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Abstract: In this review, methane absorption characteristics mainly in the near-infrared region and
typical types of currently available semiconductor lasers are described. Wavelength modulation
spectroscopy (WMS), frequency modulation spectroscopy (FMS), and two-tone frequency modulation
spectroscopy (TTFMS), as major techniques in modulation spectroscopy, are presented in combination
with the application of methane detection.
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1. Introduction

Due to global warming and climate change, the monitoring and detection of atmospheric gas
concentration has come to be of great value. Although the average background level of methane (CH4)
(~1.89 ppm) in the earth’s atmosphere is roughly 200 times lower than that of CO2 (~400 ppm), the
contribution of CH4 to the greenhouse effect per mole is 25 times larger than CO2 [1,2]. Therefore, a
fast, accurate, and precise monitoring of trace greenhouse gas of CH4 is essential. There are some
methods for detecting methane, including chemical processes [3–6] and optical spectroscopy [7–9].
Optical spectroscopy for detecting gases is based on the Beer-Lambert law [10–12], in which the
light attenuation is related to the effective length of the sample in an absorbing medium, and to
the concentration of absorbing species, respectively. By this theory, the emission wavelength of
the narrow-linewidth diode laser is scanned over the target gas absorption line, and tunable diode
laser absorption spectroscopy (TDLAS) has become an effective technique for the rapid and online
analysis of gas component concentration, due to the advantage of high spectrum resolution [13–22].
Direct detection and wavelength modulation spectroscopy are the most common sensing methods
of TDLAS [23,24]. Comparatively speaking, wavelength/frequency modulation spectroscopy is less
vulnerable to the effects of background noise and more suitable for detecting trace gases. Moreover,
modulation spectroscopy is widely used for the detection of various gases with the advantage of
high signal-to-noise ratio (SNR) [25,26]. Wavelength modulation spectroscopy (WMS), frequency
modulation spectroscopy (FMS), and two-tone frequency modulation spectroscopy (TTFMS) are the
main techniques in modulation absorption spectroscopy. Since each technique has its strengths and
weaknesses, they have also been applied for detecting methane depending on the situation.

In this review, after introducing methane absorption characteristics and recent progress of
tunable diode lasers (TDLs), recent advances in methane detection using modulation spectroscopy
are presented.

2. Methane Absorption Lines

The CH4 molecule has a spherical top, and belongs to the tetrahedral point family. It exhibits
four fundamental vibration modes: υ1 = 2913 cm−1, υ2 = 1533.3 cm−1, υ3 = 3018.9 cm−1 and

Appl. Sci. 2019, 9, 2816; doi:10.3390/app9142816 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-6369-544X
https://orcid.org/0000-0002-4731-7174
http://www.mdpi.com/2076-3417/9/14/2816?type=check_update&version=1
http://dx.doi.org/10.3390/app9142816
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 2816 2 of 16

υ4 = 1305.9 cm−1 [27]. Of these, the two bending vibrations are υ2 (asymmetric) and υ4 (symmetric),
while υ1 (symmetric) and υ3 (asymmetric) are the two stretching vibrations [28]. The successive
resonance spacing is about 1500 cm−1 [29]. In the near-infrared region (1100–1800 nm), the 2υ3

band near 1670 nm and the υ2 + 2υ3 band near 1300 nm are primary overtone rotational-vibrational
combination bands.

Based on the Beer-Lambert law (Equation (1)) [10,11], many laser absorption spectroscopy
techniques are applied to measure gas concentration, including WMS, FMS, and TTFMS.

τ(υ) =
It(υ)

Io(υ)
= e−σ(υ)xL = e−α(υ) (1)

where, τ(υ) represents the transmittance of light, Io(υ) and It(υ) represent the incident and transmitted
intensities of a certain wavelength, respectively, σ(υ) represents the cross-section of gas absorption at a
certain wavelength, x represents the gas concentration, and L represents the length of the path that
the light travels through absorbing media, α(υ) represents the transmission coefficient. In absorption
spectroscopy, the detection sensitivity is related to the length of the absorption path and the absorption
line intensity of molecule, respectively [2].

According to differences in measurement area and monitoring technique, different frequency
bands involving methane transitions from near infrared to mid infrared have been applied [30]. With
the development of near-infrared light sources and fiber technology, the corresponding test system
in the near infrared region is more mature [31–33]. Washenfelder et al. [34] investigated that the
absorption strengths of the 2υ3 band were suitable for providing high sensitivity for ground-based
high-resolution spectrometry in the near-infrared spectrum. The absorption intensity of CH4 in the
2υ3 band is more than four orders of magnitude stronger than that of H2O and CO2, which can be
safely neglected [35]. The related spectroscopic parameters of 2υ3 band, including line positions, line
intensities, line widths, line shifts, and line couplings are certain, as described in reference [36–41].

3. Tunable Diode Laser

Semiconductor diode lasers are mainly made of gallium arsenic (GaAs), aluminum (GaAlAs),
indium phosphite (InGaAlP, InGaAs or InGaP) and lead salt [42,43]. Moreover, diode lasers are
frequently used for modulation spectroscopy because of fast tunability of laser wavelength and fast
response times [44,45]. Compared with the spatial characteristics, the spectral characteristics of lasers,
such as linewidth and tunability, are more valuable in modulation spectroscopy. To ensure high-quality
measurement, narrow line widths, single frequency emission and the inherent stability of the laser are
of importance.

The longitudinal mode spacing is relatively narrow, and the oscillation bands of the laser exist in
many longitudinal modes. Therefore, the distributed Bragg reflection (DBR) and distributed feedback
(DFB) lasers are common diode lasers in the near-infrared spectral region, in which the feedback
necessary for the lasing action is distributed throughout the cavity length, and the longitudinal mode
selection is improved [46–48]. Such lasers covering the absorption bands of CH4 at 1650 nm have been
applied for detecting methane gas [49]. Recently, quantum well (QW) DFB lasers have generated the
emission wavelengths of 2.6 µm [50] and 3.4 µm [51,52]. Nevertheless, the overtone and combination
bands of many target molecules are in the near infrared region, which is strong enough to get ppm,
even ppb detection levels [13].

Depending on the laser materials, commercial diode lasers can be classified into two generic
groups: gallium arsenide-based lasers with wavelengths below 3 µm, and lead salt-based lasers with
wavelengths above 3 µm, which are usually fabricated from semiconductor materials in groups of
III-V and IV-VI, respectively [53]. Among them, the laser beams of lead-salt diode lasers can range
from 3 to 30 µm, covering the fundamental transitions of most atmospheric trace gases, which is in the
mid-infrared region. Therefore, lead-salt diode lasers are appropriate for spectroscopic gas detection in
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theory. However, some drawbacks, such as instability in single mode operation, low output power,
and high costs, result in their limited practical application in comparison to GaAs lasers [54,55].

Mid-infrared wavelength band covers the fundamental bands of most gas molecules. Therefore,
many researchers are carrying out studies with the aim of improving the performance of mid-infrared
lasers or develop new type lasers for higher sensitivity. For example, a diode laser with the external
cavity (EC) (e.g., Littrow or Littman-Metcalf configuration) has been proposed to to be tuned over a
broad spectral range, which is called an external cavity diode laser (ECDL) [56]. However, mode hops
limit more improvements of spectral range in a single scan [57]. By contrast, Interband cascade lasers
(ICLs) [58] in the 2.5–4 µm wavelength range and quantum cascade lasers (QCLs) [59] in the 4–12 µm
wavelength range can provide continuous-wave (CW) output power levels with low input powers.
Due to the use of interband transitions, the laser action of ICLs can be obtained at lower electrical input
powers than QCLs. However, the phonon interactions in ICLs typically occur on a much slow time scale,
which is slower than the longitudinal optical phonon interactions in QCLs. QCLs are widely used as the
convenient spectroscopic source to trace gas analysis. In addition, a significant advance in mid-infrared
spectroscopic detection has been made, due to their room temperature operation, inherently narrow
linewidth and high output power [60–63]. It is worth pointing out that the linewidth reduction of
QCLs is achieved by frequency locking to resonant cavities [64]. Recently, an EC configuration is
adopted to further improve the performance of QCLs [65,66], and rapid wavelength modulation can
be achieved by directly modulating the injection current of QCL chip. A wide tuning range between
7960 and 8840 nm can be performed by continuous-wave operation of EC QCL [67].

4. Application of Modulation Spectroscopy for Methane Detection

Due to the advantage of high spectral resolution, TDLAS has been widely used to measure
methane absorptions and concentrations in the applications of molecular spectroscopy [68], natural
gas leak detection [69], and trace greenhouse gas monitoring [70] and so on. With TDLAS, the laser
frequency is scanned across the absorption line of methane gas, by tuning the output wavelength of the
diode laser. Many methane sensor systems are developed utilizing modulation spectroscopy [71,72] to
improve the limits of methane detection. The modulation spectroscopy technique used for TDLAS
has been reviewed in detail elsewhere [29,44,73,74], and this section aims to bring relevant methane
detection based on modulation spectroscopy up to date with recent developments.

4.1. Wavelength Modulation Spectroscopy Applied for Methane Detection

4.1.1. Principle of Wavelength Modulation Spectroscopy

In a typical TDLAS with WMS, the laser frequency is modulated by applying a low-frequency
ramp and a high-frequency sine wave [23,70]. After interacting with the absorption line of the target
gas, the modulated light generates the signals at different harmonics of modulation frequency [75].
At a fixed harmonic, the amount of signal attenuation is proportional to the gas absorption, and
the modulated wavelength is demodulated by a phase-sensitive detector [76]. The demodulated
wavelength at a particular harmonic nf (n = 2, 3, 4, etc.) is usually directed for the detection, and the
detection bandwidth is shifted to higher frequencies, where 1/f noise is smaller. The output spectrum
of the laser modulated by a radio frequency is shown in Figure 1 [77].
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Figure 1. The spectral output of the laser at a radio frequency: (a) unmodulated; (b) modulated with no
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4.1.2. Near Infrared Methane Detection Systems Based on WMS

Based on TDLs with WMS, researchers have successfully studied many high-performance methane
detection systems in the near infrared region [71,72,78,79]. Typically, a DFB laser is often used as a
light source. A portable methane detection device was developed by using a DFB diode laser centered
at 1.654 µm [71]. The second harmonic wavelength modulation spectroscopy (2f-WMS) was adopted.
Within the detection range of 0–106 ppm, the relative detection error was less than 7%. Liu et al. [72]
also designed a trace methane gas sensor. The frequency modulation technology was applied in WMS
to move the bandwidth of detection from low frequency to high frequency, to reduce 1/f noise. Zheng et
al. [78] described a portable CH4 detection sensor. The temperature of the DFB laser was controlled by
a software-based proportion-integration-differentiation (PID) algorithm. In addition, the measurement
range was from 0 to 100%. Then, the absorption length was added from 0.2 m to 0.4 m, and an open
gas sensing probe was set in an improved system [79]. In the lab group’s previous reports, the two
mid-infrared detection sensors had been developed [80,81]. Though the near-infrared sensor has a
longer effective path length of the gas cell, the mid-infrared sensor has a higher MDL of 5 ppm. This
is due to the fact that the absorption line intensity at 3.31 µm is stronger over two orders than that
at 1.65 µm. The wavelet-denoising (WD)-assisted wavelength modulation technique is successfully
suppressing the noise in mid-infrared detection sensors. A sequential multipoint sensor applying
2f-WMS technique was firstly developed by Shemshad [82]. The sensor did not use any multiplexing
techniques to distribute the laser intensity among a multitude of gas cells.

In some systems, the DFB laser is replaced with a vertical cavity laser (VCL) as a light source [83].
Paige et al. [69] developed a portable natural gas leak detector based on a VCL. The detector could
measure methane concentrations from ambient methane levels (1.8 ppm) to pure gas. In the detection
process, the response time of the detector was 1–2 s, and the detection precision was below 1%.

Due to the low cost of near-infrared laser and the development of optical communications
networks, some instruments in near infrared have been expanded into the commercialized application.
The LI-7700 Methane Analyzer (LI-COR Biosciences Lincoln, NE, USA) was developed for detecting
methane by eddy covariance method, which had the advantages of light weight, open path, and low
power requirement [84]. A tunable diode laser centered at 1.65 µm and a Herriott cell with a 30 m
effective path length were employed. The wavelength was modulated across the absorption band at
the sub-MHz frequency. Pressure- and temperature-induced changes in line shape and population
distribution, changing in laser power and mirror reflectivity as well, were compensated by using
computational fitting algorithms. This ensured that measurements remained accurate over a wide
range of pressure and temperature conditions. The Laser Gas™ iQ2 analyzer (NEO, AS) was the
first all-in-one TDLAS analyzer to measure up to four gases (O2, CO, CH4, H2O) and temperature
depending on configuration, which eliminated the need for multiple units for combustion analysis.
Then the Laser Gas™ II Open Path (OP) Monitor (NEO, AS), a compact and high-performance gas
analyzer, was created for long-distance monitoring in ambient air.
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4.1.3. Mid Infrared Methane Detection Systems Based on WMS

Methane detection systems based on the mid-infrared laser have been researched for quite some
time. However, traditional mid-infrared sensors have some drawbacks, such as the low power of
the laser and the instability of a laser in single mode operation. QCL, as a convenient mid-infrared
laser source, is widely employed for methane monitoring at room temperature. A small in situ sensor
system was developed to monitor the concentration of CH4 and N2O in real time [85]. The light source
was a QCL operating at 7.83 µm. The wavelength was scanned over the absorption lines of CH4 and
N2O at different operating temperatures, achieving simultaneous dual-species detection. The sampling
volume of the multipass cell was only 225 mL, resulting in the compact size of the system. Moreover,
an external cavity quantum cascade laser (EC-QCL), covering the absorption lines of four atmospheric
greenhouse gases, was applied in a sensor system [86]. Additionally, gallium antimonite (GaSb)-based
ICLs have been used for mid-infrared sensing [87,88]. In addition, the commercial availability of ICLs
was achieved in 2009. Ye et al. [87] demonstrated a mid-infrared dual-gas detection system (CH4 and
C2H6) based on a single ICL [87]. However, the power consumption of ~250 W was relatively high.
The weight of the oil-free vacuum pump and pressure controller and readout in the system was heavy.
To address the limitations, new portable sensor systems were developed [88,89], in which competitive
performances were revealed compared with other reported portable or handheld sensor devices.
Mid-infrared sources based on DFG effects are also employed for methane detection. Commercial
and off-the-shelf near-infrared lasers are purchased to act as the mixing sources. Armstrong et al. [90]
described a mid-infrared methane detection system using the difference frequency generation (DFG)
process in a periodically poled lithium niobate (PPLN) crystal. The DFG system was used to implement
TDLAS with WMS. The pump wavelength and the signal wavelength were provided by a fiber Bragg
grating diode laser and a DFB diode laser, respectively. The fundamental absorption line of methane
located around 3.4 µm was addressed. Since then, several researchers have reported more absorption
detection applications using DFG processes. A system utilizing a dual-wavelength amplifier for DFG
process was firstly presented [91]. As shown in Figure 2, the dual-wavelength amplifier is used to
amplify both of pump wavelength and signal wavelength, and simple 2f methane detection is carried
out. However, the detectable concentration of methane at the same absorption line is less than achieved
by Armstrong I. et al. [90]. The minimum detectable methane concentration was at the level of 26 ppbv
for an open-path interaction length of 8 m [92]. Zhao et al. [93] described a single-frequency CW
difference–DFG source, which was tunable from 3.1 to 3.6 µm. The output power of the source can
reach tens of milliwatts. Therefore, the wideband-tunable mid-infrared source has the potential in the
application of trace gas detection.
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4.1.4. Multi-Mode Diode Laser Applied for Methane Detection Based on WMS

In the above research, almost every light source falls into a single-mode diode laser. The
multi-mode diode laser is also used as a light source in some systems. A tunable multi-mode diode
laser with a central wavelength of 1318 nm was applied for remote detection of methane by Gao et
al. [94]. In the experiment, the multi-mode laser modes merely depended on the input current and
temperature, and the tuning range was continual. The reliability of the data analysis process was
certificated. Later, Cai et al. [95] reported what was probably the first application of measuring CH4

and CO by using a multi-mode ECDL emitting around 2.33 µm, as shown in Figure 3. Correlation
spectroscopy was used for signals identification and quantitative analysis. Although it is easier to
obtain the signal within the tuning range with a multi-mode diode laser than with a single-mode diode
laser due to its larger covering area, the mode-jump and mode competition, an intrinsic property of the
multi-mode laser, becomes an obstacle to further applications in trace gas detection.
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4.1.5. Optimization of Methane Detection Based on WMS

Apart from high detection sensitivity, the capacity of suppressing 1/f noise makes WMS a widely
used technique [89,96]. However, optical interference fringe, the primary cause of background
fluctuation, has not been effectively suppressed in WMS. Many methods, including the adoption of
post-detection filtering and the improvement of the detection system, have been attempted to optimize
the optical interference fringe in methane sensors [97]. For example, recently, a method of combining
dual tone modulation (DTM) with vibration reflector (VR) was introduced, which decreased the
standard deviation (STD) value of the background signal to 0.0924 ppm [98].

Other than the optical interference fringe, some kinds of MPCs, as well as the modulation
spectroscopy technique, have also been under study to improve the detection sensitivity, by increasing
the effective optical path while at the same time keeping the small size of methane sensor. White
cells [99], Herriott cells [100] and Chernin [101] are the three most common MPCs applied for detecting
gas, and variations on these have been developed. Liu et al. [2] studied a novel compact dense-pattern
multipass cell (DP-MPC). The cell was used to detect atmospheric methane in TDLAS with WMS.
Then, a confocal MPC was developed to build a compact and portable methane sensor [102]. The MPC
was mainly comprised of confocal mirrors, of which the radii of curvature were 500 mm. Compared to
the reported sensors, the sensitivity of ambient methane was improved. Additionally, many other
MPCs are also used for the detection of atmospheric trace species, such as a multiple-reflection optical
cell with three mirrors [103], the multipass cell formed by two twisted cylindrical mirrors [104] and
circular multireflection cell [105]. Some parameters of novel MPCs are listed in Table 1.
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Table 1. Some parameters of novel multipass cells.

Title of Multipass
Cells Components Path Length Detection Limit Taken from Refs.

Dense-pattern
multipass cell

Two silver-coated
concave spherical

mirrors
26.4 m <79 ppb [2]

Confocal multipass
cell

A confocal
configuration of six

mirrors
290 m 1.2 ppb [102]

Multiple-reflection
optical cell Three mirrors 140.3 m 128 ppb [103]

Multiple-pass
optical cell

Two twisted
cylindrical

high-reflectivity
mirrors

29.5 m - [104]

Circular
multireflection cell

A polished
spherical reflecting

surface
105 cm 300 ppm [105]

4.2. Frequency Modulation Spectroscopy Applied for Methane Detection

4.2.1. Principle of Frequency Modulation Spectroscopy

FMS is an offshoot of WMS, and the difference between WMS and FMS lies in the magnitude of
the modulation frequency. When modulation frequency is larger than the width of the absorption line
of interest, the technique is named by frequency modulation (FM). Compared with that of WMS in the
1/f noise dominated region (10 kHz), the modulation frequency of FMS is the 100 kHz range, which is
in a shot noise limited domain [29]. When detector quantum noise becomes the limiting factor for the
sensitivity of the detection system, the detection limit can be described by Equation (2).

SNR =
Psignal

(P2
1/ f + P2

sn + P2
tn)

1/2
(2)

wherein, P1/f represents the detector excess noise, Psn represents the shot noise of the detector, Ptn

represents the detector thermal noise, and Psignal represents the signal proportional to the incident laser
power on the detector.

4.2.2. Methane Detection Systems Based on FMS

Generally, FMS can be applied for the situation where WMS is applied in reference [106]. Compared
with that of WMS, processing electronics or detector of FMS should have a broader bandwidth in order
to generate higher frequencies [107]. This is a crucial limitation of FMS. Werle et al. [108] determined
that the absorbance of detection using one-tone FMS in a 1-Hz bandwidth could be 10−8 when the
laser-induced shot noise of detector exceeded thermal noise. However, the power of many lead-salt
diode lasers is not sufficient to produce shot-noise-limited spectroscopy. Frequency modulation of
GaAlAs lasers was first demonstrated by Rickett et al. [109] in 1980. The method of FM-TDLAS was
used by Gulluk et al. [110] to measure CO2, CH4, N2O, and CO in air samples of a few cm3. The
lead-salt diode laser was tuned at a typical frequency of 1 kHz, and the rf signal of 100–195 MHz was
superimposed on the laser current. Then, Pavone et al. [24] used a GaAlAs diode laser (DL) at 886 nm
to obtain the sensitivities of three detection techniques in methane sensor in order to more clearly
compare WMS and FMS with TTFMS. The laser was tuned on a third overtone methane transition for
measuring the minimum detectable absorption. The modulation frequency was 1 kHz, 100 MHz, and
390 ± 5 MHz for WMS, FMS and TTFMS, and the minimum detectable absorptions were 4.5 × 10−7,
9.7 × 10−8 and 6.4 × 10−8, respectively.
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Based on FMS, TDLs offer remote detection of methane gas the opportunity to operate over
distances of 10 m or more in high sensitivity [111]. In these systems, the laser beam aimed through
the probed region is collected after one-way transmission or further reflection from a topographic
target [112,113]. The ambient methane detection using the FM technique at a frequency of 5.35 MHz
was reported by Uehara et al. [112]. Then, Iseki et al. [113] described a portable methane detection
sensor with a 1.65-µm InGaAsP DFB laser. The tuning range of wavelength was 14 cm−1.

In addition to conventional lasers, new types of lasers such as QCL are also used for FMS in
methane detection. Gagliardi et al. [114] developed a novel laser spectrometer, which relied on a QCL
for detecting methane and nitrous oxide. Moreover, the research group firstly and thoroughly applied
single-tone FM technique to QCL, detecting the same components under low pressure, as shown in
Figure 4 [65]. Two QCLs of 8.06 µm and 7.3 µm are applied for FMS on N2O and TTFMS on CH4,
respectively. For methane gas, the minimum detectable concentration can reach up to 400 ppt Hz−1/2.
Due to the tunability and sensitivity characteristics of the system, a mixture of gases can be monitored.
As they summarized, QCL is an appropriate choice for frequency modulation spectroscopy in the
mid-infrared region.Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 15 
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4.2.3. Optimization of Methane Detection Based on FMS

Some researchers [115–117] have tried to improve the performance of methane sensors based
on QCLs in several ways. For example, a fast optical modulation was achieved by introducing an fs
NIR pulse train in a typical QCL, which was different from the traditional modulation method by
temperature tuning or current injection [115]. The FM was obtained at frequencies up to 1.67 GHz,
which was a benefit to get higher sensitivity of detection. Eichholz et al. [116] found out that the
FM technique with QCLs at terahertz (THz) frequencies was suitable for high-resolution molecular
spectroscopy. Then DFB QCLs, as the radiation source, were used to set up THz spectrometers [116,117].
The investigated molecular parameters such as transition frequency and pressure broadening of CH3OH
were presented.

4.3. Two-Tone Frequency Modulation Spectroscopy Applied for Methane Detection

4.3.1. Principle of Two-Tone Frequency Modulation Spectroscopy

The frequency modulation spectroscopy is called single-tone FMS (i.e., Standard FM) or two-tone
FMS, depending on the number of modulation tones [107]. The modulation of lasers in TTFMS is
completed by a pair of closely spaced frequencies simultaneously, which are ω1 = ωc + Ω/2 and
ω1 = ωc − Ω/2, respectively. Wherein ωc is the center frequency and Ω is the difference frequency.
TTFMS has higher modulation frequencies in comparison with FMS. In the TTFM technique, the
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advantages of standard FM are used in conjunction with the benefits of a considerable reduction in
detection bandwidth, with additional improvement in SNR [107].

4.3.2. Methane Detection Systems Based on TTFMS

In 1982, the TTFM technique was first proposed by Janik et al. [118]. Then modulation frequencies
increased from the kHz range to the tens of GHz range due to using a CW dye laser source and an
electro-optic modulator [119]. In the same year, the frequency of hundreds of MHz was obtained by
using a lead-salt diode laser [120]. Modugno et al. [121] employed a DFB diode laser to develop a
TTFMS spectrometer for monitoring methane. A balanced homodyne detection technique was adopted
so that the spectrometer had high sensitivity. The modulation frequency and the rf frequency were
2 GHz and 5 MHz, respectively. The sensitivity of the spectrometer was up to 7(2) × 10−8 at a 1-Hz
bandwidth. Recently, the TTFMS technique has been used in conjunction with a DFG radiation source.
Maddaloni et al. [122] developed a portable DFG spectrometer, as shown in Figure 5. Compared
with direct absorption, SNR has been enhanced by a factor of 100 by using TTFMS. Gagliardi et
al. [65] described another portable spectrometer based on QCLs and TTFMS for monitoring CH4. The
wavelength tunability vs. temperature was 2 GHz/K for QCL emitting at 7.3 µm. The output SNR was
enhanced about six times than that of direct absorption.Appl. Sci. 2018, 8, x FOR PEER REVIEW  9 of 15 
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4.3.3. Optimization of Methane Detection Based on TTFMS

In absorption systems based on TTFM technique, optical interference fringe is also a limiting
factor for detection sensitivity. A convenient fringe suppression method was employed to improve the
sensitivity in a CH4 detection system, as shown in Figure 6 [70]. Modulation depth optimization and
TTFM technology is applied in this system. In addition, the MDL at 1.654 µm is enhanced to 130 ppb.m
for a 50-min period. Observed detection sensitivity is given in the conclusion in Table 2.
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Table 2. Methane measurement characteristics for modulation spectroscopy techniques.

Spectroscopic
Technique

Spectral
Wavelength

(nm)

Detection
Limit/Measured
Concentration

Source Type Sample/Path
Length References

Wavelength
Modulation

1318 25 ppm.m DL 80 cm gas cell [94]
1650 1 ppm VCL 107 cm gas cell [69]
1651 1.2 ppb DFB 290 m gas cell [102]
1653 79 ppb DFB 26.4 m gas cell [2]
1654 130 ppb.m a DFB Open path [70]
1654 11 ppm DFB 0.2 m gas cell [71]
1654 1.4 ppm DFB 76 m gas cell [72]
1654 11 ppm DFB 0.2 m gas cell [78]
1654 12 ppm.m b DFB 40 cm gas cell [79]
1654 5 ppb DL 30 m open cell [84]
2330 81 ppb ECDL 100 m gas cell [95]
3100 5 ppm DFB 7.5 cm gas cell [81]
3291 2.1 ppmv c ICL 54.6 m gas cell [88]
3291 5 ppbv ICL 54.6 m gas cell [89]
3334 17.4 ppbv ICL 54.6 m gas cell [87]
3403 1.31 ppm.m DFB 30 mm gas cell [90]
3403 26 ppbv DFB Open path [91]
7800 2.2 ppbv d QCL 57.6 m gas cell [86]

Frequency
Modulation

1654 450 ppb.m DFB 0.2 m gas cell [113]
3357 20.3 ppbv DL 25 cm gas cell [110]
7658 20 ppm QCL 20 cm gas cell [114]

Two-Tone
Frequency

Modulation

886 - DL 1.5 m gas cell [24]
3314 3 ppb Hz−1/2 e ECDL 13 m gas cell [122]
3428 30 ppt Hz−1/2 ECDL 13 m gas cell [122]
7300 - QCL 20 cm gas cell [65]

a Parts per billion meters (length normalized concentration unit); b Parts per million meters; c Parts per million by
volume; d Parts per billion by volume; e Parts per billion by the negative square root of Hertz.

5. Conclusions

The characteristics of modulation spectroscopy techniques, based on TDLs for detecting methane
in the last decade, have been typically reviewed and codified, as shown in Table 2. Recent developments
in semiconductor lasers and modulation spectroscopy techniques for methane detection have been
described throughout this article. Moreover, some other trends are becoming visible.

Firstly, although QCLs, as convenient mid-infrared laser sources, have not been widely used
for commercial detection systems, they may find broad application in mid-infrared modulation
spectroscopies in the near future. Then, other wideband-tunable room temperature mid-infrared
sources and corresponding mid-infrared technology, such as DFG sources, optical fiber, and detection
instruments, will be further developed for trace gas detection. Except for the development of TDLs and
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mid-infrared sources, the optimization of optical interference fringe and the formation of multipass
cells are observable factors in improving the detection performance. Better sensitivity for methane
detection system will be expected when new designs of lasers and multipass cells and methods of
suppressing noise are put in operation.
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