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Abstract: In this study, computational simulations and experiments were performed to investigate the
mechanical behavior of the aorta wall because of the increasing occurrences of aorta-related diseases.
The study focused on the deformation and strength of porcine and healthy human abdominal aortic
tissues under uniaxial tensile loading. The experiments for the mechanical behavior of the arterial
tissue were conducted using a uniaxial tensile test apparatus to validate the simulation results.
In addition, the strength and stretching of the tissues in the abdominal aorta of a healthy human
as a function of age were investigated based on the uniaxial tensile tests. Moreover, computational
simulations using the ABAQUS finite element analysis program were conducted on the experimental
scenarios based on age, and the Holzapfel–Gasser–Ogden (HGO) model was applied during the
simulation. The material parameters and formulae to be used in the HGO model were proposed to
identify the failure stress and stretch correlation with age.
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1. Introduction

The aorta is the primary artery through which blood leaves the human heart before it flows
through the entire human body, and it is typically divided into several sections based on anatomical
source, as shown in Figure 1 [1–4]. Based on the anatomical compartment, it is categorized as the
thoracic aorta from the heart to the diaphragm and the abdominal aorta from the diaphragm to the
bifurcation of the aorta, respectively. Another classification method classifies the aorta according to its
route and blood flow direction. Hence, the aorta goes out from the heart and down as the ascending
aorta and then performs a hairpin turn. Following this, the aorta runs as the descending aorta, which
is divided into two major parts: thoracic aorta and abdominal aorta. The aorta ends at a bifurcation,
which is divided into two main blood vessels: the common iliac arteries and a smaller midline vessel,
the median sacral artery [5].
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Further, precise constitutive models of soft biological tissue coupled with appropriate numerical 
approaches have been continuously developed from these experimental results. In other words, it 
has been developed as a phenomenological approach that describes the macroscopic characteristic of 
a material as a continuum in order to simulate the mechanical behavior including the stiffness and 
direction of fibers of aortic material [20–23]. Although such studies were conducted, they were not 
sufficiently large in scale to study the effects of the age range, the numerical model applied for 
material nonlinear damage modeling, and the criterion for rupture of the aortic tissue. Therefore, in 
this study, the numerical simulation approach was suggested to simulate material properties 
according to age. In the step for determining the material properties, the uniaxial tensile tests were 
conducted on porcine aortic specimens in the circumferential and longitudinal directions, and the 
numerical simulations that the Holzapfel–Gasser–Ogden (HGO) model [22–24] was applied to 
simulate the behavior of the arterial tissue were performed using the ABAQUS finite element 
program. The results between experiment and numerical simulation were compared to determine 
the reliability of the simulation. In addition, the experimental results for the healthy human 
abdominal aorta specimens were investigated and analyzed based on age, and the material constants 
associated with the elastic modulus, stress, and strain in the numerical model were estimated from 
the numerical simulations according to age. From these results, the correlation between age and 
material constants was examined, and the formulae for estimating material constants based on age 
were proposed. 

 

Figure 1. Schematic of the aorta and its segments. 
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In industrial and technological applications, many materials exhibit an anisotropic elastic 
behavior because of the fiber orientation, such as fiber-reinforced composites, reinforced rubber, 
wood, arterial wall, and heart tissue. In particular, they present nonlinear elastic and anisotropic 
characteristics under large deformations because of the rearrangements in the microstructure, such 
as the reorientation of the fiber directions with deformation. Hence, the simulation of these nonlinear 
effects requires constitutive models formulated within the framework of  
anisotropic hyper-elasticity [25]. 

Hyper-elastic materials are expressed in terms of the strain energy potential, which defines the 
strain energy stored in the material per unit of the reference volume as a function of the deformation 
at that point in the material. Strain-based and invariant-based formulas are used to express the strain 
energy potential of anisotropic hyper-elastic materials. Theories related to these methods have been 
applied in computational biomechanics [20–24,26–28]. In particular, the Fung [20] and HGO models 
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The aorta exhibits the characteristics of a hyper-elastic and viscoelastic material. It is composed of
a heterogeneous mixture of smooth muscle nerves, endothelial cells, intimal cells, fibroblast-like cells, and
a complex extracellular matrix. The arterial wall consists of three layers, intima, media, and adventitia.
In particular, the smooth muscles and extracellular matrix are the largest components of the arterial wall
in the media layer. Specifically, the media layer of the arterial wall consists of concentric elastic lamella,
namely smooth muscles and an elastic matrix. The smooth muscle component does not transform the
diameter of the aorta significantly; instead, it serves to increase the stiffness and viscoelasticity of the
aortic wall when activated. The elastic matrix controls the biomechanical properties of the aorta and
forms lamellae consisting of elastic fibers, collagens, proteoglycans, and glycosaminoglycans [6]. Thus,
the vascular smooth muscle cells can make significant contributions to aortic stiffness, and many studies
have been conducted on them. In particular, Morgan et al. [7,8] measured the mouse aortic mechanical
properties in order to assess the vascular smooth muscle cell component of stiffness in the aortic wall
according to age. In addition, they examined the mechanical properties of blood vessels across multiple
length scales and identified the focal adhesion of the vascular smooth muscle cells. Meininger et al. [9]
determined whether vascular smooth muscle cells adhesion to type I collagen was transformed in parallel
with the changes in the vascular smooth muscle cells’ contractile state induced by vasoconstrictors and
vasodilators, and they proposed that the signal transduction pathways modulating vascular smooth
muscle cell contractile activation and relaxation, as well as extracellular matrix adhesion interact during
regulation of the contractile state. Leloup et al. [10] investigated whether basal nitric oxide activity
and voltage-gated Ca2+ channel-mediated contractions differed between the smaller, muscular arteries
(femoral and mesenteric arteries) and the larger, elastic conduit vessels (aorta and carotid artery) of
mice. As a result, they assumed that the different physiological behavior of elastic and muscular arteries
of young adults were linked to the well-known observation that arterial stiffness develops differently
with aging.

In addition to studies on vascular smooth muscle cells, studies on the properties of the aorta
and diseases such as aortic aneurysm and aortic dissection have been conducted in the past few
decades [11–19]. In particular, Yang et al. [15] conducted biomechanical experiments on the porcine
abdominal artery by uniaxial elongation and relaxation tests in both the circumferential and longitudinal
directions and applied a combined logarithm and polynomial strain energy equation to model the
elastic response of the specimens. The reduced relaxation function was modified by integrating
a rational equation as a corrective factor to simulate the strain-dependent relaxation effects accurately.
Horny et al. [16] proposed a regression model capable of estimating the pre-strain of a human abdominal
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aorta. A database including the length and diameter of the abdominal aorta, heart weight, thickness
of the left ventricle, and degree of atherosclerosis was obtained by evaluating 156 male cadavers.
In the database, a significant correlation between the age, pre-strain, diameter, and atherosclerosis
was identified, which was best fitted to a power law equation. Ninomiya et al. [17] studied the
biomechanical failure properties and histological composition of a human non-aneurysmal aorta.
They extracted the material specimens from 26 human cadavers and measured the failure stress, tension,
and strain in circumferentially-oriented strips. Courtial et al. [18] defined the biomechanical parameters
of a healthy human abdominal aorta and developed materials for aortic phantom production. These
phantoms used in the training of endovascular treatment must exhibit the same morphology and
mechanical behavior properties as those of the aorta of the patient. Therefore, they conducted ex vivo
experiments by uniaxial tensile and dynamic simple shear testing of six healthy human abdominal
aortas to confirm the biomechanical parameters accurately. Laksari et al. [19] examined the in vitro
anisotropic mechanical behavior of canine aortic tissue and focused on the spatial variations in its
properties in the axis direction of the vessel. Hence, uniaxial stretch tests on canine aortic specimens in
the circumferential and longitudinal directions, as well as histological examinations to identify the
fiber orientations of the tissues were performed. In addition, they examined a constitutive model
that contained both phenomenological and structural elements to consider the macroscopic and
microstructural behaviors of the tissue.

Further, precise constitutive models of soft biological tissue coupled with appropriate numerical
approaches have been continuously developed from these experimental results. In other words, it has
been developed as a phenomenological approach that describes the macroscopic characteristic of
a material as a continuum in order to simulate the mechanical behavior including the stiffness and
direction of fibers of aortic material [20–23]. Although such studies were conducted, they were not
sufficiently large in scale to study the effects of the age range, the numerical model applied for material
nonlinear damage modeling, and the criterion for rupture of the aortic tissue. Therefore, in this study,
the numerical simulation approach was suggested to simulate material properties according to age.
In the step for determining the material properties, the uniaxial tensile tests were conducted on porcine
aortic specimens in the circumferential and longitudinal directions, and the numerical simulations that
the Holzapfel–Gasser–Ogden (HGO) model [22–24] was applied to simulate the behavior of the arterial
tissue were performed using the ABAQUS finite element program. The results between experiment
and numerical simulation were compared to determine the reliability of the simulation. In addition,
the experimental results for the healthy human abdominal aorta specimens were investigated and
analyzed based on age, and the material constants associated with the elastic modulus, stress, and
strain in the numerical model were estimated from the numerical simulations according to age. From
these results, the correlation between age and material constants was examined, and the formulae for
estimating material constants based on age were proposed.

2. Constitutive Model

In industrial and technological applications, many materials exhibit an anisotropic elastic behavior
because of the fiber orientation, such as fiber-reinforced composites, reinforced rubber, wood, arterial
wall, and heart tissue. In particular, they present nonlinear elastic and anisotropic characteristics under
large deformations because of the rearrangements in the microstructure, such as the reorientation
of the fiber directions with deformation. Hence, the simulation of these nonlinear effects requires
constitutive models formulated within the framework of anisotropic hyper-elasticity [25].

Hyper-elastic materials are expressed in terms of the strain energy potential, which defines the strain
energy stored in the material per unit of the reference volume as a function of the deformation at that
point in the material. Strain-based and invariant-based formulas are used to express the strain energy
potential of anisotropic hyper-elastic materials. Theories related to these methods have been applied
in computational biomechanics [20–24,26–28]. In particular, the Fung [20] and HGO models [22–24]
have been used widely in various simulations of the arterial wall and heart tissue. In the Fung [20]
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model, the underlying assumption is based on a strain-based formulation in that the preferred material
directions are initially aligned with an orthogonal coordinate system in the reference configuration. These
directions may become non-orthogonal only after deformation. Concurrently, in the HGO model [22–24],
unlike in the strain-based formula, the fiber orientation in the invariant-based formula does not need to
be orthogonal in the initial configuration. Therefore, the authors proposed a constitutive law for the
description of the mechanical response of arterial tissue and considered the arterial wall as a thin-walled
cylindrical tube consisting of layers.

2.1. Strain-Based Formula

The strain energy function is described as a component of a suitable strain tensor, such as the
Green strain tensor:

U = U
(
εG

)
(1)

where εG = 1
2 (C− I) is the Green strain tensor, C = FTF is the right Cauchy–Green deformation tensor,

F is the deformation gradient, which is expressed in terms of the displacement vector, u (F = ∇u + I),
and I is the identity matrix. Without loss of generality, the strain energy function can be written
as follows:

U = U
(
εG, J

)
(2)

where εG = 1
2

(
C− I

)
is the modified Green strain tensor, C = J−

2
3 C is the modified right Cauchy–Green

strain, and J = det F. The fundamental hypothesis in the above models based on the strain-based
formula is that the preferred material directions are initially arranged with an orthogonal coordinate
system in the reference stress-free configuration. These directions may become non-orthogonal only
after deformation [20].

From Equation (2), the variation in U is given as follows:

δU =
∂U

∂εG
: δεG +

∂U
∂J
δJ = F

∂U

∂εG
F

T
: δe +

∂U
∂J
δJ (3)

Using the principle of virtual work, the variation in the strain energy potential can be written
as follows:

δWI =

∫
V0

J(S : δe− pδεvol)dV0 =

∫
V0
δUdV0 (4)

For a compressible material, the strain variations are arbitrary; hence, this equation defines the
stress components for such a material as follows:

S =
1
J

DEV
[
F
∂U

∂εG
F

T
]

(5)

p = −
∂U
∂J

(6)

With the pure displacement formulation from which the strain invariants are calculated, the kinematic
variables of a finite element (FE) model could behave insufficiently if the material is incompressible.
The problem is that the stiffness matrix is almost singular from a numerical perspective since the effective
bulk modulus of a material is larger than the effective shear modulus. Hence, this causes difficulties in
obtaining the solution of the discretized equilibrium equation.

2.2. Invariant-Based Formula

From the continuum theory of fiber-reinforced composites [27], the strain energy function could be
expressed as an invariant deformation tensor and a fiber orientation. For example, consider a composite
material composed of an isotropic hyper-elastic matrix reinforced with fibers. In the reference configuration,
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the orientation of a fiber is characterized by a set of unit vectors. Assuming that the strain energy depends
on the fiber orientation, as well as the deformation, it can be expressed as follows:

U = U(C, Aα);α = 1, . . . , N (7)

The strain energy of the material should not change when both the matrix and fibers in the
reference configuration are rigid-body rotations. Subsequently, the strain energy can be expressed
as an isotropic function of a non-reducible set of scalar invariants formed based on tensor C and
vectors Aα:

U = U
(
I1, I2, J, I4(αβ), I5(αβ), ζαβ

)
; α = 1, . . . , N; β = 1, . . . , α (8)

where I1 and I2 are the first and second deviatoric strain invariants; I4(αβ) and I5(αβ) are the

pseudo-invariants of C, Aα and Aβ; and J is the third strain invariant, as follows:

I4(αβ) = AαCAβ, and I5(αβ) = AαC
2
Aβ; α = 1, . . . , N; β = 1, . . . , α (9)

On the other hand, ζαβ is a geometric constant, such as the angular cosine between the fiber
orientations in the reference configuration, namely,

ζαβ = AαAβ; α = 1, . . . , N; β = 1, . . . , α (10)

In the invariant-based formulation, the fiber orientations need not be orthogonal in the initial
configuration [22–24]. From Equation (8), the variation in U is expressed as follows:

δU =
∂U

∂I1
δI1 +

∂U

∂I2
δI2 +

∂U
∂J
δJ +

N∑
α=1

α∑
β=1

 ∂U

∂I4(αβ)
δI4(αβ) +

∂U

∂I5(αβ)
δI5(αβ)

 (11)

From the principle of virtual work, Equation (4), the stress components for a compressible material
can be expressed as follows:

S = 2
J DEV

[(
∂U
∂I1

+ I1
∂U
∂I2

)
B− ∂U

∂I2
BB

]
+

N∑
α=1

α∑
β=1

∂U
∂I4(αβ)

DEV
(
aαaβ + aβaα

)
+

N∑
α=1

α∑
β=1

∂U
∂I5(αβ)

DEV
(
aαa′β + a′αaβ + aβa

′

α + a′βaα
) (12)

p = −
∂U
∂J

(13)

where aαFAα and a′αBaα.

2.3. Anisotropic Hyper-Elastic Materials

The form of the strain energy potential for modeling arterial layers with distributed collagen fiber
orientations is based on that proposed by Holzapfel et al. [22–24]:

U = C10
(
I1 − 3

)
+

1
D


(
Jel

)2
− 1

2
− ln Jel

+ k1

2k2

N∑
α=1

{
exp

[
k2〈Eα〉

2
]
− 1

}
(14)

Eακ
(
I1 − 3

)
+ (1− 3κ)

(
I4(αα) − 1

)
(15)

where U is the strain energy per unit of the reference volume; C10, D, k1, k2, and κ are
temperature-dependent material parameters; N is the number of families of fibers (N ≤ 3); I1 is
the first invariant of C; Jel is the elastic volume ratio; and I4(αα) are the pseudo-invariants of C and Aα.
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This model presumes that the orientation of the collagen fibers in each family is distributed rotationally
symmetrically with respect to the mean preferred orientation. The parameter, κ (0 ≤ κ ≤ 1/3), expresses
the level of dispersion in the fiber directions. If ρ(Θ) is the orientation density function that identifies
the distribution (it implies the normalized number of fibers with orientations in the range [Θ, Θ + dΘ]

associated with the mean orientation) [24], then the parameter, κ, is defined as follows:

κ =
1
4

∫ π

0
ρ(Θ) sin3 ΘdΘ. (16)

It is also presumed that all the fiber groups exhibit the same mechanical properties and the same
dispersion. When κ = 0, the fibers are completely aligned (no dispersion). When κ = 1/3, the fibers
are randomly distributed, and the material becomes isotropic. This corresponds to the spherical
orientation density function. The strain-like quantity, Eα, identifies the deformation of the fiber group
with the mean direction, Aα. Eα = I4(αα) − 1 for completely aligned fibers (κ = 0), and Eα =

(
I1 − 3

)
/3

for randomly-distributed fibers (κ = 1/3).
The first two terms in the strain energy function express the distortional and volumetric contributions

of the non-collagenous isotropic ground material. The third term expresses the contributions from other
families of collagen fibers, considering the effects of dispersion. The basic presumption of the model
is that collagen fibers can support only tension because they would buckle under compressive loads.
Hence, the anisotropic contribution in the strain energy function only appears when the strain of the
fibers is positive, or equivalently, when Eα > 0. This condition is enforced by the term 〈Eα〉, where
operator 〈·〉 represents the Macaulay bracket and is defined as 〈x〉 = 1/2(|x|+ x) [25].

The initial deviatoric elasticity tensor, D0, and bulk modulus, K0, are given by:

D0 = 4C10=+ 2(1− 3κ)2k1

N∑
α=1

H
(
Eα

)
AαAαAαAα (17)

K0 =
2
D

(18)

where = is the fourth-order unit tensor and H(x) is the Heaviside unit step function.

3. Experiments and Simulations

This research was approved by the Institutional Animal Care and Use Committees (IACUC) of the
Pusan National University Yangsan Hospital (PNUYH). The approval number is PNUYH-2018-065.

3.1. Experiment Details for the Material Test

For uniaxial tensile test, ten tissue specimens according to the loading direction were extracted
from five porcine abdominal aortic tissues. After extraction, the specimens were immediately placed in
warm saline, and then, the uniaxial tensile tests were conducted within 12 h of harvest. In order to obtain
robust rectangular strips (15-mm width, 25-mm length, and 10-mm width in the middle), the specimens
were sliced in the circumferential and longitudinal directions of the aorta [29], as presented in Table 1.
The width and thickness for the specimens were measured at three locations, and the average data
were adopted. The specimens were mounted in the uniaxial tensile test apparatus and continuously
wetted with saline [11]. Figure 2 shows the schematic of the universal testing machine and tensile load
directions, which are subdivided into circumferential and longitudinal directions, relative to the axis of
the aorta. Moreover, in the uniaxial tensile test, the ends of the specimens were fixed using sand paper
and a fixing apparatus, which maintained the tissues in place by a zig.

The behaviors of the arterial tissues with the loading direction were investigated with a 500.0-N
EZ-TEST load cell, and the experimental results were utilized to verify the numerical model. For the
tests, a universal testing machine (EZ-TEST 500 N, Shimadzu, Busan, South Korea) was adopted.
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Table 1. Tissue specimens of the porcine abdominal aorta in the tensile test (AC: Aorta and
Circumferentially (Load direction), AL: Aorta and Longitudinally (Load direction)).

Specimen Sample Dimension (in mm) Tensile Load Direction
Relative to Oriented StripWidth (Top) Width (Middle) Length Thickness

AC1 14.96 9.98 24.97 1.98 Circumferentially
AC2 15.10 10.04 25.05 2.01 Circumferentially
AC3 14.98 10.01 25.03 2.01 Circumferentially
AC4 15.05 10.01 25.01 1.99 Circumferentially
AC5 15.01 9.99 25.00 2.03 Circumferentially
AL1 15.02 10.02 24.98 2.01 Longitudinally
AL2 15.04 10.02 24.99 2.02 Longitudinally
AL3 14.97 10.03 25.01 1.97 Longitudinally
AL4 14.99 9.98 24.98 2.01 Longitudinally
AL5 15.04 9.97 25.03 2.01 Longitudinally

Appl. Sci. 2019, 9, x 7 of 18 

specimen strip to 5% of its length at 4% of specimen length/min (1 mm/min), was conducted. After 
preconditioning, the strip was uniaxially extended at 4% specimen length/min (1 mm/min)  
until failure. 

 

   
(a) (b) (c) 

Figure 2. Schematic of the uniaxial tensile test specimens and experimental apparatus. (a) Dimensions 
of the test specimens; dimensions in millimeters. (b) Closer view of the specimen fixation.  
(c) Universal testing machine. 

Table 1. Tissue specimens of the porcine abdominal aorta in the tensile test (AC: Aorta and 
Circumferentially (Load direction), AL: Aorta and Longitudinally (Load direction)). 

Specimen 
Sample Dimension (in mm) Tensile Load 

Direction Relative 
to Oriented Strip 

Width  
(Top) 

Width  
(Middle) 

Length Thickness 

AC1 14.96 9.98 24.97 1.98 Circumferentially 
AC2 15.10 10.04 25.05 2.01 Circumferentially 
AC3 14.98 10.01 25.03 2.01 Circumferentially 
AC4 15.05 10.01 25.01 1.99 Circumferentially 
AC5 15.01 9.99 25.00 2.03 Circumferentially 
AL1 15.02 10.02 24.98 2.01 Longitudinally 
AL2 15.04 10.02 24.99 2.02 Longitudinally 
AL3 14.97 10.03 25.01 1.97 Longitudinally 
AL4 14.99 9.98 24.98 2.01 Longitudinally 
AL5 15.04 9.97 25.03 2.01 Longitudinally 

3.2. Simulation Details for the Material Test 

One of the well-established commercial finite element analysis programs, ABAQUS, was used 
for simulation of the uniaxial tensile test. The material parameters in the HGO model were estimated 
based on the stress–stretch curve of the porcine abdominal aortic tissue as a function of the tissue 
orientation to validate the computational simulation technique. The geometries of the uniaxial tensile 
test specimens used were constructed by considering the dimensions in the experiment and  
reference [17], as shown in Figure 3a. The orientations for the collagen fiber in the intimal, medial, 
and adventitial strips were set as 18.8°, 37.8°, and 58.9°, respectively, as shown in Figure 3b [26] and 
Figure 4. 

Figure 2. Schematic of the uniaxial tensile test specimens and experimental apparatus. (a) Dimensions
of the test specimens; dimensions in millimeters. (b) Closer view of the specimen fixation. (c) Universal
testing machine.

The preconditioning test was adopted to guarantee the straight configuration of the test specimen
before the main test. In addition, the viscoelastic effect was not considered during the main test. In other
words, a preconditioning test, involving 10 loading and unloading cycles of the specimen strip to 5% of
its length at 4% of specimen length/min (1 mm/min), was conducted. After preconditioning, the strip
was uniaxially extended at 4% specimen length/min (1 mm/min) until failure.

3.2. Simulation Details for the Material Test

One of the well-established commercial finite element analysis programs, ABAQUS, was used
for simulation of the uniaxial tensile test. The material parameters in the HGO model were estimated
based on the stress–stretch curve of the porcine abdominal aortic tissue as a function of the tissue
orientation to validate the computational simulation technique. The geometries of the uniaxial tensile test
specimens used were constructed by considering the dimensions in the experiment and reference [17],
as shown in Figure 3a. The orientations for the collagen fiber in the intimal, medial, and adventitial strips
were set as 18.8◦, 37.8◦, and 58.9◦, respectively, as shown in Figure 3b [26] and Figure 4.

As indicated in Section 3.1, fixed and straight-line motion conditions were applied as the experimental
boundary and loading conditions, as shown in Figure 3. In particular, under the loading condition,
the tensile loading directions, which were divided into circumferential and longitudinal directions relative



Appl. Sci. 2019, 9, 2851 8 of 18

to the axis of the aorta, were considered. In addition, the HGO model for an anisotropic hyper-elastic
material was applied for determining the material properties in the simulation.Appl. Sci. 2019, 9, x 8 of 18 
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The hexahedral (C3D8RH-type) element, which is the eight-node linear brick, reduced integration
with hourglass control, hybrid with constant pressure, was adopted during simulation. When the
material response is incompressible such as soft tissue, the solution to a problem cannot be obtained
in terms of the displacement history only, since a purely hydrostatic pressure can be added without
changing the displacement. The nearly incompressible case showed behavior approaching this limit,
in that a very small change in displacement produced extremely large changes in pressure, so that
a purely displacement-based solution was too sensitive to be useful numerically. Accordingly, ABAQUS
removed this singular behavior in the system by treating the pressure stress as an independently
interpolated basic solution variable, coupled to the displacement solution through the constitutive
theory and the compatibility condition, with this coupling implemented by a Lagrange multiplier.
This independent interpolation of pressure stress was the basis of these “hybrid” elements. More
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precisely, they were “mixed formulation” elements, using a mixture of displacement and stress variables
with an augmented variational principle to approximate the equilibrium equations and compatibility
conditions [25].

The hybrid elements also remedied the problem of volume strain “locking,” which can occur at
much lower values of Poisson’s ratio. Volume strain locking occurs if the finite element mesh cannot
properly represent incompressible deformations. Volume strain locking can be avoided in regular
displacement elements by fully- or selectively reduced integration [25].

For this reason, in most hyperelastic analyses for incompressible material using ABAQUS, such as
rubber, polymer, and soft tissue, the C3D8RH element is adopted. Hence, the C3D8RH element was
adopted during simulation in this study.

The mesh sensitivity check was also carried out prior to simulation as shown in Figure 5. As shown
in this figure, the Cauchy stress was stabilized when the total number of elements was more than
approximately 3000. Accordingly, the optimal number of elements in the specimen was determined to
be 4048.
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3.3. Results for the Material Test

It was necessary to vZalidate the computational simulation results by comparing with the
experimental results to ensure their reliability. Therefore, in this study, the material parameters of
the HGO model [24] were adjusted with a simulation test based on the stress–stretch curve of the tissues
in the porcine abdominal aorta. In addition, computational simulations and uniaxial tensile tests of
circumferentially- and longitudinally-oriented strips were conducted. Consequently, the stress–stretch
curves were calculated from the simulation results, and the results were compared with the experimental
results, as shown in Figure 6.

The correlation between the simulation result and average value of the experimental results
demonstrated a maximum error rate (1-(experimental results/simulation results)) of 0.0193 and 0.0945
for the circumferentially- and longitudinally-oriented strips, respectively. In addition, as shown from
the experimental results, the aortic tissue exhibited different tensile stresses and stretches based on
the fiber orientation because its three layers had different fiber directions. In particular, based on
the average values of the experimental results, the circumferentially-oriented strip sample exhibited
a maximum tensile strength of 2.49 MPa, which was 18.3% higher than the maximum value for the
longitudinally-oriented strip sample. Concurrently, from the stretch results, the longitudinally-oriented
strip sample exhibited a maximum tensile stretch value of 1.63, which was 7.7% higher than the
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maximum value of the circumferentially-oriented strip sample. It appeared that the aortic tissue
exhibited different tensile characteristics based on the fiber orientation. Moreover, the material constants
for the fiber orientation were confirmed from the parametric simulation, as shown in Figure 6.
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4. Results

4.1. Experiment Details and Trend Lines

In this study, aortic material properties were investigated from 40–80 s to establish a basis for
simulating aortic disease and the experimental results based on age obtained from the uniaxial tensile
tests performed by Ninomiya et al. [17]. The tissue specimens in the healthy human abdominal
aorta were extracted from cadavers. The specimens were sectioned circumferentially in the aorta and
obtained as rectangular strips (4 mm × 40 mm, width × length). Figure 7 shows the experimental results
for the failure stress and stretch obtained from the aortic tissue specimens of humans aged 46–89 years
when subjected to a uniaxial tensile load on the MPa scale. It is clear that the samples exhibited
failure stresses from approximately 0.42 MPa–2.32 MPa and failure stretch values from approximately
1.24–1.73, and it can be seen that the number of stress and stretch values was slightly different because
even if the tissue specimens had different stress values, they had similar stretch values.

In addition, in order to calculate the trend line, the exponential regression method, which is
a simple nonlinear statistical processing method, was applied based on these experimental results,
as shown in Figure 7. The exponential regression equation is as follows.

y = aebx, (19)

ln y = ln
(
aebx

)
, (20)

ln y = ln a + bx, (21)

where the coefficients, a and b, are defined as follows.

b =
n
∑n

i=1(ln yi × xi) −
∑n

i=1(ln yi)
∑n

i=1(xi)

n
∑n

i=1

(
x2

i

)
−

(∑n
i=1(xi)

)2 , (22)
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ln a =

∑n
i=1(ln yi)

n
− b

∑n
i=1(xi)

n
. (23)
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The procedure for calculating the trend line was to display a scatter diagram based on the
constructed database and to assess an appropriate regression model from the transformation for scale
of each axis. Therefore, in this study, the exponential regression was selected, and the logarithm
was taken on both sides as shown in Equations (19)–(21), while the coefficients were calculated from
Equations (22)–(23). It appeared that the failure stress and stretch in the aortic tissue affected the
decrease in the tensile strength significantly; as the age of the specimen increases, the trend for the
database could be recognized. In addition, the minimum and maximum values of the trend were
determined, and the criteria for the damage characteristics of the aortic tissue in a healthy human
abdominal aorta could be established from these trend lines.

4.2. Simulation Results Based on Age

In this study, the two lines of the maximum and minimum values were estimated based on the
trend line of the average values and experimental results for the healthy human abdominal aorta
specimens, and the trend lines had deviations of 44.7% and −44.7%, and 11.9% and −11.9% in the failure
stress and stretch graph, respectively, as shown in Figure 8. In addition, the numerical simulations for
the tensile test were performed from 46 years–89 years based on the failure stress and stretch in the two
trend lines of the maximum and minimum values. In the numerical simulation, the material parameters,
k1 and k2, according to age were estimated based on the failure stress and stretch because the parameters
were associated with the stress and strain of soft tissue. The material parameter, C10, according to
age was estimated by comparing the stress–stretch curves obtained from the numerical simulation,
the porcine experiment, and the reference for the experiment of the aorta [12,15,16,19,29,30]. These
simulation results obtained from estimating the material parameters according to age were compared
with the trend lines of the maximum and minimum values, and it was clear that the maximum error
rates in the trend lines of the maximum and minimum values were 0.0013 and 0.0082, respectively.
In addition, according to the line graph, the average failure stress and stretch of the healthy human
abdominal aorta specimens decreased from 1.44 MPa–0.85 MPa and from 1.67–1.34, respectively, as the
age increased from 46 years–89 years. The trend line ranges of the failure stress and stretch at the age
of 46 years were 0.79–2.09 MPa and 1.47–1.87, respectively. At the age of 89 years, the trend line ranges
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of the failure stress and stretch were 0.20–1.50 and 1.14–1.54, which were 28.2–74.7% and 17.6–22.4%
lower than the results at the age of 46 years, respectively.
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The line graph presented in Figure 9 compares the uniaxial tensile strength of abdominal aortic
tissue samples for two different loading directions on the megapascal scale for ages 46–89 years. In this
simulation, the same material constants were used according to the loading direction. It was found that
the trend line range of the failure stress at the age of 46 years was 0.59–2.02 MPa for the longitudinal
oriented strips, which was 35.6–79.7% higher than that at the age of 89 years. In particular, it was clear
that the failure stress on the circumferentially-oriented strips at ages 46–89 years was 0.07–0.22 MPa
higher than that on the longitudinally-oriented strips. This may be owed to the different orientations
of the collagen fiber in the aortic tissue.
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4.3. Parametric Study for the Material Constants of the HGO Model

In this parametric study, the material parameters in the HGO model [22], namely, C10, k1, and k2,
which are associated with the Young’s modulus, stress, and strain of the material, were examined from
the results based on the age and loading direction, as shown in Figure 10. Generally, the maximum
and minimum trend lines of the material parameters increased consistently for the ages of 46–89 years.
According to the line graph, the values of the material parameter, C10, increased from 0.190–0.233
and from 0.001–0.005 on the maximum and minimum trend lines, respectively. Moreover, the values
of the material parameter, k1, increased nonlinearly from 0.081–0.282 and from 1.040–8.050 on the
maximum and minimum trend lines, respectively. The values of the material parameter, k2, also
increased nonlinearly from 2.530–6.486 and from 8.4–72.0 on the maximum and minimum trend lines,
respectively. In particular, for the results for above 78 years old, the value of the material parameter, k2,
on the minimum trend line increased rapidly from 35–72. This is attributable to the samples attaining
the failure stress at lower stretch values as the age increased.
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In addition, in this parametric study, the formulas for calculating the values of the material
parameters in the HGO model [22] based on age (N) were investigated, which are expressed in
Equations (24)–(29) and shown in Figure 11.

C10,max = α1,max ×N + α2,max (24)

C10,min = α1,min ×N − α2,min (25)

k1,max = β1,max ×N4 + β2,max ×N3 + β3,max ×N2 + β4,max ×N + β5,max (26)

k1,min = β1,min ×N4 + β2,min ×N3 + β3,min ×N2 + β4,min ×N + β5,min (27)

k2,max = γ1,max ×N4 + γ2,max ×N3 + γ3,max ×N2 + γ4,max ×N + γ5,max (28)

k2,min = γ1,min ×N5 + γ2,min ×N4 + γ3,min ×N3 + γ4,min ×N2 + γ5,min ×N + γ6,min (29)

Table 2 provides the values of the coefficients and R-squared of the material parameters in
Equations (24)–(29). The R-squared implies the proportion of the variance in a dependent variable
that can be distinguished from an independent variable. Therefore, according to the values in Table 2,
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the R-squared ranged from 0.9988–1.0 in the correlation between the values of the material constant
and formulae.Appl. Sci. 2019, 9, x 14 of 18 
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Table 2. Coefficient and R-squared in the correlation between the values of the material parameter
and formulae.

Material Constant α1 α2 R2

C10,max 0.001 0.144 1.0
C10,min 0.0001 0.0035 1.0

Material Constant β1, γ1 β2, γ2 β3, γ3 β4, γ4 β5, γ5, γ6 R2

k1,max 8.26 × 10−9
−5.11 × 10−7

−2.30 × 10−5 0.0038 −0.0315 1.0
k1,min 8.58 × 10−7 −0.0001 0.0099 −0.2863 3.6079 0.9997
k2,max −2.59 × 10−7 8.92 × 10−5 −0.0092 0.4205 −4.9386 0.9999

k2,min 1.97 × 10−6 −0.0006 0.0742 −4.4980 135.35,
−1611.33 0.9988
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5. Discussion

In this study, the mechanical behavior of the age-dependent aorta wall was investigated through
an experimental and computational approach. To do this, the uniaxial tensile test for aorta wall tissue
of porcine considering collagen fiber orientation was carried out, and the numerical experiment using
HGO model-implemented ABAQUS was conducted to verify the experiments. After the validation of
the simulation technique, the material characteristics of abdominal aorta wall of healthy humans were
simulated, and the material parameters of HGO model under uniaxial tension were determined using
polynomial regression equations in order to predict the uniaxial tensile behavior of the abdominal
aorta wall of healthy humans.

According to the literature, aging has a significant effect on the structure and function of the
arterial wall [31,32]. They studied the evolution of structural components for the human thoracic aorta
from the strain energy function considering the composition of the soft tissue, and the axial stretch and
residual strain in the biomechanical analysis were considered in order to examine the variation of the
collagen fiber. In addition, the other research team studied the variation of the behavior of aortic wall
according to age from the constitutive modeling approach. As a result, the age-related variation in
pressure-load bearing from elastin to collagen was examined due to the decrease in elastin stiffness
and the increase in collagen recruitment.

In this study, the increase of stretch and the decrease of stress and Young’s modulus in the aortic
tissue were investigated with the progress of age from the literature [17,31,32]. Moreover, the numerical
simulations considering the variation rate of the material constants based on the age were conducted.
In this simulation, the range of the material constants, which could simulate the behavior of the
aortic tissue, were determined from the trend lines of the maximum and minimum values in the
experiment results. The trend line of the minimum value could be applied to the study for aortic
disease considering the stress and stretch in the severe condition.

In the experiments, the tensile test specimens were placed in saline at 38–39 ◦C, and the uniaxial
tensile tests were performed within 12 h of harvest since it was important to maintain the environmental
conditions in the experiment, such as temperature and elasticity. In other words, the environmental
conditions in the tensile test should be maintained as the conditions in the porcine body since the
material characteristics for soft tissue depend on the environmental conditions. In addition, the uniaxial
tensile test specimens were generally produced as the dog-bone type; however, it is quite difficult to
produce the specimens as the dog-bone type. Using the method obtained from the literature, the tensile
test specimens were prepared by cutting the tissue into the dog-bone type without curvature [29].
This method had the disadvantage of inducing stress concentration in the center of the specimen,
but it had the advantage of avoiding the stress concentration in the jig and reducing the failure rate of
the experiment.

The preconditioning test was adopted to guarantee the straight configuration of the test specimen
before the main test. In addition, the viscoelastic effect was not considered during the main test.
In other words, a preconditioning test, involving 10 loading and unloading cycles of the specimen strip
to 5% of its length at 4% of specimen length/min (1 mm/min), was conducted. After preconditioning,
the strip was uniaxially extended at 4% specimen length/min (1 mm/min) until failure. In some articles,
the displacement rate of 20% of specimen length/min was adopted during the uniaxial tensile test,
for example Raghavan et al. [11], Ninomiya et al. [17], and Pierce et al. [30], to avoid the viscoelastic effect
of tissue. However, the authors could not find any differences of the stress–stretch curves between 4%
(1 mm/min or 0.0007/s) and 20% (5 mm/min or 0.003/s) of specimen length/min through the comparison
test. Accordingly, the displacement rate of 1 mm/min was selected in this study.

On the other hand, in order to consider the viscoelastic effect during the experiment, a higher strain
rate than the strain rate in this study should be applied to the test specimen, and the stress-increasing
effects on the stress–stretch curve should be quantitatively investigated.

In the simulation, the C3D8RH-type hexahedral element, which is the eight-node linear brick,
reduced integration with hourglass control, hybrid with constant pressure, was adopted in order to
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analyze the incompressible material behavior such as soft tissue and to avoid the volume strain locking
problem [25].

There were some limitations in this study. First of all, during the identification of the material
parameters in the HGO model, the biaxial tensile test of each aorta layer, namely intima, media, and
adventitia, is recommended. However, it is not an easy task to prepare the test specimen of porcine and
human tissues separate from each layer. Even if these specimens are ready, it is difficult to carry out
the biaxial tensile test on these specimens [23,33]. For these reason, the uniaxial test was carried out by
many researchers such as Holzapfel [33], Peyraut et al. [34], Skacel and Bursa [35], Hajhashemkhani and
Hematiyan [36], Karimi et al. [37], Shazly et al. [38], and Latorre et al. [39]. In their research, the material
parameters of the HGO model such as C10, k1, and k2 were identified using the uniaxial test for each
layer or unified layers of soft biological tissue including aorta wall tissue.

Despite the aforementioned studies, unfortunately, the test data according to age cannot be easily
found in the literature. One of the well-studied research works considering age, as well as the uniaxial
tensile test for human aorta wall was Ninomiya et al.’s article [17]. Accordingly, their test data referred
to the authors’ study.

The authors recognized the problem and limitation regarding this point. Hence, in the next paper,
the biaxial, as well as the uniaxial test will be carried out, and the material parameters of the HGO
model will be determined through the technique presented in the present study.

The micro-structural analysis of tissue for evaluation of fiber orientation was not carried out since
the fiber orientation for intimal, medial, and adventitial strips referred to Holzapfel’s article [26].

In addition, an optical method is also preferred to measure the strain of soft tissue, but there are
some obstacles. One of the most difficult factors is that it is not easy to make a marking point on living
tissue for strain measurement, and there was a limitation of the experimental apparatus setup such as
the video-extensometer for gauge distance measurements due to the cost. Due to these limitations,
the cross-head displacement of the universal testing machine was postulated to be equivalent to the
stretch of soft tissue.

6. Concluding Remarks

This study examined the computational simulations of the samples extracted from porcine and
healthy human abdominal aorta to investigate the material parameters as a function of age. In addition,
the computational simulation results were compared with the uniaxial tensile test results of the porcine
specimens to verify the reliability of the numerical simulation technique. The simulations based on
age were conducted on circumferentially- and longitudinally-oriented strips, and formulae were
proposed to determine the material parameters according to age. The results exhibited the following
general trends:

• According to the uniaxial tensile test results with respect to the loading direction, the circumferentially-
oriented strip samples exhibited a maximum tensile strength value of 2.49 MPa, which was 18.3%
higher than that for the longitudinally-oriented strip samples, based on the average value of the
experimental results. Therefore, the uniaxial tensile stress and stretch in the arterial tissue were
identified to be dependent on the fiber orientation.

• In addition, the failure stress and stretch were investigated as a function of age, and the material
constants for age were calculated based on the maximum and minimum trend lines. The HGO
model was applied to the numerical model for anisotropic hyper-elastic materials during the
numerical simulations.

• In the parametric study, the formulae associated with the value of the material constant for the
ages of 46–89 years were proposed, and the proportion variance in the dependent variable that
was predictable from the independent variable was examined.

The results obtained in the present study are expected to be applied to study aortic disease, and it
is possible to predict the behavior of the soft tissue in aortic disease based on the numerical simulation
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technique from this study. In addition, in further studies, the uniaxial and biaxial experiments for
human aortic tissue will be conducted, and the precise experimental method for the viscoelastic
effect will be proposed from the strain rate-dependent tensile test of soft tissue. Moreover, the study
for human aortic tissue will be performed based on the experimental results and compared to the
clinical data. The material constants for the HGO model will be calculated from the polynomial
regression method.
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