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Abstract: In the present study, we have demonstrated a facile and robust way for the fabrication of
Cu-graphite composites (CGCs) with spatially-aligned graphite layers. The graphite layers bonded to
the copper matrix and the resulting composite structure were entirely characterized. The preferential
orientation and angular displacement of the nano-sized graphite fiber reinforcements in the copper
matrix were clarified by polarized Raman scattering. Close investigation on the change of the Raman
G-peak frequency with the laser excitation power provided us with a manifestation of the structural
and electronic properties of the Cu-graphite composites (CGCs) with spatially-distributed graphite
phases. High resolution transmission electron microscopy (TEM) observation and Raman analysis
revealed that reduced graphite oxide (rGO) phase existed at the CGC interface. This work is highly
expected to provide a fundamental way of understanding how a rGO phase can be formed at the
Cu-graphite interface, thus finally envisioning usefulness of the CGCs for thermal management
materials in electronic applications.

Keywords: copper–graphite composites; anisotropic layered structure; spark plasma sintering;
Raman spectroscopy

1. Introduction

As the trend in power electronics systems moves toward smart and wearable electronics,
effective use of thermal management materials is of critical importance due to the strong demand
for the enhancement of power densities and miniaturization and weight reduction [1–6]. Of the
various thermal management elements, copper (Cu) is among the most widely used materials
for various kinds of passive heat exchangers including sinks, spreads, and pipes because of its
excellent thermal conduction (~400 W/m·K) and weldability with solders, thereby making it compatible
with electronic applications [7]. However, since Cu has a relatively high density of 8.96 g/cm3

compared to aluminum (2.70 g/cm3), its use can be restricted in applications such as the heat
dissipation of electronics, automobile and aerospace electronics, of which space and weight is a strict
requirement [3,8,9]. Therefore, fabricating and developing a new heat management materials system
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with lower density and good weldability still remains a big challenge in future electronic cooling.
Recently, as a promising alternative, carbon allotropes such as diamond [10], natural graphite [11],
synthetic graphite [12,13], carbon nanotubes/fiber/flakes [14], and graphene [15–18] have attracted
great attention. However, when a polymeric thermal adhesive is applied for passively exchanging
the heat at the interfacial region between the heat source and the carbon-based heat dissipater,
undesired thermal stress and warpage in electronic components possibly takes place because of
discrepancy in thermal expansion coefficients [3,19,20]. Another presumable issue in the solely
used carbon-based materials is weak bonding with solders, thus leading to ascending thermal
resistance [3,19,20]. To amend the aforementioned issues, effort to combine Cu with carbon-based
materials have been made to enhance thermal management capability and concurrently reduce
the density of Cu [21,22]. Actually, recent studies have successfully shown a variety of routes to
fabrication of Cu-matrix composites by incorporating the carbon allotropes into a Cu matrix such
as hot pressing [22], vacuum pressure infiltration [21], electro- [3,23,24] and electroless plating [25],
chemical vapor deposition [26], spark plasma sintering [27], etc. Unfortunately, most studies have
focused on improvement of thermal conductivity, reduction of Cu density and the distribution of
carbon-based reinforcements, rather than characterization of the interfacial region between the Cu
matrix and the carbon allotropes as reinforcements.

In the present study, we have demonstrated a facile and robust way for the fabrication of
Cu-graphite composites (CGCs) with spatially-positioned graphite phases. The graphite layers bonded
to the copper matrix and the resulting composite structure were entirely characterized. The preferential
orientation and angular displacement of the nano-sized graphite fiber reinforcements in the copper
matrix were clarified by polarized Raman scattering. Close investigation of the change of the Raman
G-peak frequency with the laser excitation power provided us with a manifestation of the structural
and electronic properties of the Cu-graphite composites (CGCs) with spatially-distributed graphite
phases. Here, we compared the thermal characteristics of G-peak shifts and strengths due to thermal
reduction at the copper, graphite, and graphene interfaces in the composites.

2. Experimental Procedure

2.1. Preparation of Copper–Graphite Composite Materials

Graphite (fiber type, density of ~2.2 g/cm3, Qingdao Krofmuehl Graphite Co., Ltd., Pingdu,
China) with a size discrepancy ranging from 100 to 120 µm was selected as the reinforcement material.
Prior to electroless plating of Cu on the whole surface of the graphite fiber, the graphite fibers were
thermally handled at an elevated temperature of 380 ◦C in air for 60 min to activate the surface and
then the samples were ultra-sonicated in acetic acid (CH3CO2H). The Cu coating on the graphite
fibers was conducted in an electroless plating bath containing an aqueous solution of 70 wt.% cupric
sulfate pentahydrate (CuSO4·5H2O) and 10 wt.% formaldehyde (HCHO) at 45 ◦C with pH values of
8–11 (tuned with a varying content of NaOH). The coating thickness of Cu on graphite fibers was
determined with the graphite fraction added to the electroless plating bath. After vigorously rinsing
the samples with distilled water, they were dried in a vacuum oven at 60 ◦C. Finally, the graphite fibers
coated with Cu of 2–3 µm were obtained.

2.2. Spark Plasma Sintering

Consolidation of copper-coated graphite samples was performed as follows: First, the samples
were loaded into a rectangular graphite die (inner diameter of 40 mm × 40 mm) and then thermally
treated by using spark plasma sintering (SPS-3.20MK-V, Dr. Sinter, Sumitomo Coal Mining Co.,
Ltd., Saitama, Japan) under a controlled condition of pressure ~50 MPa and temperature ~920 ◦C,
thereby forming the copper–graphite composites (CGCs).
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2.3. Characterization of Copper–Graphite Composites

A Raman spectroscopy (InVia Reflex, Renishaw) was applied for characterizing the chemical
structure of the carbon in the composites. A characteristic laser wavelength of 514 nm was used to
irradiate the surface of the composite material. The interfacial area was carefully observed by using
field-emission scanning electron microscopy (FE-SEM; JSM-7900F, JEOL) and transmission electron
microscopy (TEM; JEM-2100F, JEOL). The chemical composition of the copper-graphite interface in
the copper-graphite composite sintered body was intensively investigated by X-ray photoelectron
spectroscopy (XPS; ESCALAB 250).

3. Results and Discussion

The graphite fibers were coated with Cu through an electroless plating process, thus forming
the CGC powders with a volume ratio of 30 wt.% graphite and 70 wt.% Cu as shown in Figure 1a,b.
Thickness of the deposited Cu was observed to be within the range of 2 to 3 µm. Subsequently,
these composite powders were consolidated during the spark plasma sintering (SPS) process as
displayed in Figure 1c,d. Cross-sectional images of the sintered CGCs uncovered that the graphite
powders were layered in the Cu matrix, representing anisotropy in the mixed phase. The graphite
layers (black colored region) were spatially distributed in the Cu matrix (white colored region),
thus aligning in the plane direction perpendicular to the pressing direction during the sintering
process. To clearly identify interfacial reconstruction in between the Cu matrix and the graphite oxide
layers and, more importantly, to rationalize the structure formation driven during the SPS process,
cross-sectional TEM observations were performed. Such these significant structural changes were made
from pristine graphite to graphite oxide (GO), and to the reduced graphite oxide (rGO), which took
place during the SPS process. Previous studies of rGO phases formed in the Cu matrix have focused
on discussing mechanical properties dominated by the interface strength between Cu and graphene
and the graphene dispersion in the composite [28–30]. It is worth noting that the copper–graphite
interface with a well-defined thickness of the graphite oxide layers ranging from 8 to 10 nm were
formed as obviously shown in Figure 2. Figure 3 shows the XPS results for the chemical composition
and ionization etch depth at the copper–graphite composite interface. The Cu and Cu2O phases,
and the composition of carbon, oxygen, and copper compounds was confirmed to be 10 nm from the
depth profile of 40 nm on the surface. It could be seen that the composition and quantitative changes
in carbon, oxygen, and copper compounds were found to be 20 nm in the depth direction from the
surface of the composite material. The amount of carbon and oxygen atoms decreased with distance
from the surface, while the pure copper composition increased in weight. This strongly reflected that
the rGO and GO interfacial layers formed the anisotropic composite structure [31–33].

Structural changes of the CGCs during the SPS process were further investigated using Raman
spectroscopy. The Raman spectrum of the CGC powder showed a G band shift at 1581 cm−1

corresponding to the primary scattering of graphite, where the intensity was higher than that of the D
band as displayed in Figure 4. The Raman spectrum of the interfacial graphite and Cu after the SPS
process showed a weak intensity peak at 1594 cm−1, as well as the G band at 1581 cm−1. In addition,
the intensity of the D band at 1363 cm−1 increased remarkably. These observations were due to the
co-existence of the graphite oxide and graphite phases; hence, we reached the conclusion that the
graphite surface was highly expected to be oxidized during the electroless plating and the SPS processes.
Furthermore, the increased intensities in G and D bands (1594 and 1352 cm−1, respectively) originated
from the formation of GO [34,35]. Since GO and pristine graphite are the different allotropes of carbon,
the graphite oxide surface can also be readily bonded to an oxygen-containing group, thereby resulting
in ascending distance between the carbon atoms. Therefore, we concluded that the weak peak at
1594 cm−1 observed in the Raman spectrum of the CGC material interface turned up after the SPS
process [8,36].
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Figure 1. Field emission electron microscopy (FE-SEM) images of Cu-coated graphite fibers (a,b) and 
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Figure 4. Comparison of Raman spectra for the Cu-coated graphite powders, copper–graphite
composite interface, and Cu surface.

For further clarification, Raman mapping was performed over the interfacial positions
of the copper–graphite interface equivalent to the graphite oxide, reduced graphite powder,
and copper–graphite sintered body as clearly marked in Figure 5a. Five representative regions
indicate X1 (~1 µm), X2 (~6 µm), X3 (~15 µm), and X4 (~28 µm), which corresponded to the distance
from the composite interface, respectively. The D band indicates the presence of disordered carbons,
whereas the G band indicates the graphitized carbon. Therefore, peak changes in D and G bands
over five mapping regions reflect the existence probability of the oxygenic functional groups and
disordered carbons on the CGC interface after the SPS process. Particularly, Raman spectra measured
at X3 (~15 µm) meant a lower presence probability of the oxygenic functional groups and disordered
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carbons compared with other three regions. This assumption could be reasonably rationalized by
the fact that GO tends to be readily reduced to graphene-like sheets by getting rid of the oxygenic
functional groups with the restoration of a π-conjugated structure.
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Figure 5. Raman mapping was performed over the interfacial positions of the copper–graphite
interface equivalent to the graphite oxide, reduced graphite powder, and copper–graphite sintered
body. (a) A cross-sectional view of the copper-graphite composite visualized by optical microscopy.
Raman mapping results for five representative spots of the Cu-graphite composites interface (b) 1, (c) 6,
(d) 15, and (e) 28 µm from the composite interface.

The Raman shift (cm−1) and intensity ratio (ID/IG1) were introduced to firmly confirm the presence
probability of rGO at the composite interface as plotted in Figure 6. As a result, we concluded that
rGO was formed at the copper–graphite interface [37,38]. In the case of ID/IG1, analysis of rGO in
the copper–graphite interface could not be easily handled because of inconsistence of the values
for graphite, GO, and rGO with the mapping results. Characteristic peaks in the Raman spectra
varied as the GO underwent chemical reduction. The peak around 1581 cm−1 was attributed to
first-order scattering of phonons of sp2 carbon atoms, which is generally labeled as the G peak; similarly,
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a breathing mode of k-point photons of symmetry around 1348 cm−1 is referred to as the D peak.
The ID/IG1 ratio is designated as the degree of disorder, such as that due to defects, ripples, and edges.
Figure 6 shows typical analytical data for graphite, GO, and the chemically rGO surface. The ID/IG1

ratios were found to be 0.02, 0.7, and 0.87, respectively. The higher ratio of D to G bands strongly imply
the higher presence probability of oxygenic functional groups and disordered carbons.
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Finally, we investigated the thermal conductivity, conductivity, specific heat of the CGC along
the through- and in-plane directions as displayed in Figure 7. All of the thermal properties of the
CGC showed an obvious anisotropy, thus leading to 4 to 5 times higher thermal properties in the
in-plane direction compared to the through-plane direction. These different tendencies along the
through- and in-plane directions were predicted by applying the Hatta Taya method, which mainly
assumes that the reinforcements are primarily oriented thin portions homogeneously dispersed in
the matrix [39]. In an anisotropic structure, the phonon velocity can be varied along the through- and
in-plane directions. However, the interfacial region with micrometer scale roughness could possibly
take an effective crystallographic direction for energy propagation across the interface.
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4. Conclusions

In summary, we demonstrated a facile and robust strategy to fabricate Cu-graphite composites
(CGCs) with spatially-aligned, anisotropic layered structures through electroless deposition of graphite
reinforcements with Cu and subsequent spark plasma sintering (SPS). On consolidation of the CGCs
during the SPS process, rGO was formed at an interfacial region between the Cu matrix and the graphite
layers. The formation of unprecedented rGO phases were intensively characterized by FE-SEM, TEM,
XPS, and Raman spectroscopy, thus proving the presence probability of rGO phase experimentally.
High resolution TEM observation and Raman analysis revealed that rGO phase existed at the CGC
interface. This work is highly expected to provide a fundamental way of understanding how rGO
phase can be formed at the Cu-graphite interface, thus finally envisioning usefulness of the CGCs for
thermal management materials in electronic applications.
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