the coefficients, we assigned a N(0, σ2

1
(

IP2 + D′dDd
)
) a priori distribution to the coefficients u′1s in the

model in Equation (1), where Dd (with d = 1) is a matrix such that Ddu1 = ∆du1 constructs the vector
of dth differences of u1.

Figure 3. Random censoring. X, event; M, maxima; U, censored observation. The blue dotted line
shows the limits of the blocks.

3. Results and Discussion

A descriptive summary of the data by each spatial block is shown in Table 1. In this table, we can
see that the magnitude of the maxima for each block is varied and heterogeneous. In the area of
Block 4, whose central point is in the parallel located at 15◦ N and in the meridian located at 94.5◦ W,



Appl. Sci. 2019, 9, 2863 8 of 14

the maximum intensity recorded was Mw8.2 regarding to the magnitude of the moment, in contrast to
the maximum intensity measured in Block 22, where the maxima was Mw4.6. In six of the twenty-two
blocks, the maximum magnitude exceeded Mw7.0. An important characteristic that we observed in all
the blocks is that there is a marked difference between the third and fourth quartiles, which indicates
that a distribution of heavy tails should be appropriate for the study of this type of data.

Table 1. Descriptive summary information on the Maxima of earthquakes on the Pacific coast of
southern Mexico.

Block ID Long (W) Lat (N) Min. 1st Qu. Median Mean 3rd Qu. Max.

1 −91.5◦ 14◦ 6.1 6.2 6.8 6.7 7.3 7.3
2 −91.5◦ 15◦ 6.9 6.9 7 7 7 7
3 −91.5◦ 16◦ 4.7 4.9 5.1 5.1 5.2 5.4
4 −94.5◦ 15◦ 4.2 5 5.3 5.5 5.8 8.2
5 −94.5◦ 16◦ 3 4.1 4.3 4.4 4.7 6.6
6 −94.5◦ 17◦ 3.8 4.2 4.4 4.5 4.7 6.7
7 −94.5◦ 18◦ 4 4.4 4.6 4.8 4.9 6.4
8 −94.5◦ 19◦ 5.5 5.5 5.5 5.5 5.5 5.5
9 −97.5◦ 15◦ 4.1 4.2 4.6 4.6 5 5.1

10 −97.5◦ 16◦ 2.9 3.9 4 4.2 4.3 7.4
11 −97.5◦ 17◦ 2.2 3.8 4 4.1 4.2 5.8
12 −97.5◦ 18◦ 3.8 4.1 4.4 4.7 5.3 7.1
13 −97.5◦ 19◦ 4.8 4.8 4.8 4.8 4.8 4.8
14 −100.5◦ 16◦ 3.6 4 4.3 4.3 4.6 5.2
15 −100.5◦ 17◦ 3.1 3.9 4.1 4.2 4.4 7.2
16 −100.5◦ 18◦ 3.5 4 4.1 4.4 4.4 6.5
17 −100.5◦ 19◦ 4.2 4.3 4.4 4.3 4.4 4.4
18 −103.5◦ 17◦ 5.1 5.1 5.1 5.1 5.1 5.1
19 −103.5◦ 18◦ 3.7 4 4.3 4.5 4.7 6.5
20 −103.5◦ 19◦ 3.7 4 4.1 4.3 4.4 5.9
21 −106.5◦ 19◦ 4.1 4.2 4.2 4.8 5.3 6.3
22 −106.5◦ 20◦ 3.8 4 4.1 4.2 4.3 4.6

Clearly, tectonic and physical conditions in southern Mexico vary from region to region,
causing seismic patterns that are reflected in extreme events of earthquakes in surrounding areas.
Furthermore, these trends may also vary from one time period to another. We verified this behavior
again in the statistics of means and quantiles presented in Table 1, which show that the magnitudes
of the maxima studied tend to vary from one place to another. This fact justifies the modeling of the
location parameter with respect to time and space.

The covariates used to estimate spatiotemporal trends were latitude, longitude and time.
A hierarchical Bayesian model was fitted to analyze the maxima of earthquakes on the Pacific coast
of southern Mexico. At the first level, we modeled the intensities of maxima earthquakes using
the generalized extreme value distribution with random censorship; at the second level, we used
multivariate smoothing spline functions to model nonstationary spatiotemporal extremes; and, at
the third level, we assumed a priori distribution functions for the parameters of the model. Table 2
shows the estimates of the fitted model. In other words, this formulation has the advantage of
analyzing maxima through hierarchical models, or stages. The first stage represents the previous
information; the second stage represents the trends in the maxima; and the third stage represents
the distribution of the data. We constructed the joint probabilities distribution of the parameters
and the data, also known as posterior density, using the conditional distributions, mentioned above
as stages, formally represented in Equation (2). The procedure used in this work can be easily
replicated by: (1) constructing the likelihood function given by Section 2.2.2; and (2) running the
Metropolis–Hastings algorithm with the acceptance probabilities given by Equation (4). We fitted
our Bayesian hierarchical model with the conditions expressed in Equation (1), setting p2 = 80. The
statistical analysis was performed using the R 3.3.1 software. The samples were generated using a
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Metropolis–Hastings algorithm, with a Gaussian random walk. We generated 300,000 samples using
a burn-in period of 50,000. A look at the logarithm of the a posteriori likelihood indicates that the
algorithm successfully converged.

Table 2. Estimates and 95% credible intervals of the non-stationary GEV model for the maxima
of earthquakes.

Coef. Mode Mean 95% CI

β(1)0 0.8136 0.7004 (0.4677, 0.8079)
σ 0.5710 1.1110 (1.0855, 1.1697)
κ −0.5900 −0.5930 (−0.6014, −0.5900)
σ2

1 26.1363 83.3487 (26.2751, 810.0938)

The spatial smoothing for the years 1995, 2000, 2005, 2010, 2015 and 2018 for the location
functions is shown in Figure 4a–f, respectively. Through this, we observed that the model captured the
spatiotemporal patterns present in the data. Similarly, we observed variations of the location parameter
in the spatial plane. Typically, these spatiotemporal variations could not be modeled using only linear
functions with a few parameters, as they could not catch the complex nonlinear variations present in
the seismicity phenomenon. However, it is still possible to use several types of parameterized linear
functions, such as the model in Equation (1), where the interaction effects of the original covariates are
included through auxiliary covariates.

(a) (b) (c)

(d) (e) (f)

Figure 4. Estimated spatial smoothing of the location parameter for the years: (a) 1995; (b) 2000;
(c) 2005; (d) 2010; (e) 2015; (f) 2018.
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Several results were obtained by analyzing the spatial smoothing set for the location parameter
over time, as shown in Figure 4a–f. Firstly, we could observe that each of the functions estimated
through time showed several peaks or maximums, which correspond to the places where the most
intense earthquakes occur. Secondly, it can be observed that the estimated functions for the years 1995,
2000 and 2005 have similar characteristics. However, in the year 2010, the patterns began to change,
until later, for the years 2015 and 2018, we observed different patterns compared to the first few years.
Furthermore, the intensities of earthquakes increase over time, which shows that the risk of extreme
events increases with time.

The flexibility of the proposed model allows studying the temporal variations in each geographical
location on the study area. Figure 5 shows the temporal dynamics at six geographical locations in
which we observed a period of increased seismic activity between the years 1998 and 2002 and a
period of greater seismic activity between 2010 and 2016 that remained at high levels until the last
years of the period of time studied. Consistently with these results, in 2017 and 2018, three of the
strongest earthquakes of the studied period were recorded. A strong earthquake of Mw8.2 hit the
southern coast of Mexico, on 7 September 2017, approximately 87 kilometers southwest of Pijijiapan
in the state of Chiapas, being the second strongest recorded in the history of the country. Two weeks
later, on 9 September 2017, a second earthquake of magnitude Mw7.2, struck the states of Puebla and
Morelos, in the center of the country, causing severe material and human losses. A few months later,
on 16 February 2018, a strong earthquake of Mw7.2 hit the south coast of Mexico again, approximately
37 km northeast of Pinotepa de Don Luis in the State of Oaxaca. The probability of large earthquakes
on the coasts of Oaxaca and Guerrero is greater compared to other regions, due to the proximity they
have with boundary plates. However, the Puebla and Morelos earthquake hit the central zone of the
country, far from the limits between tectonic plates. Recent research suggests that these earthquakes
should not be unexpected. An entropy change of seismicity under time reversal, considered as a
non-seismic precursor of earthquakes, was identified several months before the occurrence of the
major earthquake [34,35].

Figure 5. Estimated temporal smoothing of the location parameter of earthquake maxima at six
geographical locations on the Pacific coast of southern Mexico.

In this study, we developed a model of extreme values with censoring data for the earthquakes on
the Pacific coast of southern Mexico using a robust and solidly-based theory. An important application
of the results of our study is through a risk map or return level map. The return level Zp is the
threshold at which an extreme value is exceeded with probability p, which is expected to occur once
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every 1/p years [36]. Figure 6 shows the strength of earthquakes for a return period of 25 years built
using a spatial model. The stability of the results shown in Figure 6 is strongly influenced by the size
of the sample. Therefore, adding or eliminating a set of extreme values, the results obtained should
change. The initial value of the algorithm also modifies the convergence time of the MCMC algorithm,
causing in the worst case, the non-convergence of the algorithm. Isolines in the map (Figure 6) can
be used to discover the spatial trend of strength of earthquakes. In fact, earthquakes greater than
Mw8 regarding to the magnitude of the moment in a return period of 25 years can be expected in
the Southeast part of the State of Chiapas (Figure 6). An interesting issue that explains the spatial
trend of strength of earthquake is that the boundaries of the Cocos, North America and Caribbean
plates are converging slightly to the south from the region that presents the highest estimated values.
Further, in the boundary between Veracruz and Oaxaca States can be identified a region moderately
vulnerable to the presence of earthquakes with values of strength of earthquakes higher than 7.5.
Finally, a decrease of the estimated intensity of earthquakes can be detected in regions further away
from the southern coast of Mexico. This research confirmed the latent risk of earthquakes in the region
using empirical data gathered from a network of sensors spatially-distributed and administered by the
SASMEX system. These findings should encourage using stronger specifications when building civil
infrastructure in order to decrease the effect of earthquakes.

Figure 6. Strength of earthquakes estimated for a 25-year return period in southern Mexico.

Similar to the findings reported by studies in other countries, the extreme events of earthquakes
studied here exhibited spatial variations within the study area [37]. These spatial variations have
also been found in the results of various types of studies on seismogenic zoning [38]. The analysis of
the extreme values of earthquakes using the extreme distribution of the value in the non-stationary
approach, in addition to allowing the calculation of the probabilities of extreme events, helps to solve
the problem of seismogenic zoning in a limited area, by establishing suitably chosen thresholds in the
isolines of the estimated smoothed function of the location parameter.

4. Conclusions

In this research work, we studied the extreme non-stationary values of earthquakes with censored
data using a Bayesian approach. One of the benefits of this model is that the spline function used
to calculate the parameters of the GEV distribution allows for the adjustment of a wide variety of
nonlinear functions, which are common in this type of data. The parameters are estimated via Markov
chain Monte-Carlo (MCMC), which has the advantage of sampling analytically intractable posterior
distributions and simultaneously estimating unknown hyperparameters. It also allows the elimination
of potential values of invalid parameters. Additionally, estimates were obtained by adjusting to the
non-stationary GEV model, in which we corrected the likelihood function in order to consider the
effect of random censorship to obtain more reliable results. Our model was validated through a
rigorous simulation study that gives support and validity to our results. An important challenge is
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extending this work to the case when using different a priori distributions for the GEV parameters. Our
findings indicate the existence of perfectly delimited areas with greater risks of occurrence of strong
earthquakes. These results should help administrative authorities to improve prevention policies and
standards in the case of an extreme event.
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