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Abstract: A new macroscopic traffic flow model is proposed, which considers driver presumption
based on driver reaction and traffic stimuli. The Payne–Whitham (PW) model characterizes the
traffic flow based on a velocity constant C0 which results in unrealistic density and velocity behavior.
Conversely, the proposed model characterizes traffic behavior with velocities based on the distance
headway. The performance of the proposed and PW models is evaluated over a 300 m circular road
for an inactive bottleneck. The results obtained show that the traffic behavior with the proposed
model is more realistic.

Keywords: macroscopic traffic flow; driver reaction; traffic stimuli; velocity constant; Payne–
Whitham (PW) model

1. Introduction

Traffic models are important in understanding traffic behavior and developing efficient traffic
control strategies [1]. Traffic jams, accidents and abrupt changes in traffic occur due to interactions
between vehicles. Drivers react to forward stimuli, which results in changes in vehicle density and
velocity. The distance between consecutive vehicles is called the distance headway. With a small
distance headway, a driver is more responsive and thus there are more interactions. Driver reaction is
a function of the forward conditions and headway. For a slow driver, the spatial changes in density are
large and small changes in density occur with quick drivers. Thus, traffic models should accurately
characterize the traffic behavior due to changes in forward conditions.

Traffic flow models can be classified as macroscopic, microscopic or mesoscopic. Macroscopic models
employ aggregated parameters on velocity, density and flow, while microscopic models consider
individual vehicle behavior. Microscopic models are often based on assumptions regarding human
behavior [2] such as physical and psychological responses [3]. Mesoscopic models combine
the characteristics of microscopic and macroscopic models [4] and typically employ probability
distributions [5]. Traffic flow is often categorized according to road conditions and can be described
as homogeneous or heterogeneous, and equilibrium or non-equilibrium. In homogeneous traffic,
parameters such as velocity and headway do not vary spatially [6] and vehicles follow lane discipline.
Heterogeneous traffic consists of motorized and non-motorized vehicles and lane discipline is not
necessarily followed [7]. In an equilibrium flow, velocity is a function of density so it occurs when

Appl. Sci. 2019, 9, 2848; doi:10.3390/app9142848 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-2707-4125
https://orcid.org/0000-0001-9919-0323
http://www.mdpi.com/2076-3417/9/14/2848?type=check_update&version=1
http://dx.doi.org/10.3390/app9142848
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 2848 2 of 20

there is no change in velocity and there is spatial homogeneity. In a non-equilibrium flow, changes in
velocities and spatial homogeneity occur [8].

Due to the simplicity and low computational complexity, macroscopic models are typically used.
The first study of macroscopic traffic flow models was by Lighthill, Whitham and Richards [9,10] who
proposed the LWR model. This is a simple continuous traffic model and can be expressed as

∂ρ

∂t
+

∂(ρv)
∂x

= 0, (1)

where ρ is density, and v is the speed. This model can be used to characterize traffic during abrupt
changes in flow or traffic jams. However, it cannot accurately characterize acceleration and deceleration
or non-equilibrium traffic flow [11] such as stop and start traffic, capacity drop and instantaneous
changes in velocity [12–14].

To overcome the problems with the LWR model, an acceleration term can be added [15].
Some recent approaches to improving the LWR model have considered traffic alignment based on
the surrounding conditions [16,17]. Payne [18] proposed a higher-order traffic flow model which is
based on car following theory and traffic adjustments are due to driver response [8]. This includes
anticipation, which describes the reaction of drivers to traffic conditions, and convection, which
describes how speed changes due to the ingress and egress of vehicles [14]. A relaxation term is used
to describe adjustments in speed due to forward conditions. Whitham proposed a similar traffic flow
model, which is known as the Payne–Whitham (PW) model. It is based on the assumption that all
vehicles have similar behavior [19]. In reality, the behavior of vehicles is not the same so this model
can lead to unrealistic results [8].

Del Castillo [20] improved the PW model by incorporating anticipation and reaction time for
small changes in density and velocity. Philips [21] modeled the relaxation time τ and assumed that it
is a function of the traffic density. Daganzo [12] showed that the traffic flow is influenced by forward
conditions, and velocity changes cannot be greater than the average velocity. Vehicle behavior is
influenced by the leading vehicles, but the PW model does not consider this [22]. This can result in
negative speeds when the traffic volume is large, which is impossible [23,24]. Papageorgiou argued
that the speeds in different lanes are not the same in multi-lane traffic and this difference allows
vehicles to travel faster than the average speed of all lanes. Aw and Rascle [25] improved the PW
model by introducing a monotonically increasing function of density such that changes occur at or
below the average speed. However, this can result in large acceleration and deceleration when the
density is high, which is unrealistic [26].

Zhang [8] improved the PW model by incorporating driver presumption, which is based on
changes in the equilibrium velocity. However, in the Zhang model, a driver adjusts to the traffic
density instantaneously and driver physiology is not considered. Berg, Mason and Woods [27]
introduced a diffusion term to mitigate the unrealistic acceleration and deceleration in the PW model.
However, this model cannot characterize abrupt changes in density. Interactions between vehicles on a
road are not adequately characterized by the PW model [28]. Changes in density produce changes in
the equilibrium velocity distribution, which results in driver reaction to align to the forward vehicles.
Thus, in this paper, a new anticipation term is proposed. The performance of the proposed and PW
models was evaluated over a 300 m circular road with an inactive traffic flow bottleneck to illustrate
the improvements in behavior.

The rest of this paper is organized as follows. The proposed model is presented in Section 2 and
the Roe decomposition for numerical evaluation is given in Section 3. Section 4 presents a stability
analysis of the model. The performance of the proposed and PW models is investigated in Section 5
and some concluding remarks are given in Section 6.
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2. Traffic Flow Modeling

Payne and Whitham independently studied macroscopic traffic behavior and developed a similar
model [18], which is known as the Payne–Whitham (PW) model. The first equation of this model is the
same as the LWR model [9,10], while the second equation characterizes vehicle acceleration. The PW
model [29–31] for traffic is

∂ρ

∂t
+

∂(ρv)
∂x

= 0, (2)

∂v
∂t

+ v
∂v
∂x

+
C2

0
ρ

∂ρ

∂x
=

ve(ρ)− v
τ

. (3)

Driver spatial adjustment to forward conditions is characterized by the anticipation term
C2

0
ρ

∂ρ
∂x . Traffic alignment occurs during the relaxation time τ. During alignment, traffic achieves

the equilibrium velocity ve(ρ) based on the density distribution and is characterized by the relaxation
term ve(ρ)−v

τ . The constant C0 is the driver spatial density adjustment parameter. It is a nonnegative
constant, which, in the literature, varies between 2.4 and 57 m/s [29,32]. However, it cannot characterize
variations in driver behavior and so can produce unrealistic results. The PW model anticipation term
can create large changes in acceleration and deceleration at abrupt changes in density [12]. To solve
this problem, a variable anticipation term can be employed, which is based on traffic parameters.

In this paper, a new anticipation term is proposed for the PW model. Acceleration is given by

a =
vm − v

τ
, (4)

where vm is the maximum velocity. There are large vehicle interactions with a small τ and quick
alignment in traffic occurs. This term represents the reaction of a driver to the forward conditions.
The Greenshields equilibrium velocity distribution [33] is considered here, which is given by

ve(ρ) = vm

(
1− ρ

ρm

)
, (5)

where ρm is the maximum density. This model is widely employed [34] and has been verified using
data recorded in Yokohama, Japan [35], and San Francisco, CA [36]. This model is suitable for both free
flow and congested traffic. The change in the equilibrium velocity is the stimulus for driver reaction
and is given by

v
′
e(ρ) =

d
dρ

(
vm

(
1− ρ

ρm

))
= −vm

ρm
. (6)

A driver is more sensitive in congested traffic as the distance headway h is small. During free
flow traffic, the distance headway is large, which makes drivers less sensitive to traffic conditions.
A driver covers the distance headway during the relaxation time τ and the transition velocity is [29]

vt = −
h
τ

. (7)

The negative sign shows that the velocity is a monotonically decreasing function of density [8].
As the density increases, the headway decreases so that

h =
1
ρ

.

A driver is more sensitive to a large transition velocity and vice versa. Substituting τ from
Equation (7) into Equation (4) gives

a = −vt(vm − v)
h

. (8)
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The change in velocity is given by
∆v = at, (9)

where t is the time during which acceleration or deceleration occurs. Considering the transition
velocity [37], this can be expressed as

t =
1
vt

. (10)

Substituting Equation (8) into Equation (9) gives

∆v = −vt(vm − v)
h

t. (11)

The driver reaction to stimuli is obtained by substituting Equation (10) into Equation (11),
which gives

− vm − v
h

. (12)

The response of a driver [8] is

response = reaction× stimuli. (13)

Combining Equations (6) and (12) gives

−vm − v
h

v
′
e(ρ). (14)

This indicates that, when a driver notices a change in traffic, velocity is aligned to the forward
vehicles while covering the distance headway h. Spatial changes in density occur during alignment,
so the anticipation term takes the form

−vm − v
h

v
′
e(ρ)

∂ρ

∂x
. (15)

The units of vm−v
h are s−1, which is the same as for traffic flow q. Substituting vm−v

h = q into
Equation (15) gives the driver response as

−qv
′
e(ρ)

∂ρ

∂x
. (16)

The relaxation terms of the proposed and Payne–Whitham (PW) models are the same.
The anticipation term of the proposed model is based on the velocity adjustment according to
the stimuli, whereas in the Payne–Whitham model spatial alignment is based on a constant C0.
The relaxation and anticipation terms of the proposed and the PW models are given in Table 1.
The proposed model is obtained by substituting the new anticipation term in Equation (15) into
Equation (3), which gives

∂ρ

∂t
+

∂(ρv)
∂x

= 0, (17)

∂v
∂t

+ v
∂v
∂x
−

vm−v
h v

′
e(ρ)

ρ

∂ρ

∂x
=

ve(ρ)− v
τ

, (18)



Appl. Sci. 2019, 9, 2848 5 of 20

Table 1. Payne–Whitham (PW) and proposed model parameters.

Term PW Model Proposed Model

Anticipation C2
0

ρ
∂ρ
∂x

− vm−v
h v′e(ρ)

ρ
∂ρ
∂x

Relaxation ve(ρ)−v
τ

ve(ρ)−v
τ

3. Roe Decomposition

To evaluate the performance, the proposed and PW models are discretized using the Roe
decomposition technique [38]. This decomposition approximates discontinuities and has been shown
to provide consistent and accurate results for vehicular traffic flow models [39]. In vector form,
the conserved form of these models is given by

Gt + f (G)x = S(G), (19)

where the subscripts t and x denote temporal and spatial derivatives, respectively. G denotes the data
variables, f (G) denotes the vector of functions of the data variables, and S(G) is the vector of source
terms. The system in Equation (19) can be represented in quasilinear form as

∂G
∂t

+ A(G)
∂G
∂x

= 0, (20)

where A(G) is the Jacobian matrix of the gradients of the functions of variables ρ and ρv. This matrix
is used to find the eigenvalues and eigenvectors. The eigenvalues are not only useful to obtain
approximate solutions but also to analyze traffic system hyperbolicity. The conserved form of the PW
model is obtained by multiplying Equation (2) by v

vρt + v(ρv)x = 0. (21)

Now, substituting
vρt = (ρv)t − ρvt. (22)

into Equation (21) gives
ρvt = (ρv)t + v(ρv)x. (23)

Multiplying Equation (3) by ρ gives

ρvt + ρvvx + C2
0ρx = ρ

ve(ρ)− v
τ

. (24)

Now, consider
ρvvx = (ρvv)x − v(ρv)x, (25)

and substituting Equations (23) and (25) into Equation (24) gives

(ρv)t + (ρvv)x + C2
0ρx = ρ

ve(ρ)− v
τ

. (26)

Multiplying and dividing (ρvv)x by ρ, we have

(ρvv)x =

(
(ρv)2

ρ

)
x

, (27)
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so that Equation (26) can be written as

(ρv)t +

(
(ρv)2

ρ
+ C2

0ρ

)
x
= ρ

ve(ρ)− v
τ

, (28)

which is the conserved form of the PW model [40]. This can be expressed in vector form as

G =

(
ρ

ρv

)
, f (G) =

(
ρv

(ρv)2

ρ + C0
2ρ

)
, S(G) =

(
0

ρ
ve(ρ)−v

τ

)
. (29)

The second equation of the proposed model in Equation (18) is given by

vt + vvx −
vm − v

h
v
′
e(ρ)

1
ρ

ρx =
ve(ρ)− v

τ
, (30)

and multiplying by ρ gives

ρvt + ρvvx −
vm − v

h
v
′
e(ρ)ρx = ρ

ve(ρ)− v
τ

(31)

Substituting Equations (23) and (25) into Equation (31), we have

(ρv)t +

(
(ρv)2

ρ

)
x
− vm − v

h
v
′
e(ρ)ρx = ρ

ve(ρ)− v
τ

, (32)

and since ve(ρ)x = v
′
e(ρ)ρx

(ρv)t +

(
(ρv)2

ρ
− vm − v

h
ve(ρ)

)
x
= ρ

ve(ρ)− v
τ

. (33)

The proposed model in vector form is then

G =

(
ρ

ρv

)
, f (G) =

(
ρv

(ρv)2

ρ − vm−v
h ve(ρ)

)
, S(G) =

(
0

ρ
ve(ρ)−v

τ

)
. (34)

The Jacobian matrix for the PW model is

A(G) =

(
0 1

−v2 + C2
0 2v

)
, (35)

and the eigenvalues of this matrix are the solutions of

|A(G)− λI| =
∣∣∣∣∣ −λ 1
−v2 + C2

0 2v− λ

∣∣∣∣∣ , (36)

which are [41]
λ1 = v + C0, λ2 = v− C0, (37)

The Jacobian matrix for the proposed model is

A(G) =

(
0 1

−v2 − vm−v
h v

′
e(ρ) 2v

)
, (38)
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and the eigenvalues of this matrix are the solutions of

|A(G)− λI| =
∣∣∣∣∣ −λ 1
−v2 − vm−v

h v
′
e(ρ) 2v− λ

∣∣∣∣∣ , (39)

which are

λ1 = v +

√
−vm − v

h
v′e(ρ), λ2 = v−

√
−vm − v

h
v′e(ρ). (40)

ve(ρ) given by Equation (6) is a decreasing function of density so that v
′
e(ρ) < 0, which ensures

the eigenvalues are real. The traffic system is strictly hyperbolic as the discriminant (driver response)√
−vm − v

h
v′e(ρ),

is positive [13,42]. Note that v
′
e(ρ) = 0 when the maximum velocity is achieved. At this velocity,

the distance headway is constant [43], so a driver does not anticipate a change in flow. The eigenvectors
of the PW and proposed models are

e1 =

(
1

v + C0

)
, e2 =

(
1

v− C0

)
, (41)

and

e1 =

(
1

v +
√
− vm−v

h v′e(ρ)

)
, e2 =

(
1

v−
√
− vm−v

h v′e(ρ)

)
, (42)

respectively.
The computational grid is obtained by dividing the solution domain spatially and temporally.

The width of a road segment is ∆x, which is the difference between two consecutive points in the
x direction, and a time step is ∆t. At the boundary of road segments i and i + 1, denoted by i + 1

2 ,
the average velocity for the proposed and PW models [44] is

vi+ 1
2
=

vi+1
√

ρi+1 + vi
√

ρi√
ρi+1 +

√
ρi

, (43)

the corresponding average density from Roe [38] is the geometric mean of densities and is

ρi+ 1
2
=
√

ρi+1ρi. (44)

Using vi+ 1
2

and ρi+ 1
2
, the data variables can be approximated over the road segments [44].

3.1. Entropy Fix

Numerical solutions must conform to the hyperbolic system [45]. A criterion is required to
ensure that a suitable numerical solution is obtained, and this is known as the entropy condition.
Roe decomposition is used to determine the flow for road segments over time steps, and entropy
violations can occur at discontinuities. To solve this problem, an entropy fix is applied to the Roe
decomposition at segment boundaries to obtain a continuous solution. The Jacobian matrix A(G) is
replaced by the entropy fix, which is

e | Γ | e−1,

where | Γ |= [λ̂1, λ̂2, . . . , λ̂k, . . . , λ̂n] is a diagonal matrix which is function of the eigenvalues λk of the
Jacobian matrix, e is the eigenvector matrix and e−1 is its inverse. The Harten and Hyman entropy fix
scheme [45] is employed here, to modify the eigenvalues to accurately characterize the flow, so that
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λ̂k =

{
δ̂k, if | λk |≤ δ̂k

| λk |, if | λk |≥ δ̂k,
(45)

with
δ̂k = max(0, λi+ 1

2
− λi, λi+1 − λi+ 1

2
). (46)

This ensures that the δk are not negative and similar at the segment boundaries. δ̂k is zero for
abrupt changes at segment boundaries. The resulting approximate Jacobian matrix for the proposed
model [39] is

e | Γ | e−1 =

(
1 1

vi+ 1
2
+
√
− vm−v

h v′e(ρ) vi+ 1
2
−
√
− vm−v

h v′e(ρ)

)

×

 vi+ 1
2
+
√
− vm−v

h v′e(ρ) 0

0 vi+ 1
2
−
√
− vm−v

h v′e(ρ)


×

 vi+ 1
2
−
√
− vm−v

h v′e(ρ) −1

−vi+ 1
2
−
√
− v(ρ)−v

h v′e(ρ) 1

× −1

2
√
− vm−v

h v′e(ρ)
,

(47)

and for the PW model is

e | Γ | e−1 =

(
1 1

vi+ 1
2
+ C0 vi+ 1

2
− C0

)
×
(

vi+ 1
2
+ C0 0

0 vi+ 1
2
− C0

)

×
(

vi+ 1
2
− C0 −1

−vi+ 1
2
− C0 1

)
×
(
−1
2C0

)
.

(48)

4. Stability Analysis

To examine the stability of the proposed traffic flow model, the initial density distribution
ρ0 at t = 0 is presumed to be within limits and the corresponding velocity vo = ve(ρ0) is at
equilibrium [46,47]. The changes in density δρ(x, t) and velocity δv(x, t) during acceleration and
deceleration are

δρ(x, t) = ρ(x, t)− ρ0,
δv(x, t) = v(x, t)− v0,

(49)

where ρ0 and v0 are the solutions of Equations (17) and (18) and δρ(x, t) and δv(x, t) are the changes
around the solution pair (ρ0, v0), which are assumed to be periodic functions. A linear combination
of these functions will be stable when the model is stable. The change in density and velocity can be
characterized as [46]

δρ(x, t) = ρ0eikx+wt,
δv(x, t) = v0eikx+wt,

(50)

where i is
√
−1, ω is the frequency of oscillations, k is the number of changes which occur over a

distance, and kx represents the spatial change. Since eikx = cos kx + i sin kx, the traffic is a periodic
function of kx. The changes in density and velocity can be represented using ρ0ewt and v0ewt,
respectively, at time t, with growth rate wt.

From Equations (2), (3) and (15), the proposed model is

∂ρ

∂t
+

∂(ρv)
∂x

= 0, (51)
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∂v
∂t

+
v∂v
∂x

= −
(
−vm − v

h
v
′
e(ρ)

)
∂ρ

ρ∂x
+

(
ve(ρ)− v

τ

)
. (52)

For simplicity, let ζ = − vm−v
h v

′
e(ρ), and substituting Equation (49) into Equations (51) and

(52) gives
∂δρ

∂t
+ v

∂δρ

∂x
+ ρ

∂δv
∂x

= 0, (53)

∂δv
∂t

+
v∂δv
∂x

= −
(

ζ

ρ

)
∂δρ

∂x
+

(
ve(ρ)− v

τ

)
. (54)

The changes in density and velocity spatially and temporally at a transition based on
Equation (50) are

∂δρ(x,t)
∂x = ikρ0e(ikx+wt),

∂δρ(x,t)
∂t = wρ0e(ikx+wt),

∂δv(x,t)
∂x = ikv0e(ikx+wt),

∂δv(x,t)
∂t = wv0e(ikx+wt).

(55)

Substituting Equation (55) into Equations (53) and (54) [48] gives

J

(
δρ(x, t)
δv(x, t)

)
=

(
0
0

)
, (56)

where

J =

(
j11 j12

j21 j22

)
=

(
(ikv0 + w) ikρ0

−i k
ρ0

ζ + ve(ρ0)
′

τ −w− ikv0 − 1
τ

)
, (57)

so that Equation (56) becomes(
(ikv0 + w) ikρ0

−i k
ρ0

ζ + ve(ρ0)
′

τ −w− ikv0 − 1
τ

)(
ρ0e(ikx+wt)

v0e(ikx+wt)

)
=

(
0
0

)
. (58)

The system is stable if the change in flow decreases over time [49]. If

(
δρ(x, t)
δv(x, t)

)
is the solution

for the proposed model, then det(J) = 0, thus the densities and velocities do not change. Then,

w2 +

(
1
τ
+ i2kv0

)
w− k2v2

0 + k2ζ + i
kv0 + kρ0ve(ρ)′

τ
= 0, (59)

which gives
w2 + (φ1 + iε1)w + φ2 + iε2 = 0, (60)

where
φ1 = 1/τ,

ε1 = 2kv0,

φ2 = −k2v2
0 + k2ζ,

and
ε2 = k/v0 + kρ0ve(ρ)

′τ.

The solutions of Equation (60) are

w± = −(φ1+iε1)±
√

(φ1+iε1)2−4(φ2+iε2)/2. (61)



Appl. Sci. 2019, 9, 2848 10 of 20

For a stable system, the changes in density and speed should decrease with time, which
necessitates that the real part of w in det(J) = 0 be strictly negative, i.e.,

Re(w+) < 0. (62)

The part of Equation (61) under the radical sign can be expressed as√
R± |I| =

√
(
√

R2+I2+R)/2± i
√

(
√

R2+I2−R)/2, (63)

and

Re
(√

(φ1+iε1)
2/4− (φ2 + iε2)

)
=

√
(
√

R2+I2+R)/2. (64)

The real part of w in Equation (61) is then

Re(w±) = −φ/2±
√

1/2
√

R2 + I2 + R. (65)

where R = φ2
1−ε2

1−4φ2/4 and I = φ1ε1−2φ2/2 [50].
From Equation (62), we have that

1/2τ <

√
1/2
√

R2 + I2 + R, (66)

1/4τ2 < 1/2
√

R2 + I2 + 1/2R, (67)

and
1/4τ4 − R/τ2 < I2. (68)

Substituting R and I into Equation (68), the stability condition is

ρ0ve(ρ0)
′ <

√
ζ. (69)

or
(ρ0ve(ρ0)

′)2 < ζ. (70)

If the changes in velocity are small for small changes in density, Equation (70) will be satisfied.
Equations (51) and (52) can result in large changes in flow, whereas ζ in the proposed model adjusts to
these changes and provides a stable flow. For the proposed model, C2

0 = ζ, thus from Equation (70),
the stability condition is

(ρ0ve(ρ0)
′)2 < −

(
vm − v

h
v
′
e(ρ)

)
. (71)

For the PW model, the stability condition is

(ρ0ve(ρ0)
′)2 < C2

0 . (72)

Thus, in this case, the changes in flow are based only on C0, which is a constant. The relaxation term
provides some compensation for this, but it is often the case that the traffic behavior becomes oscillatory.

5. Performance Results

The performance of the proposed and PW models is evaluated in this section. The boundary
conditions employed are periodic, which denote a circular road. These boundary conditions were
implemented in the simulations such that the density and flow at x = 300 m move to x = 0 m in the
next time step. The simulation parameters are given in Table 2. The stability of the models can be
guaranteed by employing the Courant, Friedrich and Lewy (CFL) stability conditions [51]. The road
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and time steps for the proposed model were then 1 m and 0.1 s and for the PW model were 5 m and
0.1 s. The total simulation time in both cases was 60 s and the maximum velocity was vm = 10 m/s.
The maximum normalized density was 1, which means that the road was 100% occupied. Typical
values of the relaxation time range from τ = 0.5 s to τ = 3 s. The relaxation time considered was 2.5 s
and the headway was 20 m [52,53]. The initial density ρ0 at time t = 0 for free flow traffic was

ρ0 =

{
0.01, for x < 100

0.2, for x ≥ 100,
(73)

whereas, for congestion, the initial density was

ρ0 =


0.15, for x ≤ 130

0.8, for 130 < x < 180

0.10, for x ≥ 180.

(74)

The density between 130 m and 180 m was 0.8ρm, which was well above the critical density 0.5ρm.
The speed constant for the PW model varies between 2.4 m/s to 57 m/s in the literature, thus here
C0 = 10 m/s was used.

Table 2. Simulation parameters.

Description Value

Simulation time for both models with different initial densities (Equations (73) and (74)) 60 s
Length of the circular road 300 m

Maximum velocity 10 m/s
Time step for both models 0.1 s

Road step for the proposed model 1 m
Road step for the PW model 5 m

Relaxation time τ = 2.5 s
Equilibrium velocity distribution, ve(ρ) Greenshields

Maximum normalized density ρm = 1
Speed constant, C0 10 m/s

Resolution test time step for the proposed model 0.01 s
Resolution test road step for the proposed model 2 m

The density with the proposed model over the 300 m road at 1 s, 20 s, 40 s and 60 s is shown in
Figure 1 and given in Table 3. Comparing the results from 1 s to 60 s, the density becomes smoother
over time. At 1 s, the density is 0.19 at 1 m, and from 10 m to 104 m it is 0.01. It increases to 0.2 at 111 m
and stays at this level to 300 m. At 20 s, the density is 0.20 at 1 m, and decreases to 0.19 at 107 m and
0.008 at 197 m. Between 197 m and 200 m, it increases from 0.008 to 0.01 and then it is 0.20 at 267 m.
At 40 s, the density is 0.12 at 1 m, decreases to 0.01 at 93 m, and is 0.19 at 227 m and 0.12 at 300 m.
At 60 s, the density is 0.20 at 1 m and decreases to 0.02 at 268 m. From 268 m and 283 m, the density
varies between 0.02 and 0.19 and is 0.20 at 300 m.
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Figure 1. Normalized traffic density with the proposed model on a 300 m circular road with h = 20 m
at 1 s, 20 s, 40 s and 60 s.

The velocity with the proposed model over the 300 m road at 1 s, 20 s, 40 s and 60 s is shown in
Figure 2 and given in Table 3. At 1 s the velocity is 8.0 m/s at 1 m and increases to 9.9 m/s at 10 m.
The velocity is a constant 8.0 m/s between 111 m and 300 m. At 20 s, the velocity is 8.0 m/s at 1 m and
increases to 9.9 m/s at 200 m. Between 267 m and 300 m, it is a constant 8.0 m/s. At 40 s, the velocity
increases from 8.7 m/s at 1 m to 9.9 m/s at 96 m. The velocity is 9.9 m/s at 109 m, decreases to 8.0 m/s
at 227 m and then increases to 8.7 m/s at 300 m. At 60 s, the velocity is 8.0 m/s at 1 m and smoothly
increases to 9.7 m/s at 268 m. The velocity is 8.0 m/s between 282 m and 300 m. The density and
velocity behavior of the proposed model is realistic and becomes smooth over time. When there is a
change in density, the velocity is as expected.

Figure 2. Velocity with the proposed model on a 300 m circular road with h = 20 m at 1 s, 20 s,
40 s and 60 s.
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Table 3. Velocity and density with the proposed model at 1 s, 20 s, 40 s and 60 s.

Time (s) Distance (m) Normalized Density Velocity (m/s)

1 1 0.19 8.0
1 10–104 0.01 9.9
1 111–300 0.20 8.0

20 1 0.20 8.0
20 107 0.19 8.0
20 197 0.008 9.91
20 200 0.01 9.90
20 267 0.20 8.0

40 1 0.12 8.7
40 93 0.01 9.9
40 227 0.19 8.0
40 300 0.12 8.7

60 1 0.20 8.0
60 268 0.02 9.7
60 283 0.19 8.0
60 300 0.20 8.0

The density with the PW model at 1 s, 2 s, 4 s and 6 s on the circular road is shown in Figure 3 and
given in Table 4. At 1 s, the density is 0.20 at 0 m, 0.01 between 5 m and 105 m, and 0.2 between 110 m
and 300 m. At 2 s, the density is 0.17 at 0 m and decreases to 0.01 at 70 m. The density is 0.13 at 100 m,
0.12 between 165 m and 280 m, and then increases to 0.14 at 300 m. At 4 s, the density decreases from
0.17 at 0 m to 0.03 at 75 m. It is 0.05 at 115, 0.20 between 200 m and 280 m, and 0.19 at 300 m. At 6 s,
the density is 0.17 at 0 m and decreases to 0.06 at 80 m. At 145 m it is 0.09, increases to 0.19 at 230 m
and 0.20 at 278 m, and then deceases to 0.18 at 300 m.

Figure 3. Normalized density with the Payne–Whitham (PW) model on a 300 m circular road with
C0 = 10 at 1 s, 2 s, 4 s and 6 s.

The velocity with the PW model at 1 s, 2 s, 4 s and 6 s is shown in Figure 4 and given in Table 4.
At 1 s it is 8.0 m/s at 0 m, increases to 9.9 m/s at 5 m and stays constant to 105 m. The velocity
decreases to 8.0 m/s at 110 m and remains at this value until 300 m. At 2 s, the velocity increases from
9.0 m/s at 0 m to 18.8 m/s at 45 m. It decreases to 10.4 m/s at 70 m and then to −1.2 m/s at 100 m,
which is impossible. The velocity then increases to 7.9 m/s at 165 m and is 8.3 m/s at 300 m. At 4 s, it is
8.9 m/s at 0 m and increases to 16.6 m/s at 75 m, which is beyond the maximum of 10 m/s. At 115 m,
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it decreases to 2.0 m/s and then increases to 7.9 m/s at 200 m and 8.4 m/s at 300 m. At 6 s, the velocity
is 8.8 m/s at 0 m, increases to 14.4 m/s at 80 m and then decreases to 4.4 m/s at 145 m. At 230 m, it is
7.8 m/s and this increases to 8.5 m/s at 300 m.

Figure 4. Velocity with the Payne–Whitham (PW) model on a 300 m circular road with C0 = 10 at 1 s,
2 s, 4 s and 6 s.

Table 4. Velocity and density with the PW model at 1 s, 2 s, 4 s and 6 s.

Time (s) Distance (m) Normalized Density Velocity (m/s)

1 0 0.20 8.0
1 5–105 0.01 9.9
1 110–300 0.20 8.0

2 0 0.17 9.0
2 45 0.03 18.85
2 70 0.01 10.4
2 100 0.13 −1.2
2 165–280 0.12 7.9
2 300 0.14 8.3

4 0 0.17 8.9
4 75 0.03 16.6
4 115 0.05 2.0
4 200–280 0.20 7.9
4 300 0.19 8.4

6 0 0.17 8.8
6 80 0.06 14.4
6 145 0.09 4.4
6 230 0.19 7.8
6 278 0.20 8.0
6 300 0.18 8.5

The proposed model traffic velocity over the 300 m road is given in Figure 5. This shows that
the velocity becomes smooth over time. Further, the variations are small compared to the PW model,
as shown in Figure 6. The velocity with the proposed model stays within the maximum of 10 m/s and
minimum of 0 m/s. With the PW model, the velocity goes as high as 19.6 m/s and below 0 m/s due to
a fixed speed constant, as shown in Figure 6. In general, the velocity with the proposed model evolves
over time as expected, while the velocity with the PW model is unrealistic.
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Figure 5. Velocity with the proposed model on a 300 m circular road for 60 s with τ = 2.5 s and distance
headway h = 20 m.

Figure 6. Velocity with the PW model on a 300 m circular road with τ = 2.5 s and C0 = 10.

The spatial and temporal density evolution with the proposed model during congestion given
by Equation (74) (the density is above the critical density 0.5 between 130 m and 180 m), for 60 s over
the 300 m road is shown in Figure 7. These results show that the density still evolves smoothly over
time. The normalized density with the proposed model stays within the minimum 0 and maximum 1,
as required. The maximum density with the proposed model at 0.1 s is 0.8 at 131 m. At 60 s, the density
is very smooth. The corresponding velocity with the proposed model is given in Figure 8. These results
show that the velocity evolves smoothly over time and stays within the maximum of 10 m/s and
minimum of 0 m/s. At 0.1 s, the velocity is 0.5 m/s at 131 m when the density is 0.8. With the PW
model, the velocity is as high as 19.6 m/s and below 0 m/s, as shown in Figure 6. Thus, the proposed
model provides more realistic behavior than the PW model.
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Figure 7. Density behavior with the proposed model during congestion (ρ > 0.5) over a 300 m circular
road for 60 s with τ = 2.5 s and distance headway h = 20 m.

Figure 8. Velocity with the proposed model during congestion (ρ > 0.5) over a 300 m circular road
with τ = 2.5 s and h = 20 m.

The density behavior with the proposed model for time step 0.01 s and road step 2 m over the
300 m road at 1 s, 20 s, 40 s and 60 s is shown in Figure 9 and given in Table 5. Comparing the results
from 1 s to 60 s, the density becomes smoother over time. At 1 s, the density is 0.20 at 1 m, and from
28 m to 102 m it is 0.01. It increases to 0.2 at 118 m and stays at this level to 300 m. At 20 s, the density
is 0.20 at 1 m, and decreases to 0.01 at 234 m, and then increases to 0.20 at 300 m. At 40 s, the density is
0.12 at 1 m, decreases to 0.02 at 96 m, and is 0.2 at 142 m. It is 0.12 at 300 m. At 60 s, the density is 0.20
at 1 m and decreases to 0.05 at 250 m. From 260 m and 288 m, the density varies between 0.06 and 0.19
and is 0.20 at 300 m. The density is smoother at density discontinuities than the results in Figure 1 for
time step 0.1 s and road step 1 m, however there are no significant differences. Thus, the numerical
scheme is stable.
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Figure 9. Density behavior with the proposed model for time step 0.01 s and road step 2 m on a 300 m
circular road with h = 20 m at 1 s, 20 s, 40 s and 60 s.

Table 5. Velocity and density of the proposed model for the resolution test at 1 s, 20 s, 40 s and 60 s.

Time (s) Distance (m) Normalized Density Velocity (m/s)

1 1 0.20 8.0
1 28–102 0.10 9.9
1 118–300 0.20 8.0
20 1 0.20 8.0
20 234 0.01 9.9
20 300 0.20 8.0
40 1 0.12 8.8
40 96 0.02 9.7
40 142 0.20 8.0
40 300 0.12 8.8
60 1 0.20 8.0
60 250 0.05 9.5
60 260 0.06 9.4
60 288 0.19 8.1
60 300 0.20 8.0

The velocity behavior with the proposed model for time step 0.01 s and road step 2 m over the
300 m road at 1 s, 20 s, 40 s and 60 s is shown in Figure 10 and given in Table 5. At 1 s, the velocity is
8.0 m/s at 1 m and increases to 9.9 m/s at 28 m. The velocity is a constant 8.0 m/s between 118 m and
300 m. At 20 s, the velocity is 8.0 m/s at 1 m and increases to 9.9 m/s at 234 m. It is 8.0 m/s at 300 m.
At 40 s, the velocity increases from 8.8 m/s at 1 m to 9.7 m/s at 96 m. The velocity is 8.0 m/s at 142 m,
then increases to 8.8 m/s at 300 m. At 60 s, the velocity is 8.0 m/s at 1 m and smoothly increases to
9.5 m/s at 250 m. The velocity varies between 9.4 m/s and 8.06 m/s from 260 m to 288 m. It is 8.0 m/s
at 300 m. The velocity behavior of the proposed model with time step 0.01 s and road step 2 m is
smoother at abrupt changes than the results in Figure 2 for time step 0.1 s and road step 1 m. However,
there are no significant differences, which confirms that the numerical scheme is stable.
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Figure 10. Velocity behavior with the proposed model for time step 0.01 s and road step 2 m on a 300 m
circular road with h = 20 m at 1 s, 20 s, 40 s and 60 s.

6. Conclusions

A new macroscopic traffic flow model was proposed. The velocity and density with this model
were shown to remain within limits with no oscillations. Conversely, the Payne–Whitham (PW)
model results in unrealistic behavior due to the use of a speed constant C0. The PW model spatial
density adjustments are based only on this constant regardless of the stimuli. This results in negative
velocities as well as the velocities above the maximum, which is impossible. In the proposed model,
these changes in density are based on driver reaction and traffic stimuli. As a consequence, the results
obtained are more realistic than with the PW model.
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